CN106978596A - 一种单分散纳米环及其制备方法 - Google Patents

一种单分散纳米环及其制备方法 Download PDF

Info

Publication number
CN106978596A
CN106978596A CN201710190518.XA CN201710190518A CN106978596A CN 106978596 A CN106978596 A CN 106978596A CN 201710190518 A CN201710190518 A CN 201710190518A CN 106978596 A CN106978596 A CN 106978596A
Authority
CN
China
Prior art keywords
nano
rings
substrate
polystyrene microsphere
dispersed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710190518.XA
Other languages
English (en)
Inventor
郭振刚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin Chengjian University
Original Assignee
Tianjin Chengjian University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin Chengjian University filed Critical Tianjin Chengjian University
Priority to CN201710190518.XA priority Critical patent/CN106978596A/zh
Publication of CN106978596A publication Critical patent/CN106978596A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • B22F1/0549Hollow particles, including tubes and shells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/07Metallic powder characterised by particles having a nanoscale microstructure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0005Separation of the coating from the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5873Removal of material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明公开了一种单分散纳米环的制备方法。该方法通过在基片上制备单分散的聚苯乙烯微球,利用磁控溅射沉积薄膜的方法在基片上沉积一层薄膜,然后利用离子刻蚀技术对薄膜进行刻蚀,来制备单分散的纳米环结构样品。制备的单分散纳米环具有良好的均一性,并通过采用不同尺寸的聚苯乙烯微球可以制备不同尺寸的纳米环。该纳米环外形为圆形,纳米环的外径为20nm‑10μm,纳米环的内径小于纳米环的外径,纳米环的宽度是5nm‑1μm,纳米环的厚度是1nm‑500nm。该纳米环具有单分散性,结构一致以及尺寸可控等特点,制备方法简单,产额较高,在催化剂、电极材料、传感器和医学成像方面有广泛的应用。

Description

一种单分散纳米环及其制备方法
技术领域
本发明涉及纳米材料技术领域,尤其是一种单分散纳米环及其制备方法。
背景技术
纳米环作为一种非常特殊的纳米材料,由于其高度几何对称性而表现出特殊的物理化学性能,如电阻随外场振荡的Aharonov-Bhom效应,对磁场或电场敏感的纳米天线,具有类似核外电子的壳层能级结构,近红外区域频率可调的表面等离子激元等。这些特性使其在光、电、磁、催化、存储和微波吸收等领域具有潜在应用价值。
纳米环的制备方法有很多,如纳米通道模板法制备100nm-1μm的金纳米环;电子束刻蚀法非常容易控制纳米环的尺寸,也容易制备出尺寸均一的纳米环且直径覆盖整个微纳尺度,但环的数量较少;多孔模板法制备50nm的Au、Ni、Si纳米环;纳米晶自组装方法制备几百纳米直径的FePt纳米晶环;化学改性方法将碳纳米管处理后形成碳纳米管构成的环等。这些方法包括物理刻蚀技术和化学合成方法。物理刻蚀技术制备纳米环比较完整、分布均匀、尺寸容易控制,但需要高质量的模板、大型的设备、复杂的工艺、成本较高。化学合成方法成本低、操作简单、产量高,但是一般通过化学方法制备纳米环的方法只适用于特殊的材料及特定的纳米环状结构。因此,开发成本相对较低,工艺简单,易于大量生产的制备纳米环的新方法很有必要。
发明内容
针对上述存在的问题,本发明的目的是提供一种具有良好的单分散性和结构均一性,且微观尺度可调控的单分散纳米环。
本发明的技术方案是:一种单分散纳米环,所述纳米环单分散性好,结构均一,尺度可调;外形为圆形,所述纳米环的外径D为20nm-10μm,所述纳米环的内径d小于纳米环的外径D,所述纳米环的宽度(D/2-d/2)是5nm-1μm,所述纳米环的厚度是1nm-500nm。
进一步的,所述纳米环材质是金属、半导体或绝缘体中的任意一种。
一种单分散纳米环的制备方法,包括如下步骤:
步骤一:选取一种基片作为薄膜样品的衬底,切割成长10mm、宽10mm、厚0.5mm的大小;先用丙酮超声波清洗10-15min后,再用去离子水超声波清洗10-15min,最后用无水乙醇超声波清洗10-15min,清洗干净的基片用高纯氮气吹干备用;
步骤二:选取一种聚苯乙烯微球乳液,用滴管取一定量的微球乳液,将聚苯乙烯微球乳液与去离子水按体积比1:200进行稀释,在超声波清洗器中超声分散10-15min,使聚苯乙烯微球充分分散;将分散好的聚苯乙烯微球溶液滴在步骤一中清洗干净的基片上,放置干燥箱中干燥;
步骤三:待基片充分干燥后,将其放入磁控溅射腔内,在基片上生长一层薄膜材料,薄膜厚度可参考所需的纳米环厚度,所述薄膜厚度为1nm-500nm,薄膜的厚度主要通过薄膜沉积速率和沉积时间来控制,对于确定的材料和磁控溅射参数,器薄膜沉积速率是一定的,薄膜厚度与沉积时间成正比;薄膜生长完成后,将基片放置于离子刻蚀仪器中,对薄膜进行离子刻蚀减薄;由于聚苯乙烯微球的存在,未被聚苯乙烯微球遮挡的部分,薄膜将会被完全刻蚀掉,被聚苯乙烯微球遮挡的部分将形成单分散的纳米环结构;聚苯乙烯微球根据需要与否,用丙酮溶液将其从基片上清洗掉,得到单分散的纳米环。
进一步的,所述步骤二中的基片与水平面成15°角放置在干燥箱中干燥,干燥箱温度维持在55℃。
进一步的,所述纳米环的应用领域为电极材料、磁记录材料、光电催化材料和传感器方面。
与现有技术相比,本发明的有益效果是:本发明制备方法相对简单,周期短,无需高温环境,且重复性好。同时该纳米环结构易于调控,通过采用不同大小的聚苯乙烯微球,可以制备出不同尺度的单分散纳米环结构,且保证了与化学合成方法相当的纳米环产量。该制备方法适用于各种材料的纳米环制备,包括金属、半导体、合金、氧化物,甚至绝缘体材料,是一种高效且易于推广使用的纳米环制备方法。
附图说明
图1为本发明的单分散纳米环的制备方法示意图。
图2为本发明的硅基片上制备的200nm钴金属纳米环。
图3为本发明的二氧化硅基片上制备的500nm钴铁合金纳米环。
图4为本发明的铜薄膜上制备的250nm钴铁合金纳米环。
具体实施方式
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”等的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,除非另有说明,“多个”的含义是两个或两个以上。
下面结合附图和实施例对本发明作进一步的说明。
实施例1:
如图2所示,在硅基片上磁控溅射制备钴金属纳米环。
步骤一:选取硅基片作为纳米环样品的衬底,切割成长10mm、宽10mm、厚0.5mm大小。先用丙酮超声波清洗10min,再用去离子水超声波清洗10min,最后用无水乙醇超声波清洗10min,取出用高纯氮气吹干备用;
步骤二:选取直径200nm的聚苯乙烯微球,聚苯乙烯微球乳液与去离子水按体积比1:200进行稀释,然后放在超声波清洗器中进行充分分散,超声波清洗器的工作功率为100W,经稀释和超声分散后,将分散好的聚苯乙烯微球溶液滴在清洗干净的硅基片上,基片与水平面成15°角放置在干燥箱中干燥,干燥箱温度维持在55℃;
步骤二:准备在基片上制备钴金属纳米环,将基片放到磁控溅射镀膜设备的镀膜室内,把镀膜室抽到2×10-5-4×10-5Pa的真空度,用磁控溅射方法在基片上沉积40nm厚的钴金属薄膜,本实施例中采用JGP-450型磁控溅射系统,溅射功率为80W,工作气体为0.5Pa的氩气,溅射完成后取出,将基片放置于离子刻蚀仪器中,对薄膜进行离子减薄,工作时间为2min。刻蚀完成后取出基片,放入丙酮溶液中超声清洗2min,去除基片上的聚苯乙烯微球,即得到单分散的钴金属纳米环。
实施例2
如图3所示,在二氧化硅基片上磁控溅射制备钴铁合金纳米环。
步骤一:选取二氧化硅基片作为纳米环样品的衬底,切割成长10mm、宽10mm、厚0.5mm大小。先用丙酮超声波清洗15min,再用去离子水超声波清洗15min,最后用无水乙醇超声波清洗15min,取出用高纯氮气吹干备用;
步骤二:选取直径500nm的聚苯乙烯微球乳液,聚苯乙烯微球乳液与去离子水按体积比1:200进行稀释,然后放在超声波清洗器中进行充分分散,超声波清洗器的工作功率为100W,经稀释和超声分散后,将分散好的聚苯乙烯微球溶液滴在清洗好的二氧化硅基片上,基片与水平面成15°角放置在干燥箱中干燥,干燥箱温度维持在55℃;
步骤三,准备在二氧化硅基片上制备钴铁合金纳米环,将基片放到磁控溅射镀膜设备的镀膜室内,把镀膜室抽到2×10-5-4×10-5Pa的真空度,用射频磁控溅射方法在基片上沉积100nm厚的钴铁合金薄膜,溅射功率为80W,工作气体为0.5Pa的氩气,随后取出,将基片放置于离子刻蚀仪器中,对薄膜进行离子减薄,工作时间为5min。刻蚀完成后取出基片,放入丙酮溶液中超声清洗2min,去除基片上的聚苯乙烯微球,即得到单分散的钴铁合金纳米环。
实施例3
如图4所示,在铜薄膜上磁控溅射制备钴铁合金纳米环。
步骤一:选取二氧化硅基片作为纳米环样品的衬底,切割成长10mm、宽10mm、厚0.5mm大小。先用丙酮超声波清洗10min,再用去离子水超声波清洗10min,最后用无水乙醇超声波清洗10min,取出基片用高纯氮气吹干备用;
步骤二:将基片放入磁控溅射镀膜室内,把镀膜室抽到1×10-4-2×10-4Pa的真空度,用直流磁控溅射方法在基片上沉积50nm厚的铜薄膜,工作气体为1.0Pa的氩气,随后取出备用;选取直径250nm的聚苯乙烯微球乳液,聚苯乙烯微球乳液与去离子水按体积比1:200进行稀释,然后放在超声波清洗器中进行充分分散,超声波清洗器的工作功率为100W,经稀释和超声分散后,将分散好的聚苯乙烯微球溶液滴在制备有铜薄膜的基片上,基片与水平面成15°角放置在干燥箱中干燥,干燥箱温度维持在55℃;
步骤三:在基片上制备钴铁合金纳米环,将干燥后取出的基片放到磁控溅射镀膜设备的镀膜室内,把镀膜室抽到2×10-5-4×10-5Pa的真空度,用射频磁控溅射的方法在铜薄膜上沉积50nm厚的钴铁合金薄膜,溅射功率为80W,工作气体为0.5Pa的氩气,随后取出,将基片放置于离子刻蚀仪器中,对薄膜进行离子减薄,工作时间为2.5min。刻蚀完成后取出基片,放入丙酮溶液中超声清洗2min,去除基片上的聚苯乙烯微球,即得到单分散的钴铁合金纳米环。
以上述依据本发明的理想实施例为启示,通过上述的说明内容,相关工作人员完全可以在不偏离本项发明技术思想的范围内,进行多样的变更以及修改。本项发明的技术性范围并不局限于说明书上的内容,必须要根据权利要求范围来确定其技术性范围。

Claims (5)

1.一种单分散纳米环,其特征在于:所述纳米环单分散性好,结构均一,尺度可调;外形为圆形,所述纳米环的外径为20nm-10μm,所述纳米环的内径小于纳米环的外径,所述纳米环的宽度是5nm-1μm,所述纳米环的厚度是1nm-500nm。
2.根据权利要求1所述的一种单分散纳米环,其特征在于,所述纳米环材质是金属、半导体或绝缘体中的任意一种。
3.一种制备如权利要求1所述的单分散纳米环的方法,其特征在于,包括如下步骤:
步骤一:选取一种基片作为薄膜样品的衬底,切割成长10mm、宽10mm、厚0.5mm的大小;先丙酮超声波清洗10-15min,再用去离子水超声波清洗10-15min,最后用无水乙醇超声波清洗10-15min,清洗干净的基片用高纯氮气吹干备用;
步骤二:选取一种聚苯乙烯微球乳液,用滴管取一定量的微球乳液,将聚苯乙烯微球乳液与去离子水按体积比1:200进行稀释,在超声波清洗器中超声分散10-15min,使聚苯乙烯微球充分分散;将分散好的聚苯乙烯微球溶液滴在步骤一中清洗干净的基片上,放置干燥箱中干燥;
步骤三:待基片充分干燥后,将其放入磁控溅射腔内,在基片上生长一层薄膜材料,磁控溅射采用射频电源,功率为80-120W;薄膜生长完成后,将基片放置于离子刻蚀仪器中,对薄膜进行离子减薄;由于聚苯乙烯微球的存在,未被聚苯乙烯微球遮挡的部分,薄膜将会被完全刻蚀掉,被聚苯乙烯微球遮挡的部分将形成单分散的纳米环结构;聚苯乙烯微球可根据需要与否,用丙酮溶液将其从基片上清洗掉,得到单分散的纳米环。
4.根据权利要求3所述的一种单分散纳米环的制备方法,其特征在于,所述步骤二中的基片与水平面成15°角放置在干燥箱中干燥,干燥箱温度维持在55℃。
5.根据权利要求3所述的一种单分散纳米环的制备方法,其特征在于,所述纳米环的应用领域为电极材料、磁记录材料、光电催化材料和传感器方面。
CN201710190518.XA 2017-03-28 2017-03-28 一种单分散纳米环及其制备方法 Pending CN106978596A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710190518.XA CN106978596A (zh) 2017-03-28 2017-03-28 一种单分散纳米环及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710190518.XA CN106978596A (zh) 2017-03-28 2017-03-28 一种单分散纳米环及其制备方法

Publications (1)

Publication Number Publication Date
CN106978596A true CN106978596A (zh) 2017-07-25

Family

ID=59339008

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710190518.XA Pending CN106978596A (zh) 2017-03-28 2017-03-28 一种单分散纳米环及其制备方法

Country Status (1)

Country Link
CN (1) CN106978596A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107555400A (zh) * 2017-07-26 2018-01-09 上海纳米技术及应用国家工程研究中心有限公司 气敏传感器用氧化铁纳米环/氧化镍复合材料
CN108100992A (zh) * 2017-12-20 2018-06-01 郑州云海信息技术有限公司 一种纳米环的量子纠缠态获取方法及其装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102383102A (zh) * 2011-09-29 2012-03-21 中国航空工业集团公司北京航空材料研究院 磁性纳米反点阵列薄膜及其制备方法
CN105152128A (zh) * 2015-09-22 2015-12-16 宁波工程学院 一种Cr二维孔洞式纳米环阵列结构可控尺寸的方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102383102A (zh) * 2011-09-29 2012-03-21 中国航空工业集团公司北京航空材料研究院 磁性纳米反点阵列薄膜及其制备方法
CN105152128A (zh) * 2015-09-22 2015-12-16 宁波工程学院 一种Cr二维孔洞式纳米环阵列结构可控尺寸的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
F.Q.ZHU ET.AL: "Magnetic Bistability and Controllable Reversal of Asymmetric Ferromagnetic Nanorings", 《PHYSICAL REVIEW LETTERS》 *
乔金菊等: "二维纳米胶体球模板和Cu纳米颗粒阵列的制备", 《首都师范大学学报(自然科学版)》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107555400A (zh) * 2017-07-26 2018-01-09 上海纳米技术及应用国家工程研究中心有限公司 气敏传感器用氧化铁纳米环/氧化镍复合材料
CN108100992A (zh) * 2017-12-20 2018-06-01 郑州云海信息技术有限公司 一种纳米环的量子纠缠态获取方法及其装置
CN108100992B (zh) * 2017-12-20 2019-05-28 郑州云海信息技术有限公司 一种纳米环的量子纠缠态获取方法及其装置

Similar Documents

Publication Publication Date Title
CN103318875B (zh) 自组装纳米金属或半导体颗粒掺杂石墨烯微片的制备方法及其用途
Al-Sarraj et al. Optoelectronic properties of highly porous silver oxide thin film
Sirota et al. Bismuth oxide photocatalytic nanostructures produced by magnetron sputtering deposition
Zhu et al. Hydrothermal synthesis of Zn2SnO4 nanorods in the diameter regime of sub-5 nm and their properties
Shen et al. Synthesis and evolution of novel hollow ZnO urchins by a simple thermal evaporation process
KR101813659B1 (ko) 3차원 나노포러스 구조 표면증강 라만 분광기판 및 표면증강 라만 분광기판을 제조하는 방법
Wang et al. Highly ordered Au-Ag alloy arrays with tunable morphologies for surface enhanced Raman spectroscopy
Abid et al. Preparation and characterization Co3O4 nanoparticles on porous silicon for humidity sensor by photoluminescence
Wang et al. Seed-layer controlled synthesis of well-aligned ZnO nanowire arrays via a low temperature aqueous solution method
CN106583750B (zh) 一种制备氮化硼纳米片/金属纳米颗粒复合材料的方法
Rao et al. Investigation of magnetoelectric properties and biocompatibility of CoFe2O4-BaTiO3 core-shell nanoparticles for biomedical applications
CN106978596A (zh) 一种单分散纳米环及其制备方法
Mebed et al. Electrochemical fabrication of 2D and 3D nickel nanowires using porous anodic alumina templates
CN104801720B (zh) 一种半金属哈斯勒合金Co2FeAl纳米线的制备方法及其用途
Meng et al. Synthesis of Sn nanowire by template electrodeposition and its conversion into Sn nanosolder
Xu et al. SERS effect of Rhodamine 6G molecular probe on AgAu alloy nanowire arrays by a solid-state ionics method
CN106216664A (zh) 一种制备单晶球形银纳米颗粒的方法和由此形成的银纳米颗粒
CN104227017B (zh) 一种粒径可控银纳米粒子的制备方法
CN103787335B (zh) 一种针尖型硅纳米线的制备方法
Srivastava et al. Formation of hierarchical structures of Fe 2 O 3 by the liquid–liquid interface technique
Ghosh et al. Nanoscale characterization
CN106917067A (zh) 一种调控磁性纳米环尺寸的方法
Lai et al. Large-scale synthesis and surface plasmon resonance properties of angled silver/silver homojunction nanowires
CN111573618B (zh) 原位集成三维纳米线的螺旋回路磁头及其制备方法、用途
Kameyama et al. Effects of aging temperature on the size and morphology of Cu (OH) 2 and CuO nanoparticles

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20170725

RJ01 Rejection of invention patent application after publication