CN106978540A - 处理高钙高磷钒渣的方法和系统 - Google Patents

处理高钙高磷钒渣的方法和系统 Download PDF

Info

Publication number
CN106978540A
CN106978540A CN201710183962.9A CN201710183962A CN106978540A CN 106978540 A CN106978540 A CN 106978540A CN 201710183962 A CN201710183962 A CN 201710183962A CN 106978540 A CN106978540 A CN 106978540A
Authority
CN
China
Prior art keywords
calcium
vanadium
acid
slag
dephosphorization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710183962.9A
Other languages
English (en)
Inventor
吴道洪
宋文臣
王静静
李红科
曹志成
汪勤亚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Province Metallurgical Design Institute Co Ltd
Original Assignee
Jiangsu Province Metallurgical Design Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Province Metallurgical Design Institute Co Ltd filed Critical Jiangsu Province Metallurgical Design Institute Co Ltd
Priority to CN201710183962.9A priority Critical patent/CN106978540A/zh
Publication of CN106978540A publication Critical patent/CN106978540A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/04Working-up slag
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/02Roasting processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/20Obtaining niobium, tantalum or vanadium
    • C22B34/22Obtaining vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/006Wet processes
    • C22B7/007Wet processes by acid leaching
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

本发明公开了处理高钙高磷钒渣的方法和系统,其中,处理高钙高磷钒渣的方法包括:将高钙高磷钒渣进行氧化磁化焙烧处理,以便得到磁性焙砂;将所述磁性焙砂进行磨矿磁选处理,以便得到四氧化三铁和高钙高磷除铁钒渣;将所述高钙高磷除铁钒渣、硅石、还原煤和粘结剂进行混合成型处理,以便得到混合球团;将所述混合球团进行还原焙烧脱磷处理,以便得到脱磷焙烧球团;将所述脱磷焙烧球团进行氧化钙化焙烧处理,以便得到酸溶性钒酸钙熟料;以及将所述酸溶性钒酸钙熟料进行酸浸提钒处理,得到五氧化二钒产品。采用该处理高钙高磷钒渣的方法可以有效脱除高钙高磷钒渣中的磷,进而显著提高铁和钒的回收率和品质。

Description

处理高钙高磷钒渣的方法和系统
技术领域
本发明属于冶金技术领域,具体而言,本发明涉及处理高钙高磷钒渣的方法和系统。
背景技术
钒渣是指含钒铁水经转炉吹炼氧化成为富含钒氧化物以及铁氧化物的一种炉渣,其主要成分有MFe、FeO、SiO2、V2O3、TiO2、CaO、Al2O3、MgO和Cr2O3。世界上约有60%的钒是从钒渣中提取的,现行钒渣的提钒方法是与添加剂混匀后放入回转窑或多膛炉内进行氧化焙烧,得到可溶性的钒酸盐,通过湿法浸出手段将钒从固相转移到液相后再进行沉钒,将沉钒产物煅烧得到V2O5产品。磷是含钒浸出液沉淀中的有害元素,它会与钒在酸性介质中形成稳定而又复杂的络合物磷钒系杂多酸以及它们的盐,此外,还会与溶液中的铁离子和铝离子形成FePO4、AlPO4沉淀,这些都会污染钒酸铵沉淀,严重影响酸性铵盐沉钒的进行。常用的脱磷手段为调节溶液pH在9.5-11.0之间,然后加入适量的钙盐或镁盐形成磷酸盐沉淀,一般要求脱磷后的浸出液P浓度<0.015g/L。
普通钒渣中CaO质量分数一般小于3%,P2O5质量分数一般小于0.2%。为了减轻半钢脱磷的负担,含钒铁水吹炼钒渣同时可以加入钙盐进行预脱磷,得到低磷半钢和高钙高磷的特殊钒渣。这种高钙高磷钒渣因自身CaO含量高,钠化焙烧时CaO会与V2O5生成不溶于水的钒酸钙CaO·V2O5或含有钙的钒青钙CaV12O30,CaO的质量分数每增加1%就要带来4.7-9.0%的V2O5损失,因此不宜采用钠化焙烧-水浸提钒工艺;如果采用钙化焙烧-酸浸提钒工艺,会使大量的钙和磷伴随着钒一同进入到浸出液中,由于溶液中有大量钙离子的存在,调节溶液pH在9.5-11.0之间会重新形成钒酸钙沉淀,所以不能采用传统的碱性条件下的脱磷方法,而酸性体系下的脱磷问题尚未攻克。
因此,对高钙高磷钒渣脱磷提钒的技术还有待进一步发展。
发明内容
本发明旨在至少在一定程度上解决相关技术中的技术问题之一。为此,本发明的一个目的在于提出一种处理高钙高磷钒渣的方法和系统,其中处理高钙高磷钒渣的方法通过预先脱除高钙高磷钒渣中的磷,可有效回收获得高品质的铁和钒,同时还可以进一步提高铁和钒的回收率。
根据本发明的一个方面,本发明提出了一种处理高钙高磷钒渣的方法,包括:
将高钙高磷钒渣进行氧化磁化焙烧处理,以便得到磁性焙砂;将磁性焙砂进行磨矿磁选处理,以便得到四氧化三铁和高钙高磷除铁钒渣;将高钙高磷除铁钒渣、硅石、还原煤和粘结剂进行混合成型处理,以便得到混合球团;将混合球团进行还原焙烧脱磷处理,以便得到脱磷焙烧球团;将脱磷焙烧球团进行氧化钙化焙烧处理,以便得到酸溶性钒酸钙熟料;以及将酸溶性钒酸钙熟料进行酸浸提钒处理,得到五氧化二钒产品。由此,通过采用本发明上述实施例的处理高钙高磷钒渣的方法,不仅可以有效脱除高钙高磷钒渣中的磷,避免钒酸钙熟料在酸浸提钒时磷进入含钒浸出液中从而严重影响沉钒效果,还可以对高钙高磷钒渣中的铁资源进行回收再利用,最终获得含磷量低的优质铁资源和五氧化二钒产品。
根据本发明上述实施例的处理高钙高磷钒渣的方法还可以具有如下附加的技术特征:
在本发明的一些实施例中,高钙高磷钒渣中CaO的含量为3-25重量%,P2O5的含量为0.2-1重量%,V2O5的含量为5-20重量%,Fe的含量为20-35重量%。由此本发明实施例的处理高钙高磷钒渣的方法可以有效针对高钙高磷类钒渣进行处理,进而提高该方法的适用范围。
在本发明的一些实施例中,氧化磁化焙烧处理是在0.5-2体积%的氧气浓度和300-500℃的温度下进行5-20min完成的。由此,可以进一步提高磁性焙砂中四氧化三铁的产率。
在本发明的一些实施例中,四氧化三铁中磷含量为不大于0.1重量%,高钙高磷钒渣中铁的回收率不低于80重量%。由此,可以进一步提高回收的铁和钒的品质。
在本发明的一些实施例中,高钙高磷除铁钒渣、硅石、还原煤和粘结剂按质量比为100:(5-15):(5-10):(2-5)进行混合成型处理。由此,可以有效制备得到混合球团,并且进一步提高后续还原脱磷效果。
在本发明的一些实施例中,还原焙烧脱磷处理的温度为1200-1400℃。由此,可以进一步提高脱磷效果。
在本发明的一些实施例中,脱磷焙烧球团中P2O5含量不大于0.1重量%。由此,可以有效提高后续酸浸提钒处理中钒的品质。
在本发明的一些实施例中,氧化钙化焙烧处理温度为900-1200℃,时间为1-2h。由此,可以进一步提高酸溶性钒酸钙熟料的产率,进而提高钒的回收率。
根据本发明的另一个方面,本发明还提出了一种实施上述实施例的处理高钙高磷钒渣的方法的系统,该系统包括:氧化磁化焙烧装置、磨矿磁选装置、混合成型装置、还原焙烧脱磷装置、氧化钙化焙烧装置和酸浸提钒装置。
其中,氧化磁化焙烧装置具有高钙高磷钒渣入口和磁性焙砂出口,氧化磁化焙烧装置适于将高钙高磷钒渣进行化磁化焙烧处理,以便得到磁性焙砂;磨矿磁选装置具有磁性焙砂入口、四氧化三铁出口和高钙高磷除铁钒渣出口,磁性焙砂入口与磁性焙砂出口相连,磨矿磁选装置适于将磁性焙砂进行磨矿磁选处理,以便得到四氧化三铁和高钙高磷除铁钒渣;混合成型装置具有高钙高磷除铁钒渣入口、硅石入口、还原煤入口、粘结剂入口和混合球团出口,高钙高磷除铁钒渣入口和高钙高磷除铁钒渣出口相连,混合成型装置适于将高钙高磷除铁钒渣、硅石、还原煤和粘结剂进行混合成型处理,以便得到混合球团;还原焙烧脱磷装置具有混合球团入口和脱磷焙烧球团出口,混合球团入口与混合球团出口相连,还原焙烧脱磷装置适于将混合球团进行还原焙烧脱磷处理,以便得到脱磷焙烧球团;氧化钙化焙烧装置具有脱磷焙烧球团入口、空气入口和酸溶性钒酸钙熟料出口,脱磷焙烧球团入口与脱磷焙烧球团出口相连,氧化钙化焙烧装置适于将脱磷焙烧球团进行氧化钙化焙烧处理,以便得到酸溶性钒酸钙熟料;酸浸提钒装置具有酸溶性钒酸钙熟料入口、五氧化二钒出口和尾渣出口,酸溶性钒酸钙熟料入口与酸溶性钒酸钙熟料出口相连,酸浸提钒装置适于将酸溶性钒酸钙熟料进行酸浸-净化-沉钒-煅烧处理,以便得到五氧化二钒和尾渣。
由此,通过采用本发明上述实施例的处理高钙高磷钒渣的系统,不仅可以有效脱除高钙高磷钒渣中的磷,避免钒酸钙熟料在酸浸提钒时磷进入含钒浸出液中从而严重影响沉钒效果,还可以对高钙高磷钒渣中的铁资源进行回收再利用,最终获得含磷量低的优质铁资源和五氧化二钒产品。
根据本发明上述实施例的处理高钙高磷钒渣的系统还可以具有如下附加的技术特征:
在本发明的一些实施例中,氧化磁化焙烧装置为隧道窑,磨矿磁选装置包括联动设置的球磨机和磁选机,还原焙烧脱磷装置为转底炉,氧化钙化焙烧装置为回转窑。由此,可以进一步改善高钙高磷钒渣的脱磷效果,并提高铁和钒的回收率和品质。
附图说明
本发明的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1是根据本发明一个实施例的处理高钙高磷钒渣的方法的流程图;
图2是根据本发明一个实施例的处理高钙高磷钒渣的系统的结构示意图。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
根据本发明的一个方面,本发明提出了一种处理高钙高磷钒渣的方法。根据本发明实施例的处理高钙高磷钒渣的方法包括:将高钙高磷钒渣进行氧化磁化焙烧处理,以便得到磁性焙砂;将磁性焙砂进行磨矿磁选处理,以便得到四氧化三铁和高钙高磷除铁钒渣;将高钙高磷除铁钒渣、硅石、还原煤和粘结剂进行混合成型处理,以便得到混合球团;将混合球团进行还原焙烧脱磷处理,以便得到脱磷焙烧球团;将脱磷焙烧球团进行氧化钙化焙烧处理,以便得到酸溶性钒酸钙熟料;以及将酸溶性钒酸钙熟料进行酸浸提钒处理,得到五氧化二钒产品。
根据本发明上述实施例的处理高钙高磷钒渣的方法,首先对高钙高磷钒渣进行氧化磁化焙烧处理和磨矿磁选处理,分离出其中的铁并得到高钙高磷除铁钒渣;其次将高钙高磷除铁钒渣还原焙烧脱磷处理,脱除磷并得到含有钒的脱磷焙烧球团;最后将脱磷焙烧球团经过钙化-酸浸处理,提取获得五氧化二钒产品。由此,本发明实施例的处理高钙高磷钒渣的方法通过预先脱除高钙高磷钒渣中的磷,进而避免了钒酸钙熟料在后续酸浸提钒时磷进入含钒浸出液中从而严重影响沉钒效果。同时采用该方法还对高钙高磷钒渣中的铁资源进行了回收再利用,最终获得含磷量低的优质铁资源和五氧化二钒产品。
下面参考图1对本发明上述实施例的处理高钙高磷钒渣的方法进行详细描述。
S100:氧化磁化焙烧处理
根据本发明的实施例,将高钙高磷钒渣进行氧化磁化焙烧处理,以便得到磁性焙砂。
根据本发明实施例的处理高钙高磷钒渣的方法中,高钙高磷钒渣中CaO的含量为3-25重量%,P2O5的含量为0.2-1重量%,V2O5的含量为5-20重量%,Fe的含量为20-35重量%。由此,本发明实施例的处理高钙高磷钒渣的方法可以有效针对CaO含量高于3重量%、P2O5含量高于0.2重量%的高钙高磷钒渣进行处理,并且可以获得高品质的铁和五氧化二钒产品。
根据本发明的具体实施例,首先对高钙高磷钒渣进行氧化磁化焙烧处理,以便得到磁性焙砂。发明人发现,高磷高钙钒渣中的铁主要以钒铁尖晶石FeO·V2O3和铁橄榄石FeO·SiO2的形式存在,通过对高钙高磷钒渣进行氧化磁化焙烧处理,可以使钒铁尖晶石和铁橄榄石中的FeO被氧化,使最终得到的磁性焙砂中的铁均以具有磁性的四氧化三铁形式存在。
根据本发明的具体实施例,氧化磁化焙烧反应可以包括下列反应:
3(2FeO·SiO2)+O2=2Fe3O4+3SiO2 (1)
6(FeO·V2O3)+O2=2Fe3O4+6V2O3 (2)
由此,通过对高磷高钙钒渣进行氧化磁化焙烧处理,可以有效回收高磷高钙钒渣中的铁。
根据本发明的具体实施例,氧化磁化焙烧处理是在0.5-2体积%的氧气浓度和300-500℃的温度下进行5-20min完成的。发明人发现,在该氧化磁化焙烧处理条件下,可以进一步提高磁性焙砂中四氧化三铁的产率,使磁性焙砂中四氧化三铁中的铁占全铁的比例不少于90重量%,进而显著提高高钙高磷钒渣中铁的回收率。
S200:磨矿磁选处理
根据本发明的实施例,进一步将磁性焙砂进行磨矿磁选处理,以便得到四氧化三铁和高钙高磷除铁钒渣。
根据本发明的具体实施例,对磁性焙砂进行磨矿处理后再进行磁选处理,可以将磁性焙烧中的四氧化三铁和高钙高磷除铁钒渣进行有效地分离,实现对铁的回收。此外,发明人还发现,磁性焙砂在磨矿磁选处理过程中磷不会进入到铁中,由此,可以有效提高铁的品质,并且所得到的四氧化三铁可以作为优质的铁精矿用于高炉炼铁。
根据本发明的具体实施例,四氧化三铁中磷含量为不大于0.1重量%,高钙高磷钒渣中铁的回收率不低于80重量%。由此,可以进一步提高回收的铁和钒的品质。
S300:混合成型处理
根据本发明的实施例,将高钙高磷除铁钒渣、硅石、还原煤和粘结剂进行混合成型处理,以便得到混合球团。
根据本发明的具体实施例,可以将高钙高磷除铁钒渣、硅石、还原煤和粘结剂按质量比为100:(5-15):(5-10):(2-5)进行混合成型处理。由此,可以有效制备得到混合球团,并且进一步提高后续还原脱磷效果。根据本发明的具体示例,发明人发现,向高钙高磷除铁钒渣中配入上述比例的硅石和还原煤,可以有效提高高钙高磷除铁钒渣中磷酸钙的还原率,进而提高脱磷效果。
根据本发明的具体实施例,混合成型处理中粘结剂的类型并不受特别限制,例如,根据本发明的实施示例,粘结剂可以为膨润土、淀粉溶液、糖蜜中的至少一种。由此,可以进一步提高混合成型的效率和混合球团的质量。
S400:还原焙烧脱磷处理
根据本发明的实施例,将混合球团进行还原焙烧脱磷处理,以便得到脱磷焙烧球团。
根据本发明的具体实施例,将混合球团进行还原焙烧脱磷处理,发明人发现,对混合球团进行还原焙烧脱磷处理时,可以使混合物料中的磷酸钙被还原成磷单质,并以蒸气的形式进入烟气中,由此,实现脱磷的效果。
根据本发明的具体实施例,向高钙高磷除铁钒渣配入硅石、还原煤和粘结剂并成型后进行还原焙烧脱磷处理。具体地,脱磷反应可以按照下列反应式进行:
Ca3PO4+5C+SiO2=P2+5CO+3CaSiO3 (3)
根据本发明的具体实施例,还原焙烧脱磷处理的温度可以为1200-1400℃。发明人发现,在该还原焙烧脱磷处理条件下,可以进一步提高磷脱除率。根据本发明的具体实施例,经过还原焙烧脱磷处理得到的脱磷焙烧球团中P2O5含量不大于0.1重量%。由此,通过在上述条件下对高钙高磷除铁钒渣进行还原焙烧脱磷处理,可以有效脱除磷,进而避免了后续钒酸钙熟料在酸浸提钒时磷进入含钒浸出液中严重影响沉钒效果,最终获得优质五氧化二钒产品。
S500:氧化钙化焙烧处理
根据本发明的实施例,将脱磷焙烧球团进行氧化钙化焙烧处理,以便得到酸溶性钒酸钙熟料。由此,脱磷之后的脱磷焙烧球团再经过氧化钙化焙烧处理得到酸溶性钒酸钙熟料,利用现有的酸浸提钒技术可以得到五氧化二钒产品。
根据本发明的具体实施例,氧化钙化焙烧处的理温度可以为900-1200℃,处理时间可以为1-2h。发明人发现,通过在上述条件下对脱磷焙烧球团进行氧化钙化焙烧处理,可以使脱磷焙烧球团中的钒被氧化为正四价或正五价,并以酸溶性钒酸钙的形式存在。进而可以有效提高后续酸浸提钒处理中五氧化二钒的产率。
根据本发明的具体实施例,在上述反应条件下进行的氧化钙化焙烧处理过程中,脱磷焙烧球团内具体发生的反应如下:
CaO+V2O3+O2=CaV2O6偏钒酸钙(五价,酸溶性) (4)
2CaO+V2O3+O2=Ca2V2O7焦钒酸钙(五价,酸溶性) (5)
3CaO+V2O3+O2=Ca3V2O8正钒酸钙(五价,酸溶性) (6)
CaO+V2O3+0.5O2=CaV2O5偏钒酸钙(四价,酸溶性) (7)
2CaO+V2O3+0.5O2=Ca2V2O6焦钒酸钙(四价,酸溶性) (8)
3CaO+V2O3+0.5O2=Ca3V2O7正钒酸钙(四价,酸溶性) (9)
因此,根据本发明的具体实施例,经过氧化钙化焙烧处理得到的酸溶性钒酸钙熟料中的钒酸钙可以包括正钒酸钙、焦钒酸钙和偏钒酸钙中的至少一种,也可以是四价钒酸钙和五价钒酸钙的任意比例混合。由此,可以进一步提高后续酸浸提钒处理时钒酸钙的溶解,进而显著提高钒的回收率。
S600:酸浸提钒处理
根据本发明的实施例,将酸溶性钒酸钙熟料进行酸浸提钒处理,以便得到五氧化二钒产品。
根据本发明的具体实施例,酸浸提钒处理具体可以按照下列步骤进行:首先将酸溶性的钒酸钙熟料进行酸浸得到含钒溶液和酸浸渣,然后将含钒溶液净化除杂,再对净化后的含钒溶液进行酸性铵盐沉钒处理得到多钒酸铵沉淀,最后将多钒酸铵进行煅烧处理得到五氧化二钒。由此,通过对酸溶性钒酸钙熟料进行酸浸提钒处理可以有效回收获得五氧化二钒产品。
根据本发明的另一个方面,本发明还提出了一种实施上述处理高钙高磷钒渣的方法的系统。
参考图2,本发明具体实施例的处理高钙高磷钒渣的系统包括:氧化磁化焙烧装置100、磨矿磁选装置200、混合成型装置300、还原焙烧脱磷装置400、氧化钙化焙烧装置500和酸浸提钒装置600。
该系统首先通过氧化磁化焙烧装置100对高钙高磷钒渣进行氧化磁化焙烧处理,得到磁性焙砂,接着将磁性焙砂在磨矿磁选装置200中进行磨矿磁选处理,得到四氧化三铁和高钙高磷除铁钒渣,然后在混合成型装置300中将高钙高磷除铁钒渣、硅石、还原煤和粘结剂进行混合成型处理,得到混合球团,再将混合球团在还原焙烧脱磷装置400进行还原焙烧脱磷处理,使磷以蒸气的形式进入烟气,得到脱磷焙烧球团,再在氧化钙化焙烧装置500中对脱磷焙烧球团进行氧化钙化焙烧处理,得到酸溶性钒酸钙熟料,最后在酸浸提钒装置600中对酸溶性钒酸钙熟料进行酸浸提钒处理,最终得到五氧化二钒产品。
由此,本发明通过采用上述实施例的处理高钙高磷钒渣的系统,可以进一步提高高钙高磷钒渣中的铁资源的回收率,并有效脱除高钙高磷钒渣中的磷,避免钒酸钙熟料在酸浸提钒时磷进入含钒浸出液中从而严重影响沉钒效果,进而进一步改善高钙高磷钒渣的脱磷效果,并提高铁和钒的回收率和品质。
下面参考图2对本发明上述实施例的处理高钙高磷钒渣的系统进行详细描述。
氧化磁化焙烧装置100
根据本发明的实施例,氧化磁化焙烧装置100具有高钙高磷钒渣入口110和磁性焙砂出口120,氧化磁化焙烧装置100适于将高钙高磷钒渣进行化磁化焙烧处理,以便得到磁性焙砂。
根据本发明的实施例,首先通过氧化磁化焙烧装置100对高钙高磷钒渣进行氧化磁化焙烧处理,得到磁性焙砂。发明人发现,高磷高钙钒渣中的铁主要以钒铁尖晶石FeO·V2O3和铁橄榄石FeO·SiO2的形式存在,通过对高钙高磷钒渣进行氧化磁化焙烧处理,可以使钒铁尖晶石和铁橄榄石中的FeO被氧化,并使最终得到的磁性焙砂中的铁均已具有磁性的四氧化三铁形式存在。
根据本发明的具体实施例,氧化磁化焙烧反应可以包括下列反应:
3(2FeO·SiO2)+O2=2Fe3O4+3SiO2 (1)
6(FeO·V2O3)+O2=2Fe3O4+6V2O3 (2)
由此,通过对高磷高钙钒渣进行氧化磁化焙烧处理,可以有效回收高磷高钙钒渣中的铁。
根据本发明实施例的处理高钙高磷钒渣的系统中,适于处理的高钙高磷钒渣中CaO的含量为3-25重量%,P2O5的含量为0.2-1重量%,V2O5的含量为5-20重量%,Fe的含量为20-35重量%。由此,本发明实施例的处理高钙高磷钒渣的系统可以有效针对CaO含量高于3重量%、P2O5含量高于0.2重量%的高钙高磷钒渣进行处理,并且可以获得高品质的铁和五氧化二钒产品。
根据本发明的具体实施例,氧化磁化焙烧处理是在0.5-2体积%的氧气浓度和300-500℃的温度下进行5-20min完成的。发明人发现,在该氧化磁化焙烧处理条件下,可以进一步磁性焙砂中四氧化三铁的产率,使磁性焙砂中四氧化三铁中的铁占全铁的比例不少于90重量%,进而显著提高高钙高磷钒渣中铁的回收率。
根据本发明的具体实施例,氧化磁化焙烧装置100可以为隧道窑。由此,可以进一步提高氧化磁化焙烧处理的效率。
磨矿磁选装置200
根据本发明的实施例,磨矿磁选装置200具有磁性焙砂入口210、四氧化三铁出口220和高钙高磷除铁钒渣出口230,其中,磁性焙砂入口210与磁性焙砂出口120相连,磨矿磁选装置200适于将磁性焙砂进行磨矿磁选处理,以便得到四氧化三铁和高钙高磷除铁钒渣。
根据本发明的具体实施例,将磁性焙砂在磨矿磁选装置200中进行磨矿磁选处理,得到四氧化三铁和高钙高磷除铁钒渣。对磁性焙砂进行进行磁选处理,可以将磁性焙烧中的四氧化三铁和高钙高磷除铁钒渣进行有效地分离,实现对铁的回收。发明人发现,在磁性焙砂在磨矿磁选处理过程中磷不会进入到铁中,由此,可以有效提高铁的品质,并且所得到的四氧化三铁可以作为优质的铁精矿用于高炉炼铁。
根据本发明的具体实施例,四氧化三铁中磷含量为不大于0.1重量%,高钙高磷钒渣中铁的回收率不低于80重量%。由此,可以进一步提高回收的铁和钒的品质。
根据本发明的具体实施例,磨矿磁选装置200包括联动设置的球磨机和磁选机。由此,可以进一步提高磨矿磁选处理的效率。
混合成型装置300
根据本发明的实施例,混合成型装置300具有高钙高磷除铁钒渣入口310、硅石入口320、还原煤入口330、粘结剂入口340和混合球团出口350,其中,高钙高磷除铁钒渣入口310和高钙高磷除铁钒渣出口230相连,混合成型装置300适于将高钙高磷除铁钒渣、硅石、还原煤和粘结剂进行混合成型处理,以便得到混合球团。
根据本发明的具体实施例,在混合成型装置300中将高钙高磷除铁钒渣、硅石、还原煤和粘结剂进行混合成型处理,得到混合球团。
根据本发明的具体实施例,可以将高钙高磷除铁钒渣、硅石、还原煤和粘结剂按质量比为100:(5-15):(5-10):(2-5)进行混合成型处理。由此,可以有效制备得到混合球团,并且进一步提高后续还原脱磷效果。根据本发明的具体示例,发明人发现,向高钙高磷除铁钒渣中配入上述比例的硅石和还原煤,可以有效提高高钙高磷除铁钒渣磷酸钙的还原率,进而提高脱磷效果。
根据本发明的具体实施例,混合成型处理中粘结剂的类型并不受特别限制,例如,根据本发明的实施示例,粘结剂可以为膨润土、淀粉溶液、糖蜜中的至少一种。由此,可以进一步提高混合成型的效率和混合球团的质量。
还原焙烧脱磷装置400
根据本发明的实施例,还原焙烧脱磷装置400具有混合球团入口410和脱磷焙烧球团出口420,其中,混合球团入口410与混合球团出口350相连,还原焙烧脱磷装置适于将混合球团进行还原焙烧脱磷处理,以便得到脱磷焙烧球团。
根据本发明的具体实施例,将混合球团在还原焙烧脱磷装置400进行还原焙烧脱磷处理,磷以磷蒸气的形式进入烟气中,进而实现磷的分离。
根据本发明的具体实施例,向高钙高磷除铁钒渣配入硅石、还原煤和粘结剂并成型后进行还原焙烧脱磷处理,具体地,脱磷反应可以包括如下反应:
Ca3PO4+5C+SiO2=P2+5CO+3CaSiO3 (3)
根据本发明的具体实施例,还原焙烧脱磷处理的温度可以为1200-1400℃。发明人发现,在该还原焙烧脱磷处理条件下,可以进一步提高磷脱除率。
根据本发明的具体实施例,经过还原焙烧脱磷处理得到的脱磷焙烧球团中P2O5含量不大于0.1重量%。由此,通过在上述条件下对高钙高磷除铁钒渣进行还原焙烧脱磷处理,可以有效脱除磷,进而避免了后续钒酸钙熟料在酸浸提钒时磷进入含钒浸出液中严重影响沉钒效果,最终获得优质五氧化二钒产品。
根据本发明的具体实施例,还原焙烧脱磷装置400可以为转底炉,由此,可以进一步提高还原焙烧脱磷处理的效率。
氧化钙化焙烧装置500
根据本发明的实施例,氧化钙化焙烧装置500具有脱磷焙烧球团入口510、空气入口520和酸溶性钒酸钙熟料出口530,其中,脱磷焙烧球团入口510与脱磷焙烧球团出口420相连,氧化钙化焙烧装置500适于将所述脱磷焙烧球团进行氧化钙化焙烧处理,以便得到酸溶性钒酸钙熟料。
根据本发明的具体实施例,在氧化钙化焙烧装置500中对脱磷焙烧球团进行氧化钙化焙烧处理,得到酸溶性钒酸钙熟料。由此,脱磷之后的脱磷焙烧球团再经过氧化钙化焙烧处理得到酸溶性钒酸钙熟料,利用现有的酸浸提钒技术可以得到五氧化二钒产品。
根据本发明的具体实施例,氧化钙化焙烧处的理温度可以为900-1200℃,处理时间可以为1-2h。发明人发现,通过在上述条件下对脱磷焙烧球团进行氧化钙化焙烧处理,可以使脱磷焙烧球团中的钒被氧化为正四价或正五价,并以酸溶性钒酸钙的形式存在。进而可以有效提高后续酸浸提钒处理中五氧化二钒的产率。
根据本发明的具体实施例,在上述反应条件下进行的氧化钙化焙烧处理过程中,脱磷焙烧球团内具体发生的反应如下:
CaO+V2O3+O2=CaV2O6偏钒酸钙(五价,酸溶性) (4)
2CaO+V2O3+O2=Ca2V2O7焦钒酸钙(五价,酸溶性) (5)
3CaO+V2O3+O2=Ca3V2O8正钒酸钙(五价,酸溶性) (6)
CaO+V2O3+0.5O2=CaV2O5偏钒酸钙(四价,酸溶性) (7)
2CaO+V2O3+0.5O2=Ca2V2O6焦钒酸钙(四价,酸溶性) (8)
3CaO+V2O3+0.5O2=Ca3V2O7正钒酸钙(四价,酸溶性) (9)
因此,根据本发明的具体实施例,经过氧化钙化焙烧处理得到的酸溶性钒酸钙熟料中的钒酸钙可以包括正钒酸钙、焦钒酸钙和偏钒酸钙中的至少一种,也可以是四价钒酸钙和五价钒酸钙的任意比例混合。由此,可以进一步提高后续酸浸提钒处理时钒酸钙的溶解,进而显著提高钒的回收率。
根据本发明的具体实施例,氧化钙化焙烧装置500可以为回转窑。由此,可以进一步提高氧化钙化焙烧处理的效率。
酸浸提钒装置600
根据本发明的实施例,酸浸提钒装置600具有酸溶性钒酸钙熟料入口610、五氧化二钒出口620和尾渣出口630,其中,酸溶性钒酸钙熟料入口610与酸溶性钒酸钙熟料出口530相连,酸浸提钒装置600适于将酸溶性钒酸钙熟料进行酸浸-净化-沉钒-煅烧处理,以便得到五氧化二钒和尾渣。
根据本发明的具体实施例,在酸浸提钒装置600中对酸溶性钒酸钙熟料进行酸浸提钒处理,最终得到五氧化二钒产品。
根据本发明的具体实施例,酸浸提钒装置600进一步包括酸浸装置、净化装置、沉钒装置和煅烧装置。其中,酸浸装置适于将酸溶性钒酸钙熟料进行酸浸处理,以便得到含钒溶液和酸浸渣;净化装置适于将含钒溶液进行净化除杂,以便得到净化后的含钒溶液;沉钒装置适于对净化后的含钒溶液进行酸性铵盐沉钒处理,以便得到多钒酸铵沉淀;煅烧装置适于对多钒酸铵进行煅烧处理,以便得到五氧化二钒产品。由此,通过采用上述酸浸提钒装置600对酸溶性钒酸钙熟料进行酸浸提钒处理可以有效回收获得五氧化二钒产品。
实施例1
将国内某公司高钙高磷钒渣(CaO含量为3重量%,P2O5含量为0.2重量%,V2O5含量为20重量%,Fe含量为35重量%)在隧道窑内进行氧化磁性焙烧,氧化磁性焙烧温度为300℃,氧气浓度为0.5体积%,焙烧时间为5min,得到磁性焙砂,其中四氧化三铁中的铁占全铁比例为92重量%,在磁选装置(球磨机和磁选机的联动装置)内对磁性焙砂进行磨矿磁选处理,得到磁性四氧化三铁和非磁性的高钙高磷除铁钒渣,四氧化三铁中磷的含量为0.05重量%,可以作为高炉炼铁的优质原料。高钙高磷除铁钒渣、硅石、还原煤和粘结剂按质量比100:5:15:2进行混合成型处理得到混合球团。将混合球团在转底炉内在1200℃下进行还原焙烧,磷主要以磷蒸气的形式进入烟气中,反应结束后得到脱磷焙烧球团,脱磷焙烧球团中P2O5的含量为0.09%。将脱磷焙烧球团在回转窑内在900℃下进行氧化钙化焙烧1h得到酸溶性钒酸钙熟料,其中正五价钒和正四价钒的总质量占全钒的比例为92%。最后将酸溶性钒酸钙熟料进行酸浸提钒处理得到五氧化二钒(品位99.3%)和尾渣。整个流程的钒回收率为97.7%,铁回收率81.7为%。
实施例2
将国内某公司高钙高磷钒渣(CaO含量为25重量%,P2O5含量为1重量%,V2O5含量为5重量%,Fe含量为20重量%)在隧道窑内进行氧化磁性焙烧,氧化磁性焙烧温度为400℃,氧气浓度为1体积%,焙烧时间为10min,得到磁性焙砂,其中四氧化三铁中的铁占全铁比例为90重量%,在磁选装置(球磨机和磁选机的联动装置)内对磁性焙砂进行磨矿磁选处理,得到磁性四氧化三铁和非磁性的高钙高磷除铁钒渣,四氧化三铁中磷的含量为0.04重量%,可以作为高炉炼铁的优质原料。高钙高磷除铁钒渣、硅石、还原煤和粘结剂按质量比100:15:8:3进行混合成型处理得到混合球团。将混合球团在转底炉内在1400℃下进行还原焙烧,磷主要以磷蒸气的形式进入烟气中,反应结束后得到脱磷焙烧球团,脱磷焙烧球团中P2O5的含量为0.05重量%。将脱磷焙烧球团在多层焙烧炉内在1000℃下进行氧化钙化焙烧1.5h得到酸溶性钒酸钙熟料,其中正五价钒和正四价钒的总质量占全钒的比例为96%。最后将酸溶性钒酸钙熟料进行酸浸提钒处理得到五氧化二钒(品位99.2%)和尾渣。整个流程的钒回收率为97.5%,铁回收率为88.6%。
实施例3
将国内某公司高钙高磷钒渣(CaO含量为15重量%,P2O5含量为0.6重量%,V2O5含量为7重量%,Fe含量为30重量%)在隧道窑内进行氧化磁性焙烧,氧化磁性焙烧温度50为℃,氧气浓度为1.5体积%,焙烧时间为15min,得到磁性焙砂,其中四氧化三铁中的铁占全铁比例为94重量%;在磁选装置(球磨机和磁选机的联动装置)内对磁性焙砂进行磨矿磁选处理,得到磁性四氧化三铁和非磁性的高钙高磷除铁钒渣,四氧化三铁中磷的含量为0.03重量%,可以作为高炉炼铁的优质原料。高钙高磷除铁钒渣、硅石、还原煤和粘结剂按质量比100:10:10:4进行混合成型处理得到混合球团。将混合球团在转底炉内在1300℃下进行还原焙烧,磷主要以磷蒸气的形式进入烟气中,反应结束后得到脱磷焙烧球团,脱磷焙烧球团中P2O5的含量为0.04重量%。将脱磷焙烧球团在回转窑内在1100℃下进行氧化钙化焙烧2h得到酸溶性钒酸钙熟料,其中正五价钒和正四价钒的总质量占全钒的比例为95%。最后将酸溶性钒酸钙熟料进行酸浸提钒处理得到五氧化二钒(品位99.2%)和尾渣。整个流程的钒回收率为96.2%,铁回收率为92.3%。
实施例4
将国内某公司高钙高磷钒渣(CaO含量为5重量%,P2O5含量为0.2重量%,V2O5含量为10重量%,Fe含量为30重量%)在隧道窑内进行氧化磁性焙烧,氧化磁性焙烧温度为450℃,氧气浓度为2体积%,焙烧时间为20min,得到磁性焙砂,其中四氧化三铁中的铁占全铁比例为96重量%;在磁选装置(球磨机和磁选机的联动装置)内对磁性焙砂进行磨矿磁选处理,得到磁性四氧化三铁和非磁性的高钙高磷除铁钒渣,四氧化三铁中磷的含量为0.03重量%,可以作为高炉炼铁的优质原料。高钙高磷除铁钒渣、硅石、还原煤和粘结剂按质量比100:8:9:5进行混合成型处理得到混合球团。将混合球团在转底炉内在1350℃下进行还原焙烧,磷主要以磷蒸气的形式进入烟气中,反应结束后得到脱磷焙烧球团,脱磷焙烧球团中P2O5的含量为0.03重量%。将脱磷焙烧球团在回转窑内在1200℃下进行氧化钙化焙烧2h得到酸溶性钒酸钙熟料,其中五价钒和四价钒的总质量占全钒的比例为98%。最后将酸溶性钒酸钙熟料进行酸浸提钒处理得到五氧化二钒(品位99.5%)和尾渣。整个流程的钒回收率为98.4%,铁回收率为94.8%。
实施例5
将国内某公司高钙高磷钒渣(CaO含量为10重量%,P2O5含量为0.4重量%,V2O5含量为8重量%,Fe含量为25重量%)在隧道窑内进行氧化磁性焙烧,氧化磁性焙烧温度为350℃,氧气浓度为1.5体积%,焙烧时间为15min,得到磁性焙砂,其中四氧化三铁中的铁占全铁比例为91重量%;在磁选装置(球磨机和磁选机的联动装置)内对磁性焙砂进行磨矿磁选处理,得到磁性四氧化三铁和非磁性的高钙高磷除铁钒渣,四氧化三铁中磷的含量为0.06重量%,可以作为高炉炼铁的优质原料。高钙高磷除铁钒渣、硅石、还原煤和粘结剂按质量比100:11:12进行混合成型处理得到混合球团。将混合球团在隧道窑内在1250℃下进行还原焙烧,磷主要以磷蒸气的形式进入烟气中,反应结束后得到脱磷焙烧球团,脱磷焙烧球团中P2O5质量分数为0.01重量%。将脱磷焙烧球团在回转窑内在1150℃下进行氧化钙化焙烧2h得到酸溶性钒酸钙熟料,其中正五价钒和正四价钒的总质量占全钒的比例为91%。最后将酸溶性钒酸钙熟料进行酸浸提钒处理得到五氧化二钒(品位98.6%)和尾渣。整个流程的钒回收率为94.1%,铁回收率为86.3%。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (10)

1.一种处理高钙高磷钒渣的方法,其特征在于,包括:
(1)将高钙高磷钒渣进行氧化磁化焙烧处理,以便得到磁性焙砂;
(2)将所述磁性焙砂进行磨矿磁选处理,以便得到四氧化三铁和高钙高磷除铁钒渣;
(3)将所述高钙高磷除铁钒渣、硅石、还原煤和粘结剂进行混合成型处理,以便得到混合球团;
(4)将所述混合球团进行还原焙烧脱磷处理,以便得到脱磷焙烧球团;
(5)将所述脱磷焙烧球团进行氧化钙化焙烧处理,以便得到酸溶性钒酸钙熟料;以及
(6)将所述酸溶性钒酸钙熟料进行酸浸提钒处理,得到五氧化二钒产品。
2.根据权利要求1所述处理高钙高磷钒渣的方法,其特征在于,步骤(1)中,所述高钙高磷钒渣中CaO的含量为3-25重量%,P2O5的含量为0.2-1重量%,V2O5的含量为5-20重量%,Fe的含量为20-35重量%。
3.根据权利要求1所述处理高钙高磷钒渣的方法,其特征在于,步骤(1)中,所述氧化磁化焙烧处理是在0.5-2体积%的氧气浓度和300-500℃的温度下进行5-20min完成的。
4.根据权利要求1所述处理高钙高磷钒渣的方法,其特征在于,步骤(2)中,所述四氧化三铁中磷含量为不大于0.1重量%,所述高钙高磷钒渣中铁的回收率不低于80重量%。
5.根据权利要求1所述处理高钙高磷钒渣的方法,其特征在于,步骤(3)中,将所述高钙高磷除铁钒渣、所述硅石、所述还原煤和所述粘结剂按质量比为100:(5-15):(5-10):(2-5)进行所述混合成型处理。
6.根据权利要求1所述处理高钙高磷钒渣的方法,其特征在于,步骤(4)中,所述述还原焙烧脱磷处理的温度为1200-1400℃。
7.根据权利要求1所述处理高钙高磷钒渣的方法,其特征在于,步骤(4)中,所述脱磷焙烧球团中P2O5含量不大于0.1重量%。
8.根据权利要求1所述处理高钙高磷钒渣的方法,其特征在于,步骤(5)中,所述氧化钙化焙烧处理温度为900-1200℃,时间为1-2h。
9.一种实施权利要求1-8任一项所述处理高钙高磷钒渣的方法的系统,其特征在于,包括:
氧化磁化焙烧装置,所述氧化磁化焙烧装置具有高钙高磷钒渣入口和磁性焙砂出口,所述氧化磁化焙烧装置适于将高钙高磷钒渣进行化磁化焙烧处理,以便得到磁性焙砂;
磨矿磁选装置,所述磨矿磁选装置具有磁性焙砂入口、四氧化三铁出口和高钙高磷除铁钒渣出口,所述磁性焙砂入口与所述磁性焙砂出口相连,所述磨矿磁选装置适于将所述磁性焙砂进行磨矿磁选处理,以便得到四氧化三铁和高钙高磷除铁钒渣;
混合成型装置,所述混合成型装置具有高钙高磷除铁钒渣入口、硅石入口、还原煤入口、粘结剂入口和混合球团出口,所述高钙高磷除铁钒渣入口和所述高钙高磷除铁钒渣出口相连,所述混合成型装置适于将所述高钙高磷除铁钒渣、硅石、还原煤和粘结剂进行混合成型处理,以便得到混合球团;
还原焙烧脱磷装置,所述还原焙烧脱磷装置具有混合球团入口和脱磷焙烧球团出口,所述混合球团入口与所述混合球团出口相连,所述还原焙烧脱磷装置适于将所述混合球团进行还原焙烧脱磷处理,以便得到脱磷焙烧球团;
氧化钙化焙烧装置,所述氧化钙化焙烧装置具有脱磷焙烧球团入口、空气入口和酸溶性钒酸钙熟料出口,所述脱磷焙烧球团入口与所述脱磷焙烧球团出口相连,所述氧化钙化焙烧装置适于将所述脱磷焙烧球团进行氧化钙化焙烧处理,以便得到酸溶性钒酸钙熟料;
酸浸提钒装置,所述酸浸提钒装置具有酸溶性钒酸钙熟料入口、五氧化二钒出口和尾渣出口,所述酸溶性钒酸钙熟料入口与所述酸溶性钒酸钙熟料出口相连,所述酸浸提钒装置适于将所述酸溶性钒酸钙熟料进行酸浸-净化-沉钒-煅烧处理,以便得到五氧化二钒和尾渣。
10.根据权利要求9所述的系统,其特征在于,所述氧化磁化焙烧装置为隧道窑,所述磨矿磁选装置包括联动设置的球磨机和磁选机,所述还原焙烧脱磷装置为转底炉,所述氧化钙化焙烧装置为回转窑。
CN201710183962.9A 2017-03-24 2017-03-24 处理高钙高磷钒渣的方法和系统 Pending CN106978540A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710183962.9A CN106978540A (zh) 2017-03-24 2017-03-24 处理高钙高磷钒渣的方法和系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710183962.9A CN106978540A (zh) 2017-03-24 2017-03-24 处理高钙高磷钒渣的方法和系统

Publications (1)

Publication Number Publication Date
CN106978540A true CN106978540A (zh) 2017-07-25

Family

ID=59339554

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710183962.9A Pending CN106978540A (zh) 2017-03-24 2017-03-24 处理高钙高磷钒渣的方法和系统

Country Status (1)

Country Link
CN (1) CN106978540A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111519021A (zh) * 2020-06-09 2020-08-11 攀钢集团攀枝花钢铁研究院有限公司 含钒物料钙化焙烧方法
RU2743355C1 (ru) * 2018-11-30 2021-02-17 Паньган Груп Рисёч Инститьют Ко., Лтд. Способ извлечения ванадия из ванадиевого шлака с высоким содержанием кальция и фосфора

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2743355C1 (ru) * 2018-11-30 2021-02-17 Паньган Груп Рисёч Инститьют Ко., Лтд. Способ извлечения ванадия из ванадиевого шлака с высоким содержанием кальция и фосфора
CN111519021A (zh) * 2020-06-09 2020-08-11 攀钢集团攀枝花钢铁研究院有限公司 含钒物料钙化焙烧方法

Similar Documents

Publication Publication Date Title
CN101215005B (zh) 利用钒渣生产五氧化二钒的方法
CN102041377B (zh) 回收钒钛磁铁精矿中铁、钒、铬的方法
CN107090551B (zh) 一种钒钛磁铁矿的直接提钒的方法
CN112662896B (zh) 一种钛矿制备富钛料的方法
CN105734308A (zh) 一种高铬钒渣的提钒方法
CN109913660A (zh) 一种利用含钒钢渣制备富钒富铁料的方法
CN106756120A (zh) 处理高钙高磷钒渣的方法和系统
CN107254584A (zh) 铬钒钛磁铁矿的焙烧方法以及分离方法
CN106978540A (zh) 处理高钙高磷钒渣的方法和系统
CN106834728A (zh) 处理钒铬渣的方法和系统
CN110106307A (zh) 采用钠盐处理含钒铁水的提钒方法
CN206828611U (zh) 处理提钒尾渣的系统
CN206721334U (zh) 高钙高磷钒渣脱磷提钒的系统
CN206721308U (zh) 处理高钙高磷钒渣的系统
CN106978544A (zh) 处理转炉钒铬渣的系统和方法
CN106834724A (zh) 处理钒铬渣的方法和系统
CN110055417A (zh) 一种从钒渣混料中高效分离钒钛的方法
CN206721333U (zh) 高钙高磷钒渣脱磷提钒的系统
CN206721312U (zh) 处理高钙高磷钒渣的系统
CN206721332U (zh) 高钙高磷钒渣脱磷提钒的系统
CN106756070A (zh) 处理高钙高磷钒渣的方法和系统
CN206721310U (zh) 处理高钙高磷钒渣的系统
CN105463141B (zh) 一种采用低贫品位红土镍矿冶炼高镍铁水的方法
CN106834727A (zh) 处理转炉钒铬渣的系统和方法
CN106978545A (zh) 高钙高磷钒渣脱磷提钒的方法和系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
AD01 Patent right deemed abandoned

Effective date of abandoning: 20190809

AD01 Patent right deemed abandoned