CN106977205B - 一种镧锶锰氧/氧化锌铝复相陶瓷的制备方法 - Google Patents

一种镧锶锰氧/氧化锌铝复相陶瓷的制备方法 Download PDF

Info

Publication number
CN106977205B
CN106977205B CN201710209911.9A CN201710209911A CN106977205B CN 106977205 B CN106977205 B CN 106977205B CN 201710209911 A CN201710209911 A CN 201710209911A CN 106977205 B CN106977205 B CN 106977205B
Authority
CN
China
Prior art keywords
zinc oxide
lanthanum strontium
strontium manganese
manganese oxygen
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201710209911.9A
Other languages
English (en)
Other versions
CN106977205A (zh
Inventor
王传彬
吴兰
沈强
张联盟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University of Technology WUT
Original Assignee
Wuhan University of Technology WUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University of Technology WUT filed Critical Wuhan University of Technology WUT
Priority to CN201710209911.9A priority Critical patent/CN106977205B/zh
Publication of CN106977205A publication Critical patent/CN106977205A/zh
Application granted granted Critical
Publication of CN106977205B publication Critical patent/CN106977205B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/666Applying a current during sintering, e.g. plasma sintering [SPS], electrical resistance heating or pulse electric current sintering [PECS]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Magnetic Ceramics (AREA)

Abstract

本发明涉及一种镧锶锰氧/氧化锌铝复相陶瓷的制备方法。具体是:首先采用固相反应法制得镧锶锰氧粉体;然后分别称量镧锶锰氧粉体和氧化锌铝粉体,放入行星球磨机中,混合均匀;将混合粉置于等离子活化烧结炉中进行烧结,烧结条件为:烧结温度1000~1200℃、保温时间3~15min、烧结压力10~50MPa,最后得到镧锶锰氧/氧化锌铝复相陶瓷。本发明添加半导体氧化锌铝粉体第二相,利用其优化与镧锶锰氧基体晶粒间的界面效应、导电通道以及良好的助烧作用,能够显著提升镧锶锰氧陶瓷室温附近的低场磁电阻效应,0.5T低磁场下磁电阻≥14%。同时采用等离子活化烧结工艺,实现了镧锶锰氧/氧化锌铝复相陶瓷的低温快速致密烧结(致密度>96%)。

Description

一种镧锶锰氧/氧化锌铝复相陶瓷的制备方法
技术领域
本发明涉及一种镧锶锰氧/氧化锌铝复相陶瓷的制备方法,具体是一种通过添加半导体氧化锌铝粉体第二相和利用等离子活化烧结工艺来提高镧锶锰氧陶瓷的烧结致密度及其低场磁电阻效应的方法。
背景技术
镧锶锰氧(La0.7Sr0.3MnO3)化合物具有氧化还原催化活性、可变辐射率、庞磁电阻效应等特性,广泛应用于燃料电池、热控器件和微电子器件等技术领域。特别是其庞磁电阻效应(是指材料的电阻率在有外加磁场时发生明显变化的物理效应),是读取高密度磁记录信息的理想手段,可用于制作磁传感、磁记录等微电子器件,实现信息存储和快速读写。
然而,镧锶锰氧的庞磁电阻效应只有在低温和高磁场的特殊条件下才比较明显,限制了它的实际应用。已有研究,一般通过在镧锶锰氧中添加导电金属或绝缘体第二相来增强其磁电阻效应。但金属由于低电阻特性,导致镧锶锰氧的电阻率变化范围不大,因而其对磁电阻效应的增强效果并不明显(0.5T低磁场下,<10%);添加绝缘体第二相,虽能通过与镧锶锰氧相之间的自旋极化隧道效应增强磁电阻,但会使强磁电阻效应发生在更低的温度而非室温,无法满足实际应用需求。此外,镧锶锰氧陶瓷通常采用常压烧结法制备,存在烧结体致密度差(<90%)、晶粒结晶性差等问题,而且烧结温度高(>1400℃),难以避免两相反应,影响镧锶锰氧陶瓷的性能。为此,需要寻找一种新的第二相材料及低温致密化烧结工艺以使镧锶锰氧陶瓷在室温附近、低磁场下具有较强的磁电阻效应。
发明内容
本发明旨在提供一种镧锶锰氧/氧化锌铝复相陶瓷的制备方法,该方法通过添加半导体氧化锌铝粉体第二相和利用等离子活化烧结工艺,提高了镧锶锰氧陶瓷的烧结致密度及其低场磁电阻效应。
本发明为实现上述目的,采用以下的技术方案:
本发明提供的镧锶锰氧/氧化锌铝复相陶瓷的制备方法,是通过添加半导体氧化锌铝粉体第二相和利用等离子活化烧结工艺,提高镧锶锰氧陶瓷的烧结致密度及其低场磁电阻效应,包括以下过程:以氧化镧、氧化锰和碳酸锶粉体为原料,通过固相反应法合成镧锶锰氧粉体;然后按氧化锌铝质量添加量的不同称取镧锶锰氧粉体和氧化锌铝粉体,经球磨混合均匀后,将其置于等离子活化烧结炉中烧结,得到镧锶锰氧/氧化锌铝复相陶瓷。
本方法是以摩尔比0.35:0.3:0.1称取氧化镧、氧化锰和碳酸锶原料粉体。
所述的合成的镧锶锰氧粉体的化学成分为La0.7Sr0.3MnO3,粉体粒径为78.4nm。
所述的氧化锌铝粉体为掺杂有质量10%铝的氧化锌。
所述的镧锶锰氧/氧化锌铝复相陶瓷中,氧化锌铝粉体的质量添加量为10~20%。
本方法是将镧锶锰氧/氧化锌铝混合粉体放入行星球磨机中进行球磨,球磨时间为3~6。
所述的等离子活化烧结工艺参数为:烧结温度1000~1200℃,保温时间3~15min,烧结压力10~50MPa。
本方法制备的镧锶锰氧/氧化锌铝复相陶瓷,结构致密,致密度≥96%,室温附近的低场磁电阻效应明显,0.5T低磁场下磁电阻≥14%。
本发明与现有技术相比,具有以下的有益效果:
首先,本发明添加的第二相为氧化锌铝粉体,它是一种半导体材料,导电性介于金属和绝缘体之间,它与镧锶锰氧形成复相陶瓷。氧化锌铝中主要成分是氧化锌,含有10%的铝,通过氧化锌与镧锶锰氧晶粒间的界面效应和磁散射以及铝在体系中提供新的导电通道,既能有效改善镧锶锰氧陶瓷的磁电阻效应,又能将此效应控制在室温及室温以上、满足实际应用需求。
此外,氧化锌铝是铝掺杂的氧化锌,而氧化锌具有明显的助烧作用;同时,等离子活化烧结技术利用脉冲电流在原料颗粒间的放电、温度场和应力场的耦合作用,可以在短时间(15min以内)内实现镧锶锰氧/氧化锌铝复相陶瓷的致密烧结,而且等离子活化烧结技术有低温烧结的优势,可以避免复相陶瓷中两相的扩散反应,提升复相陶瓷的性能。
与现有镧锶锰氧基复相陶瓷相比,本发明通过添加半导体氧化锌铝粉体第二相和利用等离子活化烧结工艺制备的镧锶锰氧/氧化锌铝复相陶瓷,其致密度更高(>96%),室温附近的低场磁电阻效应明显,0.5T低磁场下磁电阻≥14%。从而为磁传感、磁记录等微电子器件的开发提供了一种高性能新材料。
附图说明
图1为实施例2、实施例3和实施例5所制备的镧锶锰氧/氧化锌铝复相陶瓷的物相结构(X射线衍射图谱)。
图2为实施例2中等离子活化烧结法制备的镧锶锰氧/氧化锌铝复相陶陶瓷的断面扫描图。
图3是采用传统常压烧结方法(温度1400℃,保温20h)制备的镧锶锰氧陶瓷的断面扫描图。
图4为镧锶锰氧纯相陶瓷以及发明实施例2和实施例5所制备的镧锶锰氧/氧化锌铝复相陶瓷的低场磁电阻随温度的变化曲线图。
具体实施方式
为更好地理解本发明,下面结合实施例进一步阐明本发明的内容,但本发明的内容不仅仅局限于下面的实施例。
实施例1
(1)按摩尔比0.35:0.3:0.1称取氧化镧、氧化锰和碳酸锶原料粉体,采用固相合成法合成镧锶锰氧粉体(La0.7Sr0.3MnO3),该粉体粒径为78.4nm。
(2)按氧化锌铝的质量添加量为10%,分别称取镧锶锰氧粉体和氧化锌铝粉体,放入行星球磨机中,球磨3h混合均匀,得到镧锶锰氧/氧化锌铝混合粉体。
(3)将镧锶锰氧/氧化锌铝混合粉体,置于等离子活化烧结炉中进行烧结,烧结条件是:
烧结温度1000℃、保温时间3min、烧结压力10MPa,最后得到镧锶锰氧/氧化锌铝复相陶瓷。
经阿基米德排水法检测,所得到的镧锶锰氧/氧化锌铝复相陶瓷的致密度为96.2%,使用综合物理性能测试仪测得在室温附近的低场(0.5T)磁电阻为(14.3%)。
实施例2
(1)按摩尔比0.35:0.3:0.1称取氧化镧、氧化锰和碳酸锶原料粉体,采用固相合成法合成镧锶锰氧粉体(La0.7Sr0.3MnO3),该粉体粒径为78.4nm。
(2)按氧化锌铝的质量添加量为20%,分别称取镧锶锰氧粉体和氧化锌铝粉体,放入行星球磨机中,球磨4h混合均匀,得到镧锶锰氧/氧化锌铝混合粉体。
(3)将镧锶锰氧/氧化锌铝混合粉体,置于等离子活化烧结炉中进行烧结,烧结条件是:烧结温度1100℃、保温时间5min、烧结压力50MPa,最后得到镧锶锰氧/氧化锌铝复相陶瓷。
经阿基米德排水法检测,所得到的镧锶锰氧/氧化锌铝复相陶瓷的致密度为97.7%,使用综合物理性能测试仪测得在室温附近的低场(0.5T)磁电阻为(16.2%)。
实施例3
(1)按摩尔比0.35:0.3:0.1称取氧化镧、氧化锰和碳酸锶原料粉体,采用固相合成法合成镧锶锰氧粉体(La0.7Sr0.3MnO3),该粉体粒径为78.4nm。
(2)按氧化锌铝的质量添加量为15%,分别称取镧锶锰氧粉体和氧化锌铝粉体,放入行星球磨机中,球磨5h混合均匀,得到镧锶锰氧/氧化锌铝混合粉体。
(3)将镧锶锰氧/氧化锌铝混合粉体,置于等离子活化烧结炉中进行烧结,烧结条件是:烧结温度1200℃、保温时间5min、烧结压力30MPa,最后得到镧锶锰氧/氧化锌铝复相陶瓷。
经阿基米德排水法检测,所得到的镧锶锰氧/氧化锌铝复相陶瓷的致密度为97.2%,使用综合物理性能测试仪测得在室温附近的低场(0.5T)磁电阻为(15.4%)。
实施例4
(1)按摩尔比0.35:0.3:0.1称取氧化镧、氧化锰和碳酸锶原料粉体,采用固相合成法合成镧锶锰氧粉体(La0.7Sr0.3MnO3),该粉体粒径为78.4nm。
(2)按氧化锌铝的质量添加量为20%,分别称取镧锶锰氧粉体和氧化锌铝粉体,放入行星球磨机中,球磨6h混合均匀,得到镧锶锰氧/氧化锌铝混合粉体。
(3)将镧锶锰氧/氧化锌铝混合粉体,置于等离子活化烧结炉中进行烧结,烧结条件是:烧结温度1200℃、保温时间15min、烧结压力50MPa,最后得到镧锶锰氧/氧化锌铝复相陶瓷。
经阿基米德排水法检测,所得到的镧锶锰氧/氧化锌铝复相陶瓷的致密度为97.6%,使用综合物理性能测试仪测得在室温附近的低场(0.5T)磁电阻为(16.1%)。
实施例5
(1)按摩尔比0.35:0.3:0.1称取氧化镧、氧化锰和碳酸锶原料粉体,采用固相合成法合成镧锶锰氧粉体(La0.7Sr0.3MnO3),该粉体粒径为78.4nm。
(2)按氧化锌铝的质量添加量为10%,分别称取镧锶锰氧粉体和氧化锌铝粉体,放入行星球磨机中,球磨4h混合均匀,得到镧锶锰氧/氧化锌铝混合粉体。
(3)将镧锶锰氧/氧化锌铝混合粉体,置于等离子活化烧结炉中进行烧结,烧结条件是:烧结温度1100℃、保温时间5min、烧结压力30MPa,最后得到镧锶锰氧/氧化锌铝复相陶瓷。
经阿基米德排水法检测,所得到的镧锶锰氧/氧化锌铝复相陶瓷的致密度为96.6%,使用综合物理性能测试仪测得在室温附近的低场(0.5T)磁电阻为(14.7%)。
实施例6
(1)按摩尔比0.35:0.3:0.1称取氧化镧、氧化锰和碳酸锶原料粉体,采用固相合成法合成镧锶锰氧粉体(La0.7Sr0.3MnO3),该粉体粒径为78.4nm。
(2)按氧化锌铝的质量添加量为15%,分别称取镧锶锰氧粉体和氧化锌铝粉体,放入行星球磨机中,球磨3h混合均匀,得到镧锶锰氧/氧化锌铝混合粉体。
(3)将镧锶锰氧/氧化锌铝混合粉体,置于等离子活化烧结炉中进行烧结,烧结条件是:烧结温度1100℃、保温时间5min、烧结压力50MPa,最后得到镧锶锰氧/氧化锌铝复相陶瓷。
经阿基米德排水法检测,所得到的镧锶锰氧/氧化锌铝复相陶瓷的致密度为97.3%,使用综合物理性能测试仪测得在室温附近的低场(0.5T)磁电阻为(15.5%)。
上述所有实施例中,所制备的镧锶锰氧/氧化锌铝复相陶瓷都有较高的致密度(>96%),并且随着氧化锌铝的添加量增加,陶瓷的致密度增大,其结果如表1所示。
实施例2、实施例3和实施例5所制备的镧锶锰氧/氧化锌铝复相陶瓷的X射线衍射物相分析结果如图1所示。由图1可以看出,所制备的复相陶瓷只有镧锶锰氧和氧化锌铝的特征峰,不存在其它杂相,并且随着氧化锌铝添加比例的增加,氧化锌铝的特征峰更加明显。
实施例2中用等离子活化烧结技术在温度为1100℃、保温5min的条件下制备得到的镧锶锰氧/氧化锌铝复相陶瓷断面扫描图如图2所示,其结构致密,表面平整;图中小图为其热腐蚀之后的扫描图,可以看出两种颗粒只是机械共混。图3是采用常压烧结在温度为1400℃,保温20h的条件下制备得到的镧锶锰氧纯相陶瓷的断面扫描图,从图中可以看出,陶瓷结构疏松,内部缺陷多。
本发明实施例2和实施例3与镧锶锰氧(LSMO)纯相陶瓷的低场磁电阻效应的比较,其结果如图3所示:实施例2和实施例3所制备的复相陶瓷在室温附近的磁电阻效应分别为16.2%、14.7%,明显高于镧锶锰氧纯相陶瓷的低场磁电阻效应(1.4%)。
上述实施例中,采用的固相反应方法,主要是先将称好的原料倒入尼龙球磨罐中进行球磨,将球磨后的浆料在80℃烘箱中烘干得到混合原料粉;然后将混合原料粉置于1100℃低温马弗炉中预烧,保温2h;最后将预烧后粉料进行二次球磨,球磨后的粉体在温度为1300℃下煅烧2h得到La0.7Sr0.3MnO3粉体。详情可参阅:梁迪飞,杨勇,邓龙江.LSMO/SiO2复合材料变温微波吸收特性研究[J].中国稀土学报,2009,27(1):76-80.。
表1本明实施例制备的镧锶锰氧/氧化锌铝复相陶瓷的密度与致密度

Claims (3)

1.一种镧锶锰氧/氧化锌铝复相陶瓷的制备方法,其特征是通过添加半导体氧化锌铝粉体第二相和利用等离子活化烧结工艺,提高镧锶锰氧陶瓷的烧结致密度及其低场磁电阻效应,包括以下过程:以氧化镧、氧化锰和碳酸锶粉体为原料,通过固相反应法合成镧锶锰氧粉体;然后按氧化锌铝质量添加量的不同称取镧锶锰氧粉体和氧化锌铝粉体,经球磨混合均匀后,将其置于等离子活化烧结炉中烧结,得到镧锶锰氧/氧化锌铝复相陶瓷;
所述的等离子活化烧结工艺参数为:烧结温度1000~1200℃,保温时间3~15min,烧结压力10~5 0MPa;
所述合成的镧锶锰氧粉体的化学成分为La0.7Sr0.3MnO3,粉体粒径为78.4 nm;
所述的氧化锌铝粉体为掺杂有质量10%铝的氧化锌;
所述的镧锶锰氧/氧化锌铝复相陶瓷中,氧化锌铝粉体的质量添加量为10~20%。
2.根据权利要求1所述的镧锶锰氧/氧化锌铝复相陶瓷的制备方法,其特征在于将镧锶锰氧/氧化锌铝混合粉体放入行星球磨机中进行球磨,球磨时间为3~6 h。
3.根据权利要求1至2中任一所述方法制备的镧锶锰氧/氧化锌铝复相陶瓷,其特征在于该陶瓷结构致密,致密度≥ 96%,室温附近的低场磁电阻效应明显,0.5 T低磁场下磁电阻≥ 14%。
CN201710209911.9A 2017-03-31 2017-03-31 一种镧锶锰氧/氧化锌铝复相陶瓷的制备方法 Expired - Fee Related CN106977205B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710209911.9A CN106977205B (zh) 2017-03-31 2017-03-31 一种镧锶锰氧/氧化锌铝复相陶瓷的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710209911.9A CN106977205B (zh) 2017-03-31 2017-03-31 一种镧锶锰氧/氧化锌铝复相陶瓷的制备方法

Publications (2)

Publication Number Publication Date
CN106977205A CN106977205A (zh) 2017-07-25
CN106977205B true CN106977205B (zh) 2019-11-26

Family

ID=59343556

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710209911.9A Expired - Fee Related CN106977205B (zh) 2017-03-31 2017-03-31 一种镧锶锰氧/氧化锌铝复相陶瓷的制备方法

Country Status (1)

Country Link
CN (1) CN106977205B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111217608A (zh) * 2018-11-24 2020-06-02 中国科学院宁波材料技术与工程研究所 一种氧化物陶瓷的低温烧结方法
CN112919891A (zh) * 2021-03-02 2021-06-08 徐州亚苏尔高新材料有限公司 一种用于陶瓷辊的环保高新粉体材料及其制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104004988A (zh) * 2013-02-26 2014-08-27 中国科学院金属研究所 一种镧锶锰氧-氧化镍纳米复合薄膜材料及其制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104004988A (zh) * 2013-02-26 2014-08-27 中国科学院金属研究所 一种镧锶锰氧-氧化镍纳米复合薄膜材料及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Influence of the Preparation Conditions on the Thermoelectric Properties of Al-Doped ZnO;David Berardan et al.;《J. Am. Ceram. Soc.》;20101231;第93卷(第8期);第2357页右栏结论部分 *
Tunable Low-Field Magnetoresistance in (La0.7Sr0.3MnO3)0.5 :(ZnO)0.5 Self-Assembled Vertically Aligned Nanocomposite Thin Films;Aiping Chen et al.;《ADVANCED FUNCTIONAL MATERIALS》;20110426;第21卷;第2428页右栏4.试验部分 *

Also Published As

Publication number Publication date
CN106977205A (zh) 2017-07-25

Similar Documents

Publication Publication Date Title
US20220106234A1 (en) High-entropy rare earth-toughened tantalate ceramic and preparation method therefor
CN104671771B (zh) 一种高电压梯度氧化锌基压敏电阻材料及其制备方法
Guan et al. LaCr1-xFexO3 (0≤ x≤ 0.7): a novel NTC ceramic with high stability
Li et al. Transparent Nd: YAG ceramics fabricated using nanosized γ‐alumina and Yttria powders
Li et al. Structure and electromagnetic properties of La0. 7Ca0. 3-xKxMnO3 polycrystalline ceramics
CN102659403A (zh) 一种耐高温热障涂层陶瓷材料及其制备方法
CN105294096B (zh) 一种低电阻氧化锌陶瓷材料及其制备方法
Chen et al. Ferroelectric and dielectric properties of Sr2− x (Na, K) xBi4Ti5O18 lead-free piezoelectric ceramics
CN106977205B (zh) 一种镧锶锰氧/氧化锌铝复相陶瓷的制备方法
CN114105672B (zh) 一种锆钽复合稀土基多孔高熵陶瓷及其制备方法
CN105355771B (zh) 一种高功率因子氧化锌热电材料及其制备方法
CN111848159A (zh) 一种黄色导电氧化锆陶瓷的制备方法
Kumar et al. Effect of lanthanum (La 3+) doping on the structural and electrical properties of double perovskite Sr 2 NiMoO 6
Fan et al. Design and synthesis of thermistor materials with high aging stability: Multicomponent equiatomic Mn-Co-Ni-Al-Zn-O ceramics
Hu et al. Synthesis and crystal structure of double-perovskite compound Sr2FeMoO6
Iyasara et al. La and Sm co-doped SrTiO3-δ thermoelectric ceramics
CN109206131A (zh) 一种稀土掺杂的m型锶铁氧体磁性材料及其制备方法
Li et al. Effect of the calcination temperature on temperature coefficient of resistance and magnetoresistance of La0. 67Ca0. 33MnO3 polycrystalline ceramics
Wang et al. High‐entropy La (Fe0. 2Co0. 2Ni0. 2Cr0. 2Mn0. 2) O3 ceramic exhibiting high emissivity and low thermal conductivity
Ma et al. Effect of Ag addition on the microstructure and electrical properties of Ni0. 6CoMn1. 4O4/Ag composite ceramics
Tyagi Combustion synthesis: a soft-chemical route for functional nano-ceramics
CN107473742B (zh) 一种高质量单相双钙钛矿Sr2FeMoO6陶瓷的制备方法
CN103910527B (zh) 一种β-FeSe超导陶瓷及两步烧结制备方法
CN101798215A (zh) 镧和镝共掺杂SrTiO3陶瓷材料及其制备方法
EP3885327B1 (en) Calcined ferrite, and sintered ferrite magnet and its production method

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20191126