CN106975747B - 非晶合金成分的高通量筛选方法 - Google Patents

非晶合金成分的高通量筛选方法 Download PDF

Info

Publication number
CN106975747B
CN106975747B CN201710229364.0A CN201710229364A CN106975747B CN 106975747 B CN106975747 B CN 106975747B CN 201710229364 A CN201710229364 A CN 201710229364A CN 106975747 B CN106975747 B CN 106975747B
Authority
CN
China
Prior art keywords
alloy
powder
molding
amorphous
ingredient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201710229364.0A
Other languages
English (en)
Other versions
CN106975747A (zh
Inventor
吕云卓
陆兴
覃作祥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian Jiaotong University
Original Assignee
Dalian Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian Jiaotong University filed Critical Dalian Jiaotong University
Priority to CN201710229364.0A priority Critical patent/CN106975747B/zh
Publication of CN106975747A publication Critical patent/CN106975747A/zh
Application granted granted Critical
Publication of CN106975747B publication Critical patent/CN106975747B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/36Process control of energy beam parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/006Amorphous articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/25Direct deposition of metal particles, e.g. direct metal deposition [DMD] or laser engineered net shaping [LENS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/32Process control of the atmosphere, e.g. composition or pressure in a building chamber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/38Process control to achieve specific product aspects, e.g. surface smoothness, density, porosity or hollow structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/10Auxiliary heating means
    • B22F12/17Auxiliary heating means to heat the build chamber or platform
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明公开了一种非晶合金成分的高通量筛选方法,具有如下步骤:将不同单质粉末分别放置在不同送粉桶内,利用同轴送粉激光熔覆方法成型合金;在成型第一道合金的过程中,通过不断连续调整不同送粉桶的送粉量,使得成型的第一道合金成分连续梯度变化;随着成型道数的增加,激光功率逐渐增加,扫描速率和送粉量的调整与第一道合金相同;确定成型的每道合金的成分,完全非晶态区域;随着激光功率的增加,所成型合金的完全非晶态区域逐渐缩小,最终即将消失的完全非晶态区域所对应的成分,为该合金体系玻璃形成能力最强的成分。本发明可快速鉴别具有较高玻璃形成能力的非晶合金成分,有效降低开发非晶合金成分的人力以及物力成本。

Description

非晶合金成分的高通量筛选方法
技术领域
本发明涉及非晶合金成分开发领域,具体涉及一种筛选非晶合金成分的高通量方法。
背景技术
非晶合金,又称金属玻璃,是上世纪60年代出现的新型金属材料。由于其原子排列呈现长程无序、短程有序的特点,这使得非晶合金在物理、化学以及力学性能上都具有一系列传统晶体合金所不具备的优异特性,例如高强度、高硬度、高耐磨性、高耐腐蚀性以及良好的软磁性能等等。这些优异的性能使得非晶合金在航空航天、汽车船舶、装甲防护、精密仪器、电力、能源、电子、生物医学等领域都存在广泛的应用前景。
自其问世以来,非晶合金成分的设计与开发一直是最热门的研究方向之一。这是因为合理设计和开发合金的化学成分,是改善非晶合金的玻璃形成能力,进而提高非晶合金临界尺寸的重要途径。所以,非晶合金科研工作者一直努力探索能够实现非晶合金成分设计的判据和方法。在对非晶合金的结构、热力学、以及动力学的大量研究基础之上,人们提出了许多用于设计具有优异玻璃形成能力的非晶合金的经验性判据。尽管这些判据在非晶合金的发展过程中起到一定的指导作用,但是到目前为止,对非晶合金成分的开发仍然以试错方法为主,以判据设计为辅。新的非晶合金成分系的开发过程仍然是一个耗时、费力、较为盲目的探索过程。这种“炒菜”式的材料成分研发方法,已跟不上当今技术快速发展的需求,成为限制非晶合金进步的瓶颈。因此,革新非晶合金成分的研发方法,加速非晶合金从研究到应用的进程,已成为非晶合金领域的迫切需求。
以“材料基因组工程(“材料基因组计划中的高通量实验方法”,2013年、第58卷、第35期:3647~3655)”为背景的高通量实验方法可快速地鉴别具有较高玻璃形成能力的非晶合金成分,直接加速非晶合金成分的筛选和优化。随着材料研发技术的快速发展和材料基因组方法在材料研发领域的不断推广,高通量实验方法的重要性在非晶合金的研究中必将日益凸显。
发明内容
根据上述提出的技术问题,而提供一种非晶合金成分的高通量筛选方法。本发明采用的技术手段如下:
一种非晶合金成分的高通量筛选方法,其特征在于具有如下步骤:
S1、将不同单质粉末分别放置在同轴送粉激光熔覆装置的送粉器的不同送粉桶内,在打印环境氧浓度低于50ppm,基板预热温度0~800℃的条件下,利用同轴送粉激光熔覆方法成型合金;
S2、在成型第一道合金的过程中,通过不断连续调整不同送粉桶的送粉量,使得输送到激光加工点处的粉末中不同单质的质量比发生连续变化,使得成型的第一道合金成分沿扫描方向呈连续梯度变化;
S3、在成型随后的多道合金过程中,随着成型道数的增加,激光功率逐渐增加,扫描速率和送粉量的调整与第一道合金相同;
S4、利用X射线能谱仪确定成型的每道合金的成分;
S5、利用微分干涉对比显微镜或扫描电镜观察成型的合金的微观组织形貌;
S6、利用X射线衍射仪和透射电子显微镜确定不同微观组织形貌区域的相,并确定完全非晶态的区域;
S7、随着激光功率的增加,所成型合金的完全非晶态区域逐渐缩小,最终即将消失的完全非晶态区域所对应的成分,为该合金体系玻璃形成能力最强的成分。
所述基板预热通过支撑基板的导热铜板的传热实现,所述导热铜板内部接通温度为0~800℃的循环流动液体或布置加热电阻丝。
本发明具有以下优点:
1、可快速鉴别具有较高玻璃形成能力的非晶合金成分;
2、有效降低开发非晶合金成分的人力以及物力成本。
基于上述理由本发明可在非晶合金成分开发等领域广泛推广。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图做以简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本发明的具体实施方式中同轴送粉激光熔覆装置的示意图。
图2是本发明的具体实施方式中同轴送粉激光熔覆装置成型的多道合金的示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
同轴送粉激光熔覆装置的示意图如图1所示。
图中:1、真空手套箱,2、激光熔覆头,3、激光束,4、粉末,5、第一道合金,6、基板,7、导热硅胶,8、导热铜板,9、加热液体导管,10、工作台,11、激光器,12、光纤,13、送粉器,14、送粉桶一,15、送粉桶二,16、送粉管。
将纯铜粉末和纯锆粉末分别放置在同轴送粉激光熔覆装置送粉器13的送粉桶一14和送粉桶二15内。
基板6为厚度为20mm的45号钢板。
利用导热硅胶7将基板6紧密粘贴到导热铜板8上。
导热铜板8内部接通温度为室温的循环流动水。
使用激光功率500W,扫描速度300mm/min,打印环境氧浓度小于50ppm,成型第一道合金5。
在成型第一道合金5的过程中,通过不断连续调整送粉桶一14和送粉桶二15的送粉量,使得输送到激光加工点处的粉末4中铜与锆的质量比发生连续变化,使得成型的第一道合金成分沿扫描方向呈连续梯度变化;
在成型随后的多道合金过程中,随着成型道数的增加,激光功率逐渐增加,扫描速率和送粉量的调整与第一道合金5相同。所成型的多道合金的示意图如图2所示,图中成型的多道合金从左至右,成分呈梯度变化;从下到上,激光功率逐渐增加,扫描速率和送粉量的调整与第一道合金相同。
利用X射线能谱仪(EDS)确定成型的每道合金的成分。
利用微分干涉对比显微镜(DIC)或扫描电镜(SEM)观察成型的合金的微观组织形貌。
利用X射线衍射仪(XRD)和透射电子显微镜(TEM)确定不同微观组织形貌区域的相,并确定完全非晶态的区域。如图2所示,图中每一道合金中白色的区域为完全非晶态,灰色的区域为晶化态。随着激光功率的增加,所成型合金的完全非晶态区域逐渐缩小,最终即将消失的完全非晶态区域所对应的成分,为该合金体系玻璃形成能力最强的成分。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (2)

1.一种非晶合金成分的高通量筛选方法,其特征在于具有如下步骤:
S1、将不同单质粉末分别放置在同轴送粉激光熔覆装置的送粉器的不同送粉桶内,在打印环境氧浓度低于50ppm,基板预热温度0~800℃的条件下,利用同轴送粉激光熔覆方法成型合金;
S2、在成型第一道合金的过程中,通过不断连续调整不同送粉桶的送粉量,使得输送到激光加工点处的粉末中不同单质的质量比发生连续变化,使得成型的第一道合金成分沿扫描方向呈连续梯度变化;
S3、在成型随后的多道合金过程中,随着成型道数的增加,激光功率逐渐增加,扫描速率和送粉量的调整与第一道合金相同;
S4、利用X射线能谱仪确定成型的每道合金的成分;
S5、利用微分干涉对比显微镜或扫描电镜观察成型的合金的微观组织形貌;
S6、利用X射线衍射仪和透射电子显微镜确定不同微观组织形貌区域的相,并确定完全非晶态的区域;
S7、随着激光功率的增加,所成型合金的完全非晶态区域逐渐缩小,最终即将消失的完全非晶态区域所对应的成分,为该合金体系玻璃形成能力最强的成分。
2.根据权利要求1所述的非晶合金成分的高通量筛选方法,其特征在于:所述基板预热通过支撑基板的导热铜板的传热实现,所述导热铜板内部接通温度为0~800℃的循环流动液体或布置加热电阻丝。
CN201710229364.0A 2017-04-10 2017-04-10 非晶合金成分的高通量筛选方法 Expired - Fee Related CN106975747B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710229364.0A CN106975747B (zh) 2017-04-10 2017-04-10 非晶合金成分的高通量筛选方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710229364.0A CN106975747B (zh) 2017-04-10 2017-04-10 非晶合金成分的高通量筛选方法

Publications (2)

Publication Number Publication Date
CN106975747A CN106975747A (zh) 2017-07-25
CN106975747B true CN106975747B (zh) 2019-05-03

Family

ID=59346089

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710229364.0A Expired - Fee Related CN106975747B (zh) 2017-04-10 2017-04-10 非晶合金成分的高通量筛选方法

Country Status (1)

Country Link
CN (1) CN106975747B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107914008B (zh) * 2017-11-23 2019-09-10 北京科技大学 一种高通量制备粉末冶金闸片材料的装置及方法
CN108034928A (zh) * 2017-12-04 2018-05-15 北京科技大学 一种可调控组织的薄膜高通量制备的装置及其方法
CN111999328B (zh) * 2019-05-10 2021-12-10 中国科学院金属研究所 一种激光高通量筛选多组元非晶成分的方法
CN110899645A (zh) * 2019-11-09 2020-03-24 上海航天设备制造总厂有限公司 一种tlp扩散焊中间层材料制备方法、焊接方法与表征方法
CN111331136A (zh) * 2020-02-10 2020-06-26 中国科学院金属研究所 一种送粉激光3d打印性能均一金属薄壁件方法
CN113500206A (zh) * 2021-05-24 2021-10-15 中国工程物理研究院材料研究所 一种陶瓷增强合金中纳米陶瓷相的高通量优选方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09272929A (ja) * 1996-03-22 1997-10-21 Olympus Optical Co Ltd 非晶質合金材の成形方法及び非晶質合金
CN1143901C (zh) * 2001-01-17 2004-03-31 大连理工大学 自蔓延高温合成大块非晶合金和非晶基复合材料技术
WO2004106575A1 (en) * 2003-05-30 2004-12-09 Korea Institute Of Industrial Technology Cu-based amorphous alloy composition
KR100463578B1 (ko) * 2003-05-30 2004-12-29 한국생산기술연구원 Cu기 비정질 합금조성물
CN100477025C (zh) * 2004-05-28 2009-04-08 金重勋 三元及多元铁基块状非晶合金及纳米晶合金
KR100638341B1 (ko) * 2004-12-23 2006-10-24 학교법인연세대학교 우수한 비정질 형성능을 가지는 칼슘계 벌크 비정질 합금
US20130309121A1 (en) * 2012-05-16 2013-11-21 Crucible Intellectual Property Llc Layer-by-layer construction with bulk metallic glasses
CN103710647B (zh) * 2013-12-30 2015-12-02 河海大学常州校区 一种基于热力学因素和结构因素的非晶合金成分设计方法
CN104947175A (zh) * 2014-03-27 2015-09-30 中国科学院金属研究所 一种激光3d打印制备单晶高温合金块体材料的方法
US9970079B2 (en) * 2014-04-18 2018-05-15 Apple Inc. Methods for constructing parts using metallic glass alloys, and metallic glass alloy materials for use therewith

Also Published As

Publication number Publication date
CN106975747A (zh) 2017-07-25

Similar Documents

Publication Publication Date Title
CN106975747B (zh) 非晶合金成分的高通量筛选方法
Tan et al. Selective laser melting of tungsten-copper functionally graded material
Kürnsteiner et al. Massive nanoprecipitation in an Fe-19Ni-xAl maraging steel triggered by the intrinsic heat treatment during laser metal deposition
Hou et al. Microstructure and wear characteristics of cobalt-based alloy deposited by plasma transferred arc weld surfacing
CN106978577B (zh) 一种非晶合金复合材料的激光3d打印方法
Levchenko et al. Deterministic nanoassembly: Neutral or plasma route?
Cherigui et al. Structure of amorphous iron-based coatings processed by HVOF and APS thermally spraying
Katakam et al. In situ laser synthesis of Fe-based amorphous matrix composite coating on structural steel
Lin et al. Fabrication of a strong and ductile FeCoCrNiMo0. 3 high-entropy alloy with a micro-nano precipitate framework via laser powder bed fusion
Sui et al. Study of the intrinsic mechanisms of nickel additive for grain refinement and strength enhancement of laser aided additively manufactured Ti–6Al–4V
Becker et al. Materials processing using radio-frequency ion-sources: Ion-beam sputter-deposition and surface treatment
CN107671289B (zh) 一种低元素烧损稀土改性增强铝合金激光3d打印的工艺调控方法
Zhou et al. Self-healing effects by the Ce-rich precipitations on completing defective boundaries to manage microstructures and oxidation resistance of Ni-CeO2 coatings
IMANIAN GHAZANLOU et al. Influence of pulse electrodeposition parameters on microhardness, grain size and surface morphology of Ni–Co/SiO 2 nanocomposite coating
Liu et al. In-situ synthesized Ni–Zr intermetallic/ceramic reinforced composite coatings on zirconium substrate by high power diode laser
CN101575695B (zh) 一种基于透明材料的激光镀膜装置和方法
CN107138829A (zh) 一种适用于高性能金属构件的多电弧协同增材制造方法
Zhang et al. Microstructure evolution, growth kinetics and formation mechanisms of silicon-rich NbSi2 coatings on Nb substrate
Zhang et al. Mechanical properties improvement of nickel-based alloy 625 fabricated by powder-fed laser additive manufacturing based on linear beam oscillation
Liu et al. Electrodeposition of metallic tungsten coating from binary oxide molten salt on low activation steel substrate
Osadnik et al. Plasma-sprayed Mo-Re coatings for glass industry applications
Zhang et al. Effect of process parameters on mechanical properties of wire and arc additive-manufactured AlCu6Mn
Wu et al. EBSD study of (1 1 0) orientation of iridium (Ir) coating on niobium (Nb) substrate by double glow plasma
Yang et al. Epitaxial grain growth during splat cooling of alumina droplets produced by atmospheric plasma spraying
KR101158357B1 (ko) 진공처리장치

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190503

Termination date: 20200410