CN106970404A - 一种基于Delaunay三角网的多冗余网络RTK大气误差内插方法 - Google Patents

一种基于Delaunay三角网的多冗余网络RTK大气误差内插方法 Download PDF

Info

Publication number
CN106970404A
CN106970404A CN201710210576.4A CN201710210576A CN106970404A CN 106970404 A CN106970404 A CN 106970404A CN 201710210576 A CN201710210576 A CN 201710210576A CN 106970404 A CN106970404 A CN 106970404A
Authority
CN
China
Prior art keywords
interpolation
delta
baseline
user
troposphere
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710210576.4A
Other languages
English (en)
Other versions
CN106970404B (zh
Inventor
高成发
尚睿
潘树国
汪登辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN201710210576.4A priority Critical patent/CN106970404B/zh
Publication of CN106970404A publication Critical patent/CN106970404A/zh
Application granted granted Critical
Publication of CN106970404B publication Critical patent/CN106970404B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/43Determining position using carrier phase measurements, e.g. kinematic positioning; using long or short baseline interferometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/40Correcting position, velocity or attitude

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

本发明公开了一种基于Delaunay三角网的多冗余网络RTK大气误差内插方法,网络RTK数据处理中心利用CORS基准站精确坐标构建Delaunay三角网,用户接入数据处理中心后选取用户所在位置最优三角单元及次优三角单元,扩充大气误差内插基线数量,建立了MLIM电离层内插模型和RELIM对流层内插模型,提出了一种网内流动站大气内插完备性监测方法,MLIM电离层内插模型内插精度是传统模型的3倍,RELIM对流层内插模型内插精度是传统模型的6~30倍,且这两种模型在基站高程差异大地区仍能够保持很高内插精度。区域CORS电离层对流层完备性指标可达到厘米级内插精度,能用于网络RTK用户实时定位完备性监测。使用本发明提供的方法,可充分利用用户周围的CORS基站,有效提升区域大气延迟内插精度,保障用户快速高精度定位。

Description

一种基于Delaunay三角网的多冗余网络RTK大气误差内插 方法
技术领域
本发明涉及全球导航卫星系统GNSS(Global Navigation System)卫星定位领域,特别涉及基于地基增强系统的网络RTK(Real-Time Kinematic)大气误差内插与完备性监测,是GNSS实时高精度RTK定位技术研究的重要组成部分。
背景技术
全球导航系统(GNSS)的不断完善以及卫星导航与互联网技术的融合极大拓展了高精度卫星定位技术应用的深度和广度。以虚拟参考站技术VRS(virtual referencestation)为代表的网络RTK技术可提供厘米级的定位精度,有效推进了卫星导航系统的广泛应用,各行业对定位精度和可信度的要求也更加苛刻。VRS的核心技术之一是利用内插模型拟合出虚拟站处的大气误差,为此,构建最优参考站网络极为关键,现有的VRS技术一般采用Delaunay三角解算单元进行空间误差建模,这种解算单元既能保证最优的网络构建又能保证各单元独立解算,然而由于三角单元本身结构的局限性,无法充分利用周围冗余基站信息,限制了可选择的内插模型。
对流层误差不仅受水平方向的影响,而且受高程方向的影响,当流动站在水平方向强约束与由参考站所构成的区域内时,在高程方向却可能远离模型区域内插面,因此对于流动站对流层延迟改正数必须采用高程因子的影响。受限于三角解算单元仅有两条内插基线,当高程差异大时,对流层内插精度低,且无法对内插结果进行有效检核。
发明内容
发明目的:为了克服现有技术中存在的不足,本发明提供一种基于Delaunay三角网的多冗余网络RTK大气误差内插方法,能够解决目前网络RTK技术无法充分利用用户周边冗余基站,在高程差异大地区对流层内插精度低、且无法进行完备性检核的问题。
技术方案:为实现上述目的,本发明采用的技术方案为:
一种基于Delaunay三角网的多冗余网络RTK大气误差内插方法,网络RTK数据处理中心利用CORS基准站平面坐标构建Delaunay三角网,用户接入网络RTK数据处理中心后选取用户所在位置最优三角形及次优三角形,扩充大气误差内插基线数量,建立新型电离层和对流层内插模型;同时,采用距离加权模型,综合各单元大气延迟值,实时生成用户位置VRS完备性监测信息,监测用户定位情况。
具体包括以下步骤:
步骤1,网络RTK数据处理中心利用CORS基准站平面坐标,构建基础Delaunay三角网;
步骤2,用户接入到网络RTK数据处理中心后,根据用户上传的GGA信息中的用户概略坐标选取内插三角形和内插基线,具体包括如下具体步骤:
步骤21:选取最优三角形和主站:(1)当用户处于三角网覆盖范围内时,选取用户所在三角形作为最优三角形,距离用户最近的一个基站作为主站。(2)当用户处于三级网覆盖范围外时,选取与用户距离最近的三角形重心所对应的三角形作为最优三角形,最优三角形中距离用户最近的一个站作为主站。
步骤22:确定次优三角形和冗余内插基线:(1)当主站位于网内时,有两个三角形与最优三角形共享内插基线,因此有两个次优三角形,根据两个次优三角形可获得两条冗余内插基线。(2)当主站位于三角网边界上且有一个三角形与最优三角形共享内插基线时,可将此三角形作为次优三角形,根据此次优三角形可得到一条冗余基线。(3)当主站位于三角网边界且没有三角形与最优三角形共享内插基线时,无次优三角形,因此无冗余基线。
步骤3,用户通过步骤2确定内插基线后,分别建立多冗余电离层内插模型(Multi-redundant Linear Interpolation Model,MLIM)和修正高程的对流程内插模型(ReviseElevation Linear Interpolation Model,RELIM);
步骤4,在用户电离层和对流层内插的同时,采用冗余基线和主内插基线一对主内插基线二利用MLIM和RELIM法分别进行电离层和对流层内插计算,比较主内插基线二上所有卫星的估计值和内插值的差值,计算出每一历元所有卫星的加权,记为ARMS。然后,采用冗余基线和主内插基线二对主内插基线一利用MLIM和RELIM法分别进行电离层和对流层内插基线,比较主内插基线一上所有卫星的估计值和内插值的差值,计算出每一历元所有卫星的加权,记为BRMS。根据ARMS和BRMS,采用LIM方法进行距离加权,计算用户处电离层完备性指标(Real-Time Ionospheric Residual Integrity Monitoring,RTIRIM)和对流层完备性指标(Real-Time tropospheric Residual Integrity Monitoring,RTTRIM)。
所述步骤3中建立电离层内插模型MLIM和对流层内插模型RELIM的方法:
步骤31,网络RTK基线上双差电离层可由下式确定:;
确定双差电离层延迟后,建立电离层内插模型MLIM:
a=[a1,a2]=(B1 TB1)-1B1 TL (3)
L=[ΔI1,n ΔI2,n … ΔIn-1,n]T (5)
为基线上双差电离层,f1表示载波φ1的频率,f2表示载波φ2的频率,λ1是载波φ1波长,λ2是载波φ2波长,代表双差载波φ1观测值,代表双差载波φ2观测值,代表φ1上双差模糊度,代表φ2上双差模糊度,1,…,n表示参考站数量,1,2,…,n-1表示辅助参考站,n表示主参考站,u代表流动站,a1、a2为线性内插系数,Δx、Δy表示辅助参考站与主参考站之间的平面坐标差,ΔI代表基线上电离层延迟值;
步骤32,网络RTK基线上双差对流层可由下式确定:
确定每条内插基线上双差对流层之后,建立对流层内插模型RELIM:
a=[a1,a2,a3]=(B2 TB2)-1B2 TL (8)
L=[ΔT1,n ΔT2,n … ΔTn-1,n]T (10)
式中:为双差对流层延迟值,c表示光速,f1表示载波φ1的频率,f2表示载波φ2的频率,代表双差载波φ1观测值,代表双差载波φ2观测值,代表φ1上双差模糊度,代表φ2上双差模糊度,ρ为卫星与接收机之间的几何距离,1,…,n表示参考站数量,1,2,…,n-1表示辅助参考站,n表示主参考站,u代表流动站,a1、a2、a3为线性内插系数,Δx、Δy、Δh表示辅助参考站与主参考站之间的平面与高程坐标差;ΔT代表基线上对流层延迟值。
步骤4中,用户处电离层和对流层完备性监测指标公式如下:
RIM=a1Δxu,n+a2Δyu,n (11)
a=[a1,a2]=(B1 TB1)-1B1 TL (12)
L=[ARMS BRMS]T (14)
每颗卫星的定权方法如下:
P(z)=Cos2(z) (15)
式中,RIM代表RTIRIM与RTTRIM,a1、a2为线性内插系数,1,2分别代表两个辅站,n表示主参考站,u代表流动站,Δx、Δy表示辅助参考站与主参考站之间的平面坐标差,P(Z)表示每颗卫星的权值,Z为卫星在参考站上的高度角。
本发明相比现有技术,具有以下有益效果:
本发明提出的一种基于Delaunay三角网的多冗余网络RTK大气误差内插方法,通过选取次优三角形,扩充了网络RTK软件大气内插时的基站数目,增加了冗余基线,解决了网路RTK软件无法利用冗余基线的难题。基于主内插基线和冗余内插基线,对网络RTK大气误差进行分类建模,提出的MLIM模型内插精度是传统模型的3倍,RELIM模型内插精度是传统模型的6~30倍,两种模型相比于传统模型精度高且变化平稳。根据主内插基线和冗余内插基线提出的网内流动站大气内插完备性指标确定方法能够达到厘米级的内插精度,可有效保障网络RTK流动站定位。对于网络RTK软件的进一步发展具有显著意义。
附图说明
图1是本发明提供的一种基于Delaunay三角网的多冗余网络RTK大气误差内插方法流程图。
图2是常规网络RTK软件构网与大气误差内插方法流程图。
图3是网内网外常规三角解算单元示意图。
图4是网内网外多冗余三角解算单元示意图。
图5是完备性监测内插示意图。
图6是实验所用美国CORS参考站分布图。
图7是实验所用美国CORS参考站高程图。
图8是实验所用G19号卫星高度角变化图
图9是网内电离层、对流层内插误差图。
图10是网外电离层、对流层内插误差图。
图11是电离层、对流层完备性监测图。
具体实施方式
下面结合附图和具体实施例,进一步阐明本发明,应理解这些实例仅用于说明本发明而不用于限制本发明的范围,在阅读了本发明之后,本领域技术人员对本发明的各种等价形式的修改均落于本申请所附权利要求所限定的范围。
一种基于Delaunay三角网的多冗余网络RTK大气误差内插方法,首先网络RTK数据处理中心利用CORS(Continuous Operational Reference System:连续运行参考系统)基准站精确坐标构建Delaunay三角网,当用户接入到数据处理中心后,选取用户位置最优三角形及次优三角形,扩充大气误差内插基线数量,建立新型电离层和对流层内插模型,提高大气误差内插精度;同时,采用距离加权模型,综合各单元大气延迟值,实时生成用户位置VRS完备性监测信息,监测用户定位情况。包括如下具体步骤:
步骤1,网络RTK数据处理中心利用CORS基准站平面坐标,构建基础Delaunay三角网;
步骤2,用户接入到网络RTK数据处理中心后,根据用户上传的GGA信息中的用户概略坐标选取三角单元确定内插基线,具体包括如下具体步骤:
步骤21:选取最优三角形和主站:(1)当用户处于三角网覆盖范围内时,选取用户所在三角形作为最优三角形,距离用户最近的一个基站作为主站。(2)当用户处于三级网覆盖范围外时,选取与用户距离最近的三角形重心所对应的三角形作为最优三角形,最优三角形中距离用户最近的一个站作为主站。
步骤22:确定次优三角形和冗余内插基线:(1)当主站位于网内时,有两个三角形与最优三角形共享内插基线,因此有两个次优三角形,根据两个次优三角形可获得两条冗余内插基线。(2)当主站位于三角网边界上且有一个三角形与最优三角形共享内插基线时,可将此三角形作为次优三角形,根据此次优三角形可得到一条冗余基线。(3)当主站位于三角网边界且没有三角形与最优三角形共享内插基线时,无次优三角形,因此无冗余基线。
步骤3,用户通过步骤2确定内插基线后,分别建立多冗余电离层内插模型(Multi-redundant Linear Interpolation Model,MLIM)和修正高程的对流程内插模型(ReviseElevation Linear Interpolation Model,RELIM);
步骤4,在用户电离层和对流层内插的同时,采用冗余基线和主内插基线一对主内插基线二利用MLIM和RELIM法分别进行电离层和对流层内插计算,比较主内插基线二上所有卫星的估计值和内插值的差值,计算出每一历元所有卫星的加权,记为ARMS。然后,采用冗余基线和主内插基线二对主内插基线一利用MLIM和RELIM法分别进行电离层和对流层内插基线,比较主内插基线一上所有卫星的估计值和内插值的差值,计算出每一历元所有卫星的加权,记为BRMS。根据ARMS和BRMS,采用LIM方法进行距离加权,计算用户处电离层完备性指标(Real-Time Ionospheric Residual Integrity Monitoring,RTIRIM)和对流层完备性指标(Real-Time tropospheric Residual Integrity Monitoring,RTTRIM)。
所述步骤3中建立电离层内插模型MLIM和对流层内插模型RELIM的方法:
步骤31,网络RTK基线上双差电离层可由下式确定:;
确定双差电离层延迟后,建立电离层内插模型MLIM:
a=[a1,a2]=(B1 TB1)-1B1 TL (3)
L=[ΔI1,n ΔI2,n … ΔIn-1,n]T (5)
为基线上双差电离层,f1表示载波φ1的频率,f2表示载波φ2的频率,λ1是载波φ1波长,λ2是载波φ2波长,代表双差载波φ1观测值,代表双差载波φ2观测值,代表φ1上双差模糊度,代表φ2上双差模糊度,1,…,n表示参考站数量,1,2,…,n-1表示辅助参考站,n表示主参考站,u代表流动站,a1、a2为线性内插系数,Δx、Δy表示辅助参考站与主参考站之间的平面坐标差,ΔI代表基线上电离层延迟值;
步骤32,网络RTK基线上双差对流层可由下式确定:
确定每条内插基线上双差对流层之后,建立对流层内插模型RELIM:
a=[a1,a2,a3]=(B2 TB2)-1B2 TL (8)
L=[ΔT1,n ΔT2,n … ΔTn-1,n]T (10)
式中:为双差对流层延迟值,c表示光速,f1表示载波φ1的频率,f2表示载波φ2的频率,代表双差载波φ1观测值,代表双差载波φ2观测值,代表φ1上双差模糊度,代表φ2上双差模糊度,ρ为卫星与接收机之间的几何距离,1,…,n表示参考站数量,1,2,…,n-1表示辅助参考站,n表示主参考站,u代表流动站,a1、a2、a3为线性内插系数,Δx、Δy、Δh表示辅助参考站与主参考站之间的平面与高程坐标差;ΔT代表基线上对流层延迟值。
步骤4中,用户处电离层和对流层完备性监测指标公式如下:
RIM=a1Δxu,n+a2Δyu,n (11)
a=[a1,a2]=(B1 TB1)-1B1 TL (12)
L=[ARMS BRMS]T (14)
每颗卫星的定权方法如下:
P(z)=Cos2(z) (15)
式中,RIM代表RTIRIM与RTTRIM,a1、a2为线性内插系数,1,2分别代表两个辅站,n表示主参考站,u代表流动站,Δx、Δy表示辅助参考站与主参考站之间的平面坐标差,P(Z)表示每颗卫星的权值,Z为卫星在参考站上的高度角。
实施例:如图6所示的参考站网图,采用美国CORS网2013年08月08日的P343、P165、P322、P332、P345、P349共6个站、采样率为15s的GPS观测数据,进行网内与网外电离层、对流层内插精度分析及大气完备性分析。试验过程中选取卫星高度角有两次升降过程的G19号卫星进行对比分析。采用图9-10给出网内网外电离层和对流层内插对比分析图。
网内实验以基站P343为主站,以基站P332为监测站。常规内插实验将基站P322、P345作为内插站,冗余三角内插实验将基站P165、P322、P345、P349作为内插基站。图9(a)表示网内电离层误差改正数变化图,其中LIM(线性内插模型)、LSM(低阶曲面模型)为常规内插模型,且LSM只能用于冗余三角解算单元中。MLIM法为本文提出的基于LIM的模型。图9(b)表示网内对流层误差改正数变化图,其中LIM、WLCM为常规三角单元中的内插模型,MHM与RELIM为冗余三角单元内插模型。
网外实验以基站P343为主站,以基站P349为监测站。常规内插实验将基站P322、P345作为内插站,冗余三角内插实验将基站P165、P322、P345作为内插基站。图10(a)代表网外电离层内插误差变化图,图10(b)代表网外对流层内插误差变化图。表1,2分别表示电离层和对流层内插RMS值。
根据图8-10可以看出,对于对流层而言,传统模型由于未考虑内插基站间的高程差异,内插精度会随高度角的变化而变化,本文提出的RELIM模型对流层内插精度高且变化平稳。对于电离层而言,本文提出的MLIM模型精度优于传统模型且变化平稳。
表1.电离层模型中误差统计(m)
表2.对流层模型中误差统计(m)
由表1、2可以看出,在网内,对于电离层而言,本文提出的MLIM模型内插精度同LIM模型相当,是LSM模型的3倍。对于对流层而言,本文提出的RELIM模型内插精度同LSM模型相当,是LIM模型和HLCM模型的6倍。在网外,对于电离层而言,MLIM模型的精度是LSM和LIM模型的3倍,对于对流层而言,RELIM模型的精度同HLCM精度相当,是LIM模型的30倍。
大气内插完备性指标确定实验将基站P332设置为监测站。解算基线P343-P332得到P332站点处的双差电离层延迟值及对流层延迟值,并将其作为完备性监测的真值。以基线P343-P165、P343-P322、P343-P349内插基线P343-P345,计算ARMS;以基线P343-P165、P343-P345、P343-P349内插基线P343-P322,计算BRMS,(电离层和对流层分开计算),根据ARMS和BRMS内插得到P332站点处的双差电离层和对流层完备性监测值。将真值和完备性监测值进行对比分析,图11(a)代表电离层完备性指标对比图,图11(b)代表对流层完备性指标对比图。表3表示电离层和对流层完备性指标内插中误差。
表3.完备性监测中误差统计(m)
由图11可以看出,电离层和对流层完备性指标可以很好的拟合基线实际双差电离层和对流层延迟值。由于卫星升降频繁,历元4000~5000出现了电离层和对流层延迟值的较大幅度波动。由于电离层的短期时空尺度不稳定性,电离层内插结果略差于对流层。由表3可知这种完备性监测指标可达到厘米级内插效果。
根据以上实验可以看出,使用本发明提出的基于Delaunay三角网的多冗余网络RTK大气误差内插方法,网络RTK中心处理软件可以快速实现自动构网,通过选取用户所在位置最优三角形及次优三角形,扩充大气误差内插基线数量,建立了MLIM电离层内插模型和RELIM对流层内插模型,提出了一种网内流动站大气内插完备性监测方法。实验结果表明,MLIM电离层内插模型内插精度是传统模型的3倍,RELIM对流层内插模型内插精度是传统模型的6~30倍,且这两种模型在基站高程差异大地区仍能够保持很高内插精度。区域CORS电离层对流层完备性指标可达到厘米级内插精度,能用于网络RTK用户实时定位完备性监测。使用本发明提供的方法,可充分利用用户周围的CORS基站,有效提升区域大气延迟内插精度,保障用户快速高精度定位。以上所述仅是本发明的优选实施方式,应当指出:对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (4)

1.一种基于Delaunay三角网的多冗余网络RTK大气误差内插方法,其特征在于:网络RTK数据处理中心利用CORS基准站平面坐标构建Delaunay三角网,用户接入网络RTK数据处理中心后选取用户所在位置最优三角单元及次优三角单元,扩充大气误差内插基线数量,建立新型电离层和对流层内插模型;同时,采用距离加权模型,综合各单元大气延迟值,实时生成用户位置VRS完备性监测信息,监测用户定位情况。
2.根据权利要求1所述基于Delaunay三角网的多冗余网络RTK大气误差内插方法,其特征在于:包括以下步骤:
步骤1,网络RTK数据处理中心利用CORS基准站平面坐标,构建基础Delaunay三角网;
步骤2,用户接入到网络RTK数据处理中心后,根据用户上传的GGA信息中的用户概略坐标选取内插三角形,确定内插基线,具体包括如下具体步骤:
步骤21:选取主参考站:(1)当用户处于三角网覆盖范围内时,选取用户所在三角形作为最优三角形,距离用户最近的一个基站作为主站;(2)当用户处于三级网覆盖范围外时,选取与用户距离最近的三角形重心所对应的三角形作为最优三角形,最优三角形中距离用户最近的一个站作为主站;
步骤22:确定次优三角形:(1)当主站位于网内时,有两个三角形与最优三角形共享内插基线,因此有两个次优三角形,根据两个次优三角形可获得两条冗余内插基线;(2)当主站位于三角网边界上且有一个三角形与最优三角形共享内插基线时,可将此三角形作为次优三角形,根据此次优三角形可得到一条冗余基线;(3)当主站位于三角网边界且没有三角形与最优三角形共享内插基线时,无次优三角形,因此无冗余基线;
步骤3,用户通过步骤2确定内插基线后,分别建立多冗余电离层内插模型MLIM和修正高程的对流程内插模型RELIM;
步骤4,在用户电离层和对流层内插的同时,采用冗余基线和主内插基线一对主内插基线二利用多冗余电离层内插模型MLIM和修正高程的对流程内插模型RELIM分别进行电离层和对流层内插计算,比较主内插基线二上所有卫星的估计值和内插值的差值,计算出每一历元所有卫星的加权,记为ARMS;然后,采用冗余基线和主内插基线二对主内插基线一利用MLIM和RELIM法分别进行电离层和对流层内插计算,比较主内插基线一上所有卫星的估计值和内插值的差值,计算出每一历元所有卫星的加权,记为BRMS;根据ARMS和BRMS,采用LIM方法进行距离加权,计算用户处电离层完备性指标和对流层完备性指标。
3.根据权利要求1所述基于Delaunay三角网的多冗余网络RTK大气误差内插方法,其特征在于:所述步骤3中建立电离层内插模型MLIM和对流层内插模型RELIM的方法:
步骤31,网络RTK基线上双差电离层可由下式确定:;
确定双差电离层延迟后,建立电离层内插模型MLIM:
Δ ▿ I u , n = a 1 Δx u , n + a 2 Δy u , n - - - ( 2 )
a=[a1,a2]=(B1 TB1)-1B1 TL (3)
B 1 = Δx 1 , n Δy 1 , n Δx 2 , n Δy 2 , n . . . . . . Δx n - 1 , n Δy n - 1 , n - - - ( 4 )
L=[ΔI1,n ΔI2,n … ΔIn-1,n]T (5)
为基线上双差电离层,f1表示载波φ1的频率,f2表示载波φ2的频率,λ1是载波φ1波长,λ2是载波φ2波长,代表双差载波φ1观测值,代表双差载波φ2观测值,代表φ1上双差模糊度,代表φ2上双差模糊度,1,…,n表示参考站数量,1,2,…,n-1表示辅助参考站,n表示主参考站,u代表流动站,a1、a2为线性内插系数,Δx、Δy表示辅助参考站与主参考站之间的平面坐标差,ΔI代表基线上电离层延迟值;
步骤32,网络RTK基线上双差对流层可由下式确定:
确定每条内插基线上双差对流层之后,建立对流层内插模型RELIM:
Δ ▿ T u , n = a 1 Δx u , n + a 2 Δy u , n + a 3 Δh u , n - - - ( 7 )
a=[a1,a2,a3]=(B2 TB2)-1B2 TL (8)
B 2 = Δx 1 , n Δy 1 , n Δh 1 , n Δx 2 , n Δy 2 , n Δh 2 , n . . . . . . . . . Δx n - 1 , n Δy n - 1 , n Δh 1 , n - - - ( 9 )
L=[ΔT1,n ΔT2,n … ΔTn-1,n]T (10)
式中:为双差对流层延迟值,c表示光速,f1表示载波φ1的频率,f2表示载波φ2的频率,代表双差载波φ1观测值,代表双差载波φ2观测值,代表φ1上双差模糊度,代表φ2上双差模糊度,ρ为卫星与接收机之间的几何距离,1,…,n表示参考站数量,1,2,…,n-1表示辅助参考站,n表示主参考站,u代表流动站,a1、a2、a3为线性内插系数,Δx、Δy、Δh表示辅助参考站与主参考站之间的平面与高程坐标差;ΔT代表基线上对流层延迟值。
4.根据权利要求1所述基于Delaunay三角网的多冗余网络RTK大气误差内插方法,其特征在于:步骤4中,用户处电离层和对流层完备性监测指标公式如下:
RIM=a1Δxu,n+a2Δyu,n (11)
a=[a1,a2]=(B1 TB1)-1B1 TL (12)
B 1 = Δx 1 , n Δy 1 , n Δx 2 , n Δy 2 , n - - - ( 13 )
L=[ARMS BRMS]T (14)
每颗卫星的定权方法:
P(z)=Cos2(z) (15)
式中,RIM代表RTIRIM与RTTRIM,a1、a2为线性内插系数,1,2分别代表两个辅站,n表示主参考站,u代表流动站,Δx、Δy表示辅助参考站与主参考站之间的平面坐标差,P(Z)表示每颗卫星的权值,Z为卫星在参考站上的高度角。
CN201710210576.4A 2017-03-31 2017-03-31 一种基于Delaunay三角网的多冗余网络RTK大气误差内插方法 Active CN106970404B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710210576.4A CN106970404B (zh) 2017-03-31 2017-03-31 一种基于Delaunay三角网的多冗余网络RTK大气误差内插方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710210576.4A CN106970404B (zh) 2017-03-31 2017-03-31 一种基于Delaunay三角网的多冗余网络RTK大气误差内插方法

Publications (2)

Publication Number Publication Date
CN106970404A true CN106970404A (zh) 2017-07-21
CN106970404B CN106970404B (zh) 2020-07-17

Family

ID=59335530

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710210576.4A Active CN106970404B (zh) 2017-03-31 2017-03-31 一种基于Delaunay三角网的多冗余网络RTK大气误差内插方法

Country Status (1)

Country Link
CN (1) CN106970404B (zh)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107797126A (zh) * 2017-09-26 2018-03-13 东南大学 基于星型网络的bds/gps广播式网络rtk算法
CN107807373A (zh) * 2017-10-17 2018-03-16 东南大学 基于移动智能终端的gnss高精度定位方法
CN108345017A (zh) * 2018-01-04 2018-07-31 千寻位置网络有限公司 新的网络rtk大气内插方法
CN108828626A (zh) * 2018-07-02 2018-11-16 中国人民解放军战略支援部队信息工程大学 基于实时网格的网络rtk电离层延迟内插方法及系统
CN110618438A (zh) * 2019-09-09 2019-12-27 广州市中海达测绘仪器有限公司 大气误差计算方法、装置、计算机设备和存储介质
CN110618435A (zh) * 2019-11-07 2019-12-27 广东星舆科技有限公司 观测数据的生成方法与提高vrs稳定性的电文数据生成方法
CN111064595A (zh) * 2018-10-17 2020-04-24 千寻位置网络有限公司 选取基线网型并评估服务质量的方法及装置
CN111290000A (zh) * 2020-03-05 2020-06-16 东南大学 一种基于误差补偿的多站对流层建模方法
CN111323748A (zh) * 2018-12-13 2020-06-23 千寻位置网络有限公司 差分定位方法及系统
CN111708061A (zh) * 2020-06-04 2020-09-25 东南大学 基于动态格网的多参考站差分定位信息生成方法
EP3730970A1 (en) 2019-04-23 2020-10-28 Leica Geosystems AG Providing atmospheric correction data for a gnss network-rtk system by encoding the data according to a quad-tree hierarchy
CN111885614A (zh) * 2020-06-11 2020-11-03 广州南方卫星导航仪器有限公司 一种cors基站组网方法、装置及存储介质
CN111899335A (zh) * 2020-07-29 2020-11-06 昆明理工大学 一种基于dem的图像生成方法
CN111954226A (zh) * 2020-07-30 2020-11-17 宁波冶金勘察设计研究股份有限公司 基于Delaunay异构CORS系统的基准站三角形构网及整合方法
CN112255650A (zh) * 2020-09-24 2021-01-22 北京讯腾智慧科技股份有限公司 一种定位方法、设备,服务终端设备及存储介质
CN113596722A (zh) * 2021-08-04 2021-11-02 武汉攀达时空科技有限公司 一种邻近用户数据产品共享mcbi生成与服务方法
CN113917510A (zh) * 2021-12-15 2022-01-11 腾讯科技(深圳)有限公司 数据处理方法、装置、设备、存储介质及计算机程序产品
US20230026395A1 (en) * 2021-07-24 2023-01-26 Swift Navigation, Inc. System and method for computing positioning protection levels
US11624843B2 (en) 2017-12-14 2023-04-11 Swift Navigation, Inc. Systems and methods for reduced-outlier satellite positioning
US11624838B2 (en) 2020-07-17 2023-04-11 Swift Navigation, Inc. System and method for providing GNSS corrections
US11662478B2 (en) 2020-12-17 2023-05-30 Swift Navigation, Inc. System and method for fusing dead reckoning and GNSS data streams
US11860260B2 (en) 2019-05-01 2024-01-02 Swift Navigation, Inc. Systems and methods for high-integrity satellite positioning
US11860287B2 (en) 2022-03-01 2024-01-02 Swift Navigation, Inc. System and method for detecting outliers in GNSS observations
US11906640B2 (en) 2022-03-01 2024-02-20 Swift Navigation, Inc. System and method for fusing sensor and satellite measurements for positioning determination

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110146908B (zh) * 2019-06-13 2021-06-15 广东星舆科技有限公司 一种虚拟参考站观测数据的生成方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090093959A1 (en) * 2007-10-04 2009-04-09 Trimble Navigation Limited Real-time high accuracy position and orientation system
CN101770033A (zh) * 2010-02-08 2010-07-07 东南大学 连续运行参考站系统站间整周模糊度网络固定方法
CN101943749A (zh) * 2010-09-10 2011-01-12 东南大学 基于星型结构的虚拟参考站网络rtk定位方法
CN102298151A (zh) * 2011-07-20 2011-12-28 东南大学 一种gnss网络差分定位系统中的误差改正方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090093959A1 (en) * 2007-10-04 2009-04-09 Trimble Navigation Limited Real-time high accuracy position and orientation system
CN101770033A (zh) * 2010-02-08 2010-07-07 东南大学 连续运行参考站系统站间整周模糊度网络固定方法
CN101943749A (zh) * 2010-09-10 2011-01-12 东南大学 基于星型结构的虚拟参考站网络rtk定位方法
CN102298151A (zh) * 2011-07-20 2011-12-28 东南大学 一种gnss网络差分定位系统中的误差改正方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
张成军: "虚拟参考站误差分析与算法研究", 《中国优秀博硕士学位论文全文数据库 (硕士) 基础科学辑》 *

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107797126A (zh) * 2017-09-26 2018-03-13 东南大学 基于星型网络的bds/gps广播式网络rtk算法
CN107797126B (zh) * 2017-09-26 2021-02-02 东南大学 基于星型网络的bds/gps广播式网络rtk算法
CN107807373A (zh) * 2017-10-17 2018-03-16 东南大学 基于移动智能终端的gnss高精度定位方法
US11624843B2 (en) 2017-12-14 2023-04-11 Swift Navigation, Inc. Systems and methods for reduced-outlier satellite positioning
CN108345017A (zh) * 2018-01-04 2018-07-31 千寻位置网络有限公司 新的网络rtk大气内插方法
CN108828626A (zh) * 2018-07-02 2018-11-16 中国人民解放军战略支援部队信息工程大学 基于实时网格的网络rtk电离层延迟内插方法及系统
CN108828626B (zh) * 2018-07-02 2020-11-06 中国人民解放军战略支援部队信息工程大学 基于实时网格的网络rtk电离层延迟内插方法及系统
CN111064595A (zh) * 2018-10-17 2020-04-24 千寻位置网络有限公司 选取基线网型并评估服务质量的方法及装置
CN111323748A (zh) * 2018-12-13 2020-06-23 千寻位置网络有限公司 差分定位方法及系统
US11327184B2 (en) 2019-04-23 2022-05-10 Leica Geosystems Ag Providing atmospheric correction data for a GNSS network-RTK system by encoding the data according to a quad-tree hierarchy
EP3730970A1 (en) 2019-04-23 2020-10-28 Leica Geosystems AG Providing atmospheric correction data for a gnss network-rtk system by encoding the data according to a quad-tree hierarchy
US11860260B2 (en) 2019-05-01 2024-01-02 Swift Navigation, Inc. Systems and methods for high-integrity satellite positioning
CN110618438A (zh) * 2019-09-09 2019-12-27 广州市中海达测绘仪器有限公司 大气误差计算方法、装置、计算机设备和存储介质
CN110618438B (zh) * 2019-09-09 2022-05-27 广州市中海达测绘仪器有限公司 大气误差计算方法、装置、计算机设备和存储介质
CN110618435A (zh) * 2019-11-07 2019-12-27 广东星舆科技有限公司 观测数据的生成方法与提高vrs稳定性的电文数据生成方法
CN110618435B (zh) * 2019-11-07 2021-11-23 广东星舆科技有限公司 观测数据的生成方法与提高vrs稳定性的电文数据生成方法
CN111290000A (zh) * 2020-03-05 2020-06-16 东南大学 一种基于误差补偿的多站对流层建模方法
CN111708061A (zh) * 2020-06-04 2020-09-25 东南大学 基于动态格网的多参考站差分定位信息生成方法
CN111885614A (zh) * 2020-06-11 2020-11-03 广州南方卫星导航仪器有限公司 一种cors基站组网方法、装置及存储介质
CN111885614B (zh) * 2020-06-11 2023-04-11 广州南方卫星导航仪器有限公司 一种cors基站组网方法、装置及存储介质
US11624838B2 (en) 2020-07-17 2023-04-11 Swift Navigation, Inc. System and method for providing GNSS corrections
CN111899335B (zh) * 2020-07-29 2022-11-11 昆明理工大学 基于dem的图像生成方法
CN111899335A (zh) * 2020-07-29 2020-11-06 昆明理工大学 一种基于dem的图像生成方法
CN111954226A (zh) * 2020-07-30 2020-11-17 宁波冶金勘察设计研究股份有限公司 基于Delaunay异构CORS系统的基准站三角形构网及整合方法
CN112255650B (zh) * 2020-09-24 2022-04-12 北京讯腾智慧科技股份有限公司 一种定位方法、设备,服务终端设备及存储介质
CN112255650A (zh) * 2020-09-24 2021-01-22 北京讯腾智慧科技股份有限公司 一种定位方法、设备,服务终端设备及存储介质
US11662478B2 (en) 2020-12-17 2023-05-30 Swift Navigation, Inc. System and method for fusing dead reckoning and GNSS data streams
US20230026395A1 (en) * 2021-07-24 2023-01-26 Swift Navigation, Inc. System and method for computing positioning protection levels
US11733397B2 (en) * 2021-07-24 2023-08-22 Swift Navigation, Inc. System and method for computing positioning protection levels
CN113596722A (zh) * 2021-08-04 2021-11-02 武汉攀达时空科技有限公司 一种邻近用户数据产品共享mcbi生成与服务方法
CN113917510A (zh) * 2021-12-15 2022-01-11 腾讯科技(深圳)有限公司 数据处理方法、装置、设备、存储介质及计算机程序产品
US11860287B2 (en) 2022-03-01 2024-01-02 Swift Navigation, Inc. System and method for detecting outliers in GNSS observations
US11906640B2 (en) 2022-03-01 2024-02-20 Swift Navigation, Inc. System and method for fusing sensor and satellite measurements for positioning determination

Also Published As

Publication number Publication date
CN106970404B (zh) 2020-07-17

Similar Documents

Publication Publication Date Title
CN106970404A (zh) 一种基于Delaunay三角网的多冗余网络RTK大气误差内插方法
CN104680008B (zh) 一种基于多参考站的网络rtk区域大气误差建模方法
CN106597499B (zh) 网络rtk双差电离层延迟内插方法及装置
EP3805802A1 (en) Gnss-rtk-based positioning method
CN102298151B (zh) 一种gnss网络差分定位系统中的误差改正方法
CN109917356B (zh) 一种机载激光扫描系统误差标定方法
AU2008300961B2 (en) Method for accuracy estimation of network based corrections for a satellite-aided positioning system
CN108828626B (zh) 基于实时网格的网络rtk电离层延迟内插方法及系统
CN106932788B (zh) 一种gnss参考站网三频解算方法及系统
CN107797126A (zh) 基于星型网络的bds/gps广播式网络rtk算法
CN108363084A (zh) 利用卫星定位的方法和装置、卫星导航接收机、存储介质
CN105738934B (zh) 附加大气信息动态约束的urtk模糊度快速固定方法
CN103176188A (zh) 一种区域地基增强ppp-rtk模糊度单历元固定方法
CN107861131A (zh) 一种斜路径电离层延迟的获取方法及系统
CN107976702A (zh) 一种基于cors的位置修正方法、定位终端及定位系统
CN105372685A (zh) 一种区域高精度位置增强系统及方法
CN113848577A (zh) 一种基于动态分区的大规模gnss网并行解算方法及系统
CN108345017A (zh) 新的网络rtk大气内插方法
CN109143297A (zh) 一种兼容似大地水准面模型的实时网络rtk定位方法
CN109116385A (zh) 一种基于bp神经网络的长距离网络rtk对流层延迟估计方法
CN107121689A (zh) Glonass频间偏差单历元快速估计方法
Krypiak-Gregorczyk et al. Validation of approximation techniques for local total electron content mapping
CN110418361A (zh) 大规模cors网络的多引擎解算与高精度位置服务方法
CN114125699A (zh) 一种利用虚拟基准站进行重构的网络rtk服务方法
CN116626730B (zh) 一种顾及nwp的海上区域cors增强ppp方法

Legal Events

Date Code Title Description
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant