CN106966357A - 一种金纳米粒子对的制备方法 - Google Patents
一种金纳米粒子对的制备方法 Download PDFInfo
- Publication number
- CN106966357A CN106966357A CN201710188281.1A CN201710188281A CN106966357A CN 106966357 A CN106966357 A CN 106966357A CN 201710188281 A CN201710188281 A CN 201710188281A CN 106966357 A CN106966357 A CN 106966357A
- Authority
- CN
- China
- Prior art keywords
- golden nanometer
- nanometer particle
- particle
- substrate
- preparation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82B—NANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
- B82B3/00—Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
- B82B3/0009—Forming specific nanostructures
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82B—NANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
- B82B3/00—Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
- B82B3/0061—Methods for manipulating nanostructures
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Nanotechnology (AREA)
- Manufacturing & Machinery (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
Abstract
本发明公开了一种金纳米粒子对的制备方法,属于纳米技术领域。利用固定在基板上的金纳米粒子捕获悬浮于其周围溶液中的自由金纳米粒子,在基板上连接为金纳米粒子对,后经超声震荡将粒子对从模板上脱离下来。本发明的效果和益处是可以高效的制备出金纳米粒子对,抑制多粒子的团聚。
Description
技术领域
本发明属于纳米技术领域,涉及到贵金属纳米粒子的表面化学修饰和贵金属纳米探针的制备,特别涉及到一种通过硫醇基制备出金纳米粒子对的方法。
背景技术
金纳米粒子具有独特的局部表面等离子体共振效应(Localized surfaceplasmon resonance,LSPR),在紫外-近红外波段展现出强烈的吸收,表现出不同的颜色。其峰值吸收波长取决于粒子自身的结构参数(尺寸、形状、粒子间距)和所处的周围环境。这一特性使得金纳米粒子在生物传感与影像技术领域中得到了大量的应用,例如通过金纳米粒子标记生物小分子进行信号放大(Analyst,2012,137,4712-4719);将金纳米粒子作为探针注入小鼠中显影癌变组织(Science,2012,338,903-910)等。在这些应用中金纳米粒子对探测信号的贡献主要源于其表面增强电场和和特征谱线的红移。单个金纳米粒子的增强效果有限,但是对于两个紧密靠近的粒子,在粒子的间隙处由于其表面等离子体共振耦合作用而产生的增强电场,可对位于其上的生物信息产生强烈增强作用,该特性使得双粒子结构备受关注。在实际应用中,通常以单粒子作为探针,当探针进入生物系统后依靠探针的团聚获得增强,由于粒子团聚的数目具有随机性从而很难获得稳定的增强信号,难于进行定量的分析与应用,使得对结构稳定的粒子对的需求日益迫切,这是因为结构稳定的金粒子对不仅可以获得稳定的增强效果,而且由于尺寸上的优势便于应用到单分子探测中。最初人们通过离子束刻划的方式在硅或玻璃基板上制备间距、粒径均匀的粒子对用于研究其表面等离子体共振耦合,但是该方法无法获得自由移动的粒子对。通过金纳米粒子表面的生物/化学官能团将两个粒子连接在一起是获得自由粒子对的切实有效方法,但是在连接的过程中覆盖在粒子表面的官能团可在全方位角内与其他粒子连接,造成粒子的团聚,而难以高效率的获得粒子对。
发明内容
本发明要解决的技术问题是高效的制备出金纳米粒子对,本发明的目的是提供一种金纳米粒子对的制备方法。
本发明的技术方案:
一种金纳米粒子对的制备方法,利用固定在基板上的金纳米粒子捕获自用悬浮在溶液中的另一个金纳米粒子,两个金纳米粒子连接成的一个粒子对为金纳米粒子对,具体步骤如下:
步骤1:在清洗干净的基板上,生长上一层聚电解质a,其电荷属性为A;
步骤2:在步骤1得到的基板上,将电荷属性为-A且粒径均匀的金纳米粒子B稀疏排列成亚单层膜结构;
步骤3:在步骤2得到的具有亚单层膜结构的基板上,生长一层电荷属性为-A的聚电解质b;
步骤4:对固定在步骤3得到的基板上的金纳米粒子进行表面修饰:在金纳米粒子裸露表面稀疏修饰自由硫醇基,在金纳米粒子其余裸露表面覆盖小分子物质;
步骤5:将粒径均匀的金纳米粒子C的溶液滴到步骤4获得的基板上,并使溶液中的金纳米粒子C与基板上的金纳米粒子充分接触;
步骤6:去除基板表面的溶液,并清洗基板;
步骤7:通过超声震荡将连接好的金纳米粒子对从基板上脱离下来;
在金纳米粒子B所排列的亚单层膜结构中相邻两个金纳米粒子B的中心距离大于金纳米粒子B和金纳米粒子C的粒径之和;
金纳米粒子B和金纳米粒子C的粒径均小于500nm,且金纳米粒子B的粒径小于等于金纳米粒子C的粒径;
在金纳米粒子C上存在可与硫醇基连接的自由表面。
本发明的方法可以高效的制备出金纳米粒子对,抑制多粒子的团聚。
附图说明
图1是制备金纳米粒子对的示意图。
图中:1为在干净的基板上生长上一层聚电解质a,其电荷属性为A;
2为电荷属性为-A,粒径均匀的金纳米粒子在基板上稀疏排列成亚单层膜结构;
3为将电荷属性为-A的聚电解质b覆盖在聚电解质a上;
4为在固定在基板上的金纳米粒子表面稀疏修饰上自由硫醇基,并将金粒子的其余裸露表面以小分子物质覆盖;
5为固定在基板上的金纳米粒子捕获悬浮在溶液中的金纳米粒子;
6为去除基板表面的溶液,并清洗基板;
7为通过超声震荡将连接好的金纳米粒子对从基板上脱离下来。
具体实施方式
以下结合附图和技术方案,进一步说明本发明的具体实施方式。
实施例
一种金纳米粒子对的制备方法,其特征是利用固定在基板上的金纳米粒子捕获自由悬浮在溶液中的金纳米粒子,这样的两个金纳米粒子连接成的一个粒子对为金纳米粒子对,该方法包括以下步骤,
步骤1:在清洗干净的基板上,生长上一层聚电解质a,其电荷属性为A,例如聚阳离子;
步骤2:在步骤1生长有一层聚电解质a的基板上,将电荷属性为-A且粒径40nm的金纳米粒子稀疏排列成亚单层膜结构,两个粒子的中心距离大于100nm;
步骤3:在步骤2得到的具有亚单层膜结构的基板上,生长一层电荷属性为-A的聚电解质b,例如聚阴离子;
步骤4:对固定在步骤3得到的基板上的金纳米粒子进行表面修饰:在金纳米粒子裸露表面稀疏修饰自由硫醇基,例如辛二硫醇,在金纳米粒子其余裸露表面覆盖小分子物质,例如巯基己醇。
步骤5:将粒径50nm的金纳米粒子C溶液滴到步骤4获得的基板上,并使溶液中的粒子与基板上的粒子充分接触,例如晃动基板使溶液中的粒子与基板上的粒子充分接触;
步骤6:去除基板表面的水溶液,并清洗基板;
步骤7:通过超声震荡将连接好的金纳米粒子对从基板上脱离下来。
Claims (5)
1.一种金纳米粒子对的制备方法,利用固定在基板上的金纳米粒子捕获自用悬浮在溶液中的另一个金纳米粒子,两个金纳米粒子连接成的一个粒子对为金纳米粒子对,其特征在于以下步骤,
步骤1:在清洗干净的基板上,生长上一层聚电解质a,其电荷属性为A;
步骤2:在步骤1生长有一层聚电解质a的基板上,将电荷属性为-A且粒径均匀的金纳米粒子B稀疏排列成亚单层膜结构;
步骤3:在步骤2得到的具有亚单层膜结构的基板上,生长一层电荷属性为-A的聚电解质b;
步骤4:对固定在步骤3得到的基板上的金纳米粒子进行表面修饰:在金纳米粒子裸露表面稀疏修饰自由硫醇基,在金纳米粒子其余裸露表面覆盖小分子物质;
步骤5:将粒径均匀的金纳米粒子C的溶液滴到步骤4获得的基板上,并使溶液中的金纳米粒子C与基板上的金纳米粒子充分接触;
步骤6:去除基板表面的溶液,并清洗基板;
步骤7:通过超声震荡将连接好的金纳米粒子对从基板上脱离下来。
2.根据权利要求1所述的制备方法,其特征在于,金纳米粒子B所排列的亚单层膜结构中相邻两个金纳米粒子B的中心距离大于金纳米粒子B和金纳米粒子C的粒径之和。
3.根据权利要求1或2所述的制备方法,其特征在于,所述的金纳米粒子B和金纳米粒子C的粒径均小于500nm,且金纳米粒子B的粒径小于等于金纳米粒子C的粒径。
4.根据权利要求1或2所述的制备方法,其特征在于,所述的金纳米粒子C上存在与硫醇基连接的自由表面。
5.根据权利要求3所述的制备方法,其特征在于,所述的金纳米粒子C上存在与硫醇基连接的自由表面。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710188281.1A CN106966357B (zh) | 2017-03-27 | 2017-03-27 | 一种金纳米粒子对的制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710188281.1A CN106966357B (zh) | 2017-03-27 | 2017-03-27 | 一种金纳米粒子对的制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106966357A true CN106966357A (zh) | 2017-07-21 |
CN106966357B CN106966357B (zh) | 2019-02-01 |
Family
ID=59335491
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710188281.1A Expired - Fee Related CN106966357B (zh) | 2017-03-27 | 2017-03-27 | 一种金纳米粒子对的制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106966357B (zh) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090256116A1 (en) * | 2008-03-26 | 2009-10-15 | Shumaker-Parry Jennifer S | Asymmetrically Functionalized NanoParticles |
CN102382815A (zh) * | 2011-09-15 | 2012-03-21 | 王利兵 | 一种二元等离子纳米粒子位点特异性自组装的方法 |
CN102556959A (zh) * | 2011-12-30 | 2012-07-11 | 中国科学院苏州纳米技术与纳米仿生研究所 | 一种金属纳米颗粒二聚体的制备方法 |
CN102672197A (zh) * | 2012-05-29 | 2012-09-19 | 江南大学 | 一种多用途的等离子的金纳米粒子膜的制备方法 |
CN102828176A (zh) * | 2012-07-31 | 2012-12-19 | 东南大学 | 一种制备均匀金纳米颗粒薄膜的方法 |
US20140077121A1 (en) * | 2012-09-18 | 2014-03-20 | Uchicago Argonne, Llc | Generic Approach for Synthesizing Asymmetric Nanoparticles and Nanoassemblies |
CN104342155A (zh) * | 2014-10-13 | 2015-02-11 | 江南大学 | 一种同时具有荧光及磁性和手性信号的金字塔组装结构的制备方法 |
-
2017
- 2017-03-27 CN CN201710188281.1A patent/CN106966357B/zh not_active Expired - Fee Related
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090256116A1 (en) * | 2008-03-26 | 2009-10-15 | Shumaker-Parry Jennifer S | Asymmetrically Functionalized NanoParticles |
CN102382815A (zh) * | 2011-09-15 | 2012-03-21 | 王利兵 | 一种二元等离子纳米粒子位点特异性自组装的方法 |
CN102556959A (zh) * | 2011-12-30 | 2012-07-11 | 中国科学院苏州纳米技术与纳米仿生研究所 | 一种金属纳米颗粒二聚体的制备方法 |
CN102672197A (zh) * | 2012-05-29 | 2012-09-19 | 江南大学 | 一种多用途的等离子的金纳米粒子膜的制备方法 |
CN102828176A (zh) * | 2012-07-31 | 2012-12-19 | 东南大学 | 一种制备均匀金纳米颗粒薄膜的方法 |
US20140077121A1 (en) * | 2012-09-18 | 2014-03-20 | Uchicago Argonne, Llc | Generic Approach for Synthesizing Asymmetric Nanoparticles and Nanoassemblies |
CN104342155A (zh) * | 2014-10-13 | 2015-02-11 | 江南大学 | 一种同时具有荧光及磁性和手性信号的金字塔组装结构的制备方法 |
Non-Patent Citations (3)
Title |
---|
MATHEW M. MAYE等: "Stepwise surface encoding for high-throughput assembly of nanoclusters", 《NATURE MATERIALS》 * |
YUANHUI ZHENG等: "Asymmetric gold nanodimer arrays: electrostatic self-assembly and SERS activity", 《JOURNAL OF MATERIALS CHEMISTRY A》 * |
YURI DIAZ FERNANDEZ等: "Research update: progress in synthesis of nanoparticle dimers by self-assembly", 《APL MATERIALS》 * |
Also Published As
Publication number | Publication date |
---|---|
CN106966357B (zh) | 2019-02-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Yang et al. | Fabrication of semiconductor ZnO nanostructures for versatile SERS application | |
Song et al. | Alkyne-functionalized superstable graphitic silver nanoparticles for Raman imaging | |
Gao et al. | Substrate atomic-termination-induced anisotropic growth of ZnO nanowires/nanorods by the VLS process | |
Brinson et al. | Nanoshells made easy: improving Au layer growth on nanoparticle surfaces | |
Lee et al. | Particle-on-film gap plasmons on antireflective ZnO nanocone arrays for molecular-level surface-enhanced Raman scattering sensors | |
Huang et al. | 3D Ag/ZnO hybrids for sensitive surface-enhanced Raman scattering detection | |
CN105556290A (zh) | 表面增强拉曼光谱的基底及其制备方法 | |
CN106404738B (zh) | 一种氧化石墨烯/银纳米颗粒/金字塔形硅三维拉曼增强基底及制备方法和应用 | |
Xu et al. | Synthesis of the 3D AgNF/AgNP arrays for the paper-based surface enhancement Raman scattering application | |
CN110039068A (zh) | 一种海胆状金纳米颗粒及其合成方法 | |
CN102530828A (zh) | 基于碳纳米管阵列和金属纳米颗粒的表面增强拉曼散射活性基底 | |
Liu et al. | Mussel-inspired fabrication of SERS swabs for highly sensitive and conformal rapid detection of thiram bactericides | |
CN109781705A (zh) | 一种高通量、超灵敏检测的点阵阵列增强芯片 | |
Tang et al. | Seed-mediated electroless deposition of gold nanoparticles for highly uniform and efficient SERS enhancement | |
Wang et al. | ZnO nanorods decorated with Ag nanoflowers as a recyclable SERS substrate for rapid detection of pesticide residue in multiple-scenes | |
Zhang et al. | Plasmonic structure with nanocavity cavities for SERS detection of pesticide thiram | |
Luo et al. | A broadband photodetector based on PbS quantum dots and graphene with high responsivity and detectivity | |
Sun et al. | A novel 3D hierarchical plasmonic functional Cu@ Co3O4@ Ag array as intelligent SERS sensing platform with trace droplet rapid detection ability for pesticide residue detection on fruits and vegetables | |
Sun et al. | AAO template-assisted fabrication of ordered Ag nanoparticles-decorated Au nanotubes array for surface-enhanced Raman scattering detection | |
Men et al. | Wafer-scale hierarchical nanopillar arrays based on Au masks and reactive ion etching for effective 3D SERS substrate | |
Kumari et al. | Nano-engineered surface comprising metallic dendrites for biomolecular analysis in clinical perspective | |
Shao et al. | Three-Dimensional Dendritic Au–Ag Substrate for On-Site SERS Detection of Trace Molecules in Liquid Phase | |
CN104777135B (zh) | 一种全波长局域等离子体谐振传感器及其制备方法 | |
Tan et al. | Anti-reflectance optimization of secondary nanostructured black silicon grown on micro-structured arrays | |
Jin et al. | SERS-active silver nanoparticle assemblies on branched Cu 2 O crystals through controlled galvanic replacement |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20190201 |
|
CF01 | Termination of patent right due to non-payment of annual fee |