CN106963980B - 一种壳聚糖-二氧化硅纳米杂化材料的制备方法与应用 - Google Patents

一种壳聚糖-二氧化硅纳米杂化材料的制备方法与应用 Download PDF

Info

Publication number
CN106963980B
CN106963980B CN201710247766.3A CN201710247766A CN106963980B CN 106963980 B CN106963980 B CN 106963980B CN 201710247766 A CN201710247766 A CN 201710247766A CN 106963980 B CN106963980 B CN 106963980B
Authority
CN
China
Prior art keywords
chitosan
solution
hybrid material
acid
silicon dioxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710247766.3A
Other languages
English (en)
Other versions
CN106963980A (zh
Inventor
赵娜如
梁锦宁
董怡帆
吴刚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN201710247766.3A priority Critical patent/CN106963980B/zh
Publication of CN106963980A publication Critical patent/CN106963980A/zh
Application granted granted Critical
Publication of CN106963980B publication Critical patent/CN106963980B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/20Polysaccharides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/025Other specific inorganic materials not covered by A61L27/04 - A61L27/12
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/58Materials at least partially resorbable by the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/02Materials or treatment for tissue regeneration for reconstruction of bones; weight-bearing implants

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Transplantation (AREA)
  • Dermatology (AREA)
  • Medicinal Chemistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Inorganic Chemistry (AREA)
  • Materials For Medical Uses (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明公开了一种壳聚糖‑二氧化硅纳米杂化材料的制备方法与应用,制备步骤如下:壳聚糖与硅烷偶联剂在酸溶液中反应,得到壳聚糖与硅烷偶联剂产生共价键结合的中间体溶液;正硅酸乙酯在酸溶液中水解生成二氧化硅前驱体溶液,与壳聚糖‑硅烷偶联剂中间体溶液混合,搅拌均匀后真空脱泡,然后将混合溶液倒入模具中,静置一段时间生成凝胶,凝胶干燥固化后得到杂化材料,用碱溶液处理材料以除去其中的酸,然后用超纯水洗至中性,干燥后制得壳聚糖‑二氧化硅纳米杂化材料。本发明材料具有高强度、韧性好的特点,本发明制备工艺简单易操作,材料来源广泛,材料的力学性能好,生物活性高,在再生医学和骨修复领域的应用前景广阔。

Description

一种壳聚糖-二氧化硅纳米杂化材料的制备方法与应用
技术领域
本发明涉及生物医用材料领域,尤其是指一种高强度壳聚糖-二氧化硅纳米杂化材料的制备方法与应用。
背景技术
再生医学和组织工程是治疗组织创伤和缺损的有效方法,其关键是开发具有优异力学性能且具有生物相容性的支架材料,特别是骨组织工程对支架材料的力学性能和韧性提出更高的要求。然而,包括生物活性玻璃、生物陶瓷、聚合物和传统复合材料在内的现有材料不能满足用于骨修复材料的所有要求。近年来,有机-无机杂化材料由于具有产生高性能材料的潜力而吸引了研究者的兴趣。杂化材料是一种特殊的有机-无机复合材料,其有机和无机组分在分子水平上相互作用,有机和无机组分之间纳米尺度的精细分散导致材料表现为单相,材料结合了两种组分的优点,杂化材料的性质可以在无机物和聚合物的性质之间调整,以适应临床应用的综合要求。因此,有机-无机杂化材料在骨修复中有着诱人的应用前景。
壳聚糖是天然存在的几丁质的衍生物,有很好的生物可降解性,其降解产物与氨基葡萄糖结构相似,对人体组织无毒、无害,可被人体吸收,因此壳聚糖具有优异的生物相容性。壳聚糖在吸收植入材料方面的应用的研究报道较多,但这些研究主要集中在一维线材(如手术缝线)或二维的薄膜(如人工皮肤)等,壳聚糖作为三维植入材料多应用于水凝胶,这些线材、薄膜和水凝胶力学强度低,与骨的力学性能不匹配,因此,单纯的壳聚糖作为材料的应用受到限制。
二氧化硅具有良好的生物相容性,能够与骨形成牢固的化学结合,并使修复点位迅速再生。最新的研究表明,二氧化硅释放的的Si离子能从基因层面上激活组织的修复作用,能够激发骨祖细胞进入细胞周期的活性阶段(从G1期进入S期),使细胞分裂并合成可矿化成骨的细胞外基质。二氧化硅脆性大的缺点限制了其应用,将二氧化硅和壳聚糖制成杂化材料,可以得到性能优异的新型材料,有望能够成功应用于再生医学和骨修复中。
发明内容
本发明的目的在于克服现有技术的缺点和不足,提供了一种具有高力学强度、可生物降解、可吸收、能促进骨组织修复的壳聚糖-二氧化硅纳米杂化材料的制备方法与应用。
为实现上述目的,本发明所提供的技术方案为:一种壳聚糖-二氧化硅纳米杂化材料的制备方法,利用壳聚糖的阳离子高分子的特性,与带负电荷的二氧化硅产生电荷相互作用,以及硅烷偶联剂在有机-无机网络间产生共价键连接,用溶胶-凝胶法生成壳聚糖-二氧化硅纳米分散体系,从而形成具有有机-无机互穿网络结构的杂化材料;其具体包括以下步骤:
1)将壳聚糖粉末加入到酸溶液中,搅拌待其充分溶解,过滤除去不溶物后得到壳聚糖溶液;其中,所述酸溶液为醋酸、乳酸、乙醇酸或丙烯酸的水溶液;
2)将硅烷偶联剂加入壳聚糖溶液中,反应1~120h,得到壳聚糖-硅烷偶联剂溶液,所述硅烷偶联剂为含环氧基、异氰酸酯基、氨基、烯基的硅氧烷;
3)正硅酸乙酯在酸溶液中搅拌1~4h使其水解,得到透明澄清的溶液;其中,所述酸溶液为盐酸、硝酸、醋酸、乳酸、乙醇酸或丙烯酸的水溶液;
4)将壳聚糖-硅烷偶联剂溶液加入到步骤3)得到的透明澄清的溶液中,搅拌均匀,真空脱泡,得到混合溶液;
5)将步骤4)的混合溶液倒入模具中,静置1~7d,生成凝胶,将凝胶从模具中倒出,放入恒温恒湿箱中养护4~28d,得到透明致密的固体材料;
6)将步骤5)的材料用碱溶液处理以中和材料中的酸;
7)将碱液处理后的材料用超纯水浸泡至中性,然后在烘箱中烘干,得到壳聚糖-二氧化硅纳米杂化材料。
在步骤1)中,所述壳聚糖粉末的粘均分子量为20~200万,脱乙酰度为75~100%;所述壳聚糖溶液的质量分数为3~10%。
在步骤2)中,所述硅烷偶联剂的用量为壳聚糖单体单元的物质的量的0~100%。
在步骤3)中,所述酸溶液的摩尔浓度为0.01~5mol/L。
在步骤5)中,所述养护是在温度为15~40℃,湿度为30%~80%的恒温恒湿箱中静置。
在步骤6)中,所述碱溶液为氢氧化钠、氢氧化钾、碳酸钠、碳酸钾、磷酸氢二钠、磷酸氢二钾或三羟甲基氨基甲烷的水溶液,其摩尔浓度为0.1~5mol/L。
在步骤7)中,所述壳聚糖-二氧化硅纳米杂化材料当中的壳聚糖质量为杂化材料总质量的30~80%。
在步骤7)中,所述烘干温度为30~50℃。
上述制得的壳聚糖-二氧化硅纳米杂化材料用作骨缺损修复材料。
本发明与现有技术相比,具有如下优点与有益效果:
1、本发明利用了壳聚糖具有阳离子高分子的特性,与带负电荷的二氧化硅产生正负电荷相互作用,以及硅烷偶联剂在有机-无机网络间产生共价键连接,用溶胶-凝胶法生成壳聚糖-二氧化硅纳米分散体系,从而形成具有有机-无机互穿网络结构的杂化材料,材料具有强度高、韧性好的特点。
2、本发明制备工艺简单易操作,材料来源广泛,材料的力学性能好,生物活性高,在再生医学和骨修复领域的应用前景广阔。
附图说明
图1是本发明实施例4的壳聚糖-二氧化硅纳米杂化材料的透射电子显微镜照片(超薄切片法)。
具体实施方式
下面结合具体实施例对本发明作进一步说明。
实施例1
称取7g壳聚糖粉末(脱乙酰度75%,粘均分子量20万)溶于93g 3.5%(v/v)稀醋酸水溶液中,制成壳聚糖溶液备用。称取5.39gγ-(2,3-环氧丙氧)丙基三甲氧基硅烷加入到壳聚糖溶液中,23℃水浴中搅拌反应120h。称取19.8g正硅酸乙酯加入到16.8mL 5mol/L的乙酸溶液中搅拌4h使其水解,往水解液中加入100g壳聚糖-硅烷偶联剂溶液,搅拌均匀,真空脱泡,混合液注入模具中,静置48h,形成凝胶。将模具中的凝胶取出,放入温度为15℃、相对湿度为30%的恒温恒湿箱中养护7d,得到透明致密的固体。将该固体浸入500mL 5mol/L的三羟甲基氨基甲烷水溶液中,24h后取出,用超纯水浸泡至中性,在40℃烘箱中烘干。测试壳聚糖-二氧化硅纳米杂化材料的压缩强度、压缩模量及压缩应变率,结果见表1。
实施例2
称取3g壳聚糖粉末(脱乙酰度100%,粘均分子量100万)溶于97g 1.5%(v/v)乳酸水溶液中,制成壳聚糖溶液备用。称取1.20gγ-异氰酸酯丙基三甲氧基硅烷加入到壳聚糖溶液中,23℃水浴中搅拌反应1h。称取12.1g正硅酸乙酯加入到16.8mL 1mol/L的乳酸溶液中搅拌4h使其水解,往水解液中加入100g壳聚糖-硅烷偶联剂溶液,,搅拌均匀,真空脱泡,混合液注入模具中,静置48h,形成凝胶。将模具中的凝胶取出,放入温度为40℃、相对湿度为80%的恒温恒湿箱中养护28d,得到透明致密的固体。将该固体浸入500mL 0.1mol/L的氢氧化钠水溶液中,24h后取出,用超纯水浸泡至中性,在50℃烘箱中烘干。测试壳聚糖-二氧化硅纳米杂化材料的压缩强度、压缩模量及压缩应变率,结果见表1。
实施例3
称取10g壳聚糖粉末(脱乙酰度90%,粘均分子量47万)溶于90g 5%(v/v)乙醇酸水溶液中,制成壳聚糖溶液备用。称取26.4g正硅酸乙酯加入到1mol/L的乙醇酸溶液中搅拌4h使其水解。往溶液中加入100g质量分数为10%的壳聚糖溶液,搅拌均匀,真空脱泡,混合液注入模具中,静置48h,形成凝胶。将模具中的凝胶取出,放入温度为23℃、相对湿度为50%的恒温恒湿箱中养护3d,得到透明致密的固体。将该固体浸入500mL 1mol/L的三羟甲基氨基甲烷水溶液中,24h后取出,用超纯水浸泡至中性,在30℃烘箱中烘干。测试壳聚糖-二氧化硅纳米杂化材料的压缩强度、压缩模量及压缩应变率,结果见表1。
实施例4
称取7g壳聚糖粉末(脱乙酰度90%,粘均分子量47万)溶于93g 3.5%(v/v)丙烯酸水溶液中,制成壳聚糖溶液备用。称取16.2g正硅酸乙酯加入到16.8mL0.1mol/L的盐酸溶液中搅拌4h使其水解。往溶液中加入100g质量分数为7%的壳聚糖溶液,搅拌均匀,真空脱泡,混合液注入模具中,静置48h,形成凝胶。将模具中的凝胶取出,放入温度为23℃、相对湿度为50%恒温恒湿箱中养护7d,得到透明致密的固体。将该固体浸入500mL 1mol/L的磷酸氢二钠水溶液中,24h后取出,用超纯水浸泡至中性,在30℃烘箱中烘干。测试壳聚糖-二氧化硅纳米杂化材料的压缩强度、压缩模量及压缩应变率,结果见表1。
参见图1所示,为本实施例的壳聚糖-二氧化硅纳米杂化材料的透射电子显微镜照片(超薄切片法),图中比例尺为200纳米,从图1可以看出二氧化硅纳米粒子在壳聚糖基体中的均匀分散。
实施例5
称取7g壳聚糖粉末溶于93g 3.5%(v/v)稀醋酸水溶液中,制成壳聚糖溶液备用。称取10.4g正硅酸乙酯加入到16.8mL 3.5%(v/v)的硝酸溶液中搅拌4h使其水解。往溶液中加入100g质量分数为7%的壳聚糖溶液,搅拌均匀,真空脱泡,混合液注入模具中,静置48h,形成凝胶。将模具中的凝胶取出,放入恒温恒湿箱中养护7d,得到透明致密的固体。将该固体浸入500mL 1mol/L的磷酸氢二钾水溶液中,24h后取出,用超纯水浸泡至中性,在40℃烘箱中烘干。测试壳聚糖-二氧化硅纳米杂化材料的压缩强度、压缩模量及压缩应变率,结果见表1。
表1壳聚糖-二氧化硅纳米杂化材料的力学性能
以上所述之实施例子只为本发明之较佳实施例,并非以此限制本发明的实施范围,故凡依本发明之形状、原理所作的变化,均应涵盖在本发明的保护范围内。

Claims (7)

1.一种壳聚糖-二氧化硅纳米杂化材料的制备方法,其特征在于:利用壳聚糖的阳离子高分子的特性,与带负电荷的二氧化硅产生电荷相互作用,以及硅烷偶联剂在有机-无机网络间产生共价键连接,用溶胶-凝胶法原位生成壳聚糖-二氧化硅纳米杂化分散体系,从而形成有机-无机互穿网络结构;其具体包括以下步骤:
1)将壳聚糖粉末加入到酸溶液中,搅拌待其充分溶解,过滤除去不溶物后得到壳聚糖溶液;其中,所述酸溶液为乙酸、乳酸、乙醇酸或丙烯酸的水溶液;
2)将硅烷偶联剂加入壳聚糖溶液中,反应1~120h,得到壳聚糖-硅烷偶联剂溶液,所述硅烷偶联剂为含环氧基、异氰酸酯基、氨基、烯基的硅氧烷;
3)正硅酸乙酯在酸溶液中搅拌1~4h使其水解,得到透明澄清的溶液;其中,所述酸溶液为盐酸、硝酸、乙酸、乳酸、乙醇酸或丙烯酸的水溶液;
4)将壳聚糖-硅烷偶联剂溶液加入到步骤3)得到的透明澄清的溶液中,搅拌均匀,真空脱泡,得到混合溶液;
5)将步骤4)的混合溶液倒入模具中,静置1~7d,生成凝胶,将凝胶从模具中倒出,放入恒温恒湿箱中养护4~28d,得到透明致密的固体材料;
6)将步骤5)的材料浸泡于碱溶液中以中和材料中的酸;
7)将碱液浸泡后的材料用超纯水浸泡至中性,然后在烘箱中烘干,得到浅黄色透明的壳聚糖-二氧化硅纳米杂化材料。
2.根据权利要求1所述的一种壳聚糖-二氧化硅纳米杂化材料的制备方法,其特征在于:在步骤1)中,所述壳聚糖粉末的粘均分子量为20~200万,脱乙酰度为75~100%;所述壳聚糖溶液的质量分数为3~10%。
3.根据权利要求1所述的一种壳聚糖-二氧化硅纳米杂化材料的制备方法,其特征在于:在步骤3)中,所述酸溶液的摩尔浓度为0.01~5mol/L。
4.根据权利要求1所述的一种壳聚糖-二氧化硅纳米杂化材料的制备方法,其特征在于:在步骤5)中,所述养护是在温度为15~45℃,湿度为30%~80%的恒温恒湿箱中静置。
5.根据权利要求1所述的一种壳聚糖-二氧化硅纳米杂化材料的制备方法,其特征在于:在步骤6)中,所述碱溶液为氢氧化钠、氢氧化钾、碳酸钠、碳酸钾、磷酸氢二钠、磷酸氢二钾或三羟甲基氨基甲烷的水溶液,其摩尔浓度为0.1~5mol/L。
6.根据权利要求1所述的一种壳聚糖-二氧化硅纳米杂化材料的制备方法,其特征在于:在步骤7)中,所述壳聚糖-二氧化硅纳米杂化材料当中的壳聚糖质量为杂化材料总质量的30~80%。
7.根据权利要求1所述的一种壳聚糖-二氧化硅纳米杂化材料的制备方法,其特征在于:在步骤7)中,所述烘干温度为30~50℃。
CN201710247766.3A 2017-04-17 2017-04-17 一种壳聚糖-二氧化硅纳米杂化材料的制备方法与应用 Active CN106963980B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710247766.3A CN106963980B (zh) 2017-04-17 2017-04-17 一种壳聚糖-二氧化硅纳米杂化材料的制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710247766.3A CN106963980B (zh) 2017-04-17 2017-04-17 一种壳聚糖-二氧化硅纳米杂化材料的制备方法与应用

Publications (2)

Publication Number Publication Date
CN106963980A CN106963980A (zh) 2017-07-21
CN106963980B true CN106963980B (zh) 2020-01-14

Family

ID=59332917

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710247766.3A Active CN106963980B (zh) 2017-04-17 2017-04-17 一种壳聚糖-二氧化硅纳米杂化材料的制备方法与应用

Country Status (1)

Country Link
CN (1) CN106963980B (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107661540B (zh) * 2017-10-31 2020-12-22 华南理工大学 一种利用3d打印制备高强度羟基磷灰石-壳聚糖-二氧化硅杂化支架的方法
CN108525012A (zh) * 2018-03-13 2018-09-14 华南理工大学 一种骨软骨一体化修复梯度杂化支架材料及其制备方法
CN108653795B (zh) * 2018-04-26 2020-04-17 东华大学 一种载药高强医用缝合线的制备方法
CN110507847A (zh) * 2019-09-04 2019-11-29 中国科学院海洋研究所 一种用于创伤修复的有机-无机杂化敷料及其制备方法和应用
CN111411509B (zh) * 2020-05-08 2022-10-04 安徽省农业科学院棉花研究所 一种纳米壳聚糖修饰棉纤维及其制备方法
CN114524978B (zh) * 2021-12-20 2023-04-21 华南理工大学 一种壳聚糖/二氧化硅纳米杂化材料及其仿生矿化制备方法与应用
CN114467972A (zh) * 2022-03-01 2022-05-13 生态环境部华南环境科学研究所 一种壳聚糖负载氧化硅叶面调控剂及其制备方法和应用
CN115403680B (zh) * 2022-08-24 2023-03-21 华南理工大学 一种纳米二氧化硅/壳聚糖杂化材料负载型防老剂及其制备与应用
CN115505143A (zh) * 2022-11-04 2022-12-23 上海交通大学医学院附属第九人民医院 一种温敏杂化水凝胶的制备方法及其应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101671445A (zh) * 2009-09-30 2010-03-17 浙江理工大学 制备壳聚糖/二氧化硅杂化阻隔性包装复合薄膜的方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8114464B2 (en) * 2006-03-24 2012-02-14 Stc.Unm Hybrid thin films that incorporate lamellar phospholipid layer assemblies and transmembrane proteins
JP6432983B2 (ja) * 2015-03-31 2018-12-05 株式会社松風 医科歯科用硬化性組成物

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101671445A (zh) * 2009-09-30 2010-03-17 浙江理工大学 制备壳聚糖/二氧化硅杂化阻隔性包装复合薄膜的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
壳聚糖基有机-无机杂化膜的制备及其应用性能研究;何雪梅;《中国博士学位论文全文数据库 工程科技Ⅰ辑》;20140831;第31-34页 *

Also Published As

Publication number Publication date
CN106963980A (zh) 2017-07-21

Similar Documents

Publication Publication Date Title
CN106963980B (zh) 一种壳聚糖-二氧化硅纳米杂化材料的制备方法与应用
Deepthi et al. An overview of chitin or chitosan/nano ceramic composite scaffolds for bone tissue engineering
Zheng et al. Sequentially-crosslinked biomimetic bioactive glass/gelatin methacryloyl composites hydrogels for bone regeneration
Boyer et al. Laponite nanoparticle-associated silated hydroxypropylmethyl cellulose as an injectable reinforced interpenetrating network hydrogel for cartilage tissue engineering
Unnithan et al. A unique scaffold for bone tissue engineering: An osteogenic combination of graphene oxide–hyaluronic acid–chitosan with simvastatin
Ma et al. Synthesis and characterization of injectable self-healing hydrogels based on oxidized alginate-hybrid-hydroxyapatite nanoparticles and carboxymethyl chitosan
Abolghasemzade et al. PVA based nanofiber containing CQDs modified with silica NPs and silk fibroin accelerates wound healing in a rat model
Dash et al. Ulvan-chitosan polyelectrolyte complexes as matrices for enzyme induced biomimetic mineralization
CN107814981B (zh) 一种壳聚糖水凝胶敷料及其制备方法
Vueva et al. Silica/alginate hybrid biomaterials and assessment of their covalent coupling
CN106009003B (zh) 一种基于聚多糖的可注射自修复水凝胶、制备方法及其在生物组织工程方面的应用
CN102380128B (zh) 羟基磷灰石、透明质酸钠和魔芋葡甘聚糖复合材料及其制备方法
CN105288702B (zh) 一种无细胞多糖真皮基质材料及其制备方法和应用
CN107661540B (zh) 一种利用3d打印制备高强度羟基磷灰石-壳聚糖-二氧化硅杂化支架的方法
Khan et al. Bioactive scaffold (sodium alginate)-g-(nHAp@ SiO2@ GO) for bone tissue engineering
Kim et al. Biocompatible and biodegradable triboelectric nanogenerators based on hyaluronic acid hydrogel film
CN102634042A (zh) 一种具有生物活性的聚乙烯醇复合水凝胶及其制备方法
CN109158058B (zh) 凹土-壳聚糖复合凝胶及其制备方法
CN107233626B (zh) 一种海藻酸-多巴胺/纳米羟基磷灰石复合支架的制备方法
Chen et al. Mineralized self-assembled silk fibroin/cellulose interpenetrating network aerogel for bone tissue engineering
CN103386150B (zh) 葡甘聚糖/壳聚糖引导组织再生复合膜的制备方法和应用
KR20200036664A (ko) 히알루론산-실크 피브로인 복합 하이드로젤 및 이의 제조 방법
Ruan et al. Assembly of layered monetite-chitosan nanocomposite and its transition to organized hydroxyapatite
Martins et al. In vitro degradation of chitosan composite foams for biomedical applications and effect of bioactive glass as a crosslinker
Liu et al. K+/Sr2+/Na+ triple-doped hydroxyapatites/GelMA composite hydrogel scaffold for the repair of bone defects

Legal Events

Date Code Title Description
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant