CN106955741A - 一种高强度海藻酸铜气溶胶催化剂的制备方法 - Google Patents

一种高强度海藻酸铜气溶胶催化剂的制备方法 Download PDF

Info

Publication number
CN106955741A
CN106955741A CN201710234701.5A CN201710234701A CN106955741A CN 106955741 A CN106955741 A CN 106955741A CN 201710234701 A CN201710234701 A CN 201710234701A CN 106955741 A CN106955741 A CN 106955741A
Authority
CN
China
Prior art keywords
aerosol
preparation
alginic acid
strength
catalytic agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710234701.5A
Other languages
English (en)
Inventor
史丰炜
单聪
王连旭
李忠序
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changchun University of Technology
Original Assignee
Changchun University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changchun University of Technology filed Critical Changchun University of Technology
Priority to CN201710234701.5A priority Critical patent/CN106955741A/zh
Publication of CN106955741A publication Critical patent/CN106955741A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/06Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing polymers
    • B01J31/069Hybrid organic-inorganic polymers, e.g. silica derivatized with organic groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C37/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring
    • C07C37/60Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by oxidation reactions introducing directly hydroxy groups on a =CH-group belonging to a six-membered aromatic ring with the aid of other oxidants than molecular oxygen or their mixtures with molecular oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/28Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/24Homopolymers or copolymers of amides or imides
    • C08L33/26Homopolymers or copolymers of acrylamide or methacrylamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L5/00Compositions of polysaccharides or of their derivatives not provided for in groups C08L1/00 or C08L3/00
    • C08L5/04Alginic acid; Derivatives thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/70Oxidation reactions, e.g. epoxidation, (di)hydroxylation, dehydrogenation and analogues
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/04Foams characterised by the foaming process characterised by the elimination of a liquid or solid component, e.g. precipitation, leaching out, evaporation
    • C08J2201/048Elimination of a frozen liquid phase
    • C08J2201/0484Elimination of a frozen liquid phase the liquid phase being aqueous
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2205/00Foams characterised by their properties
    • C08J2205/02Foams characterised by their properties the finished foam itself being a gel or a gel being temporarily formed when processing the foamable composition
    • C08J2205/026Aerogel, i.e. a supercritically dried gel
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2305/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2301/00 or C08J2303/00
    • C08J2305/04Alginic acid; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/24Homopolymers or copolymers of amides or imides
    • C08J2333/26Homopolymers or copolymers of acrylamide or methacrylamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2405/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2401/00 or C08J2403/00
    • C08J2405/04Alginic acid; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/14Applications used for foams

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明公开了一种高强度海藻酸铜气溶胶催化剂的制备方法,引入有机聚合物形成双网络结构,增加金属海藻酸铜气溶胶的机械性能。采用增强体石墨烯进一步增强双网络结构气溶胶机械强度。包括:在蒸馏水中加入石墨烯,超声至分散均匀,再加入有机增强体聚丙烯酰胺和海藻酸钠,加水机械搅拌至均匀粘稠状,将所得粘稠状液体滴入模具,浸入在金属铜溶液中恒温反应。之后进行冷冻干燥,即得成品。本发明制备的海藻酸铜气溶胶催化剂的机械性能大幅提高。

Description

一种高强度海藻酸铜气溶胶催化剂的制备方法
技术领域
本发明涉及一种高强度海藻酸铜气溶胶催化剂的制备方法。
背景技术
海藻酸盐是从褐藻中提取的高分子化合物,是由β-D-甘露糖醛酸(M 单元)与α -L-古罗糖醛酸(G单元)依靠 1,4-糖苷键连接,并由不同 GGG、MMM片段组成的线性多聚糖。它是唯一一种可在室温下溶于水而形成水溶胶的多糖,其线型长分子链近似于纯聚糖醛酸的分子链。
海藻酸盐广泛应用于食品、医药、纺织、印染、造纸、日用化工等产品,作为增稠剂、乳化剂、稳定剂、粘合剂、上浆剂等。
天然多糖海藻酸盐对于金属的良好吸附性能为其成为金属催化剂载体提供了条件。同时,金属海藻酸盐气溶胶具有较高的比表面积,可以有效的克服水溶胶和干凝胶无孔和比表面积低的不足,增加催化反应活性。然而,海藻酸盐气溶胶催化剂的机械性能,尤其是抗压强度比较低,这大大限制了其在工业催化领域及运输储存方面的应用。
石墨烯作为目前发现的最薄、强度最大、导电导热性能最好的一种新型纳米材料,被称为“黑金”,是“新材料之王”。科学家甚至预言石墨烯将彻底改变21世纪。极有可能掀起一场席卷全球的颠覆性新技术新产业革命。作为人类已知强度最高的材料,石墨烯比世界上强度最高的钢铁高100多倍。研究发现,在石墨烯样品碎裂前,每100纳米可承受的最大压力达2.9微牛左右。根据实验结果,可测算出要使1微米的石墨烯断裂,至少需要施加55牛的力。近年来,石墨烯被广泛应用于功能材料的增强材料,科研人员发现,少量添加石墨烯就可以有效增加功能材料的机械强度。
聚丙烯酰胺本身的网络结构使得其成为了很多双网络结构的构成组分之一,已用于很多双网络结构的增强。有机增强体和氧化石墨烯可以对天然多糖海藻酸铜交联结构进行增强,得到双网络结构海藻酸铜水溶胶,再通过冷冻干燥手段,制备具有不同双网络结构的多孔金属海藻酸铜气溶胶。因此,我们考虑采用有机聚合物与海藻酸铜构成双网络结构的水溶胶制备气溶胶,来提高海藻酸铜气溶胶的机械性能。为了进一步提高气溶胶的颗粒强度,采用氧化石墨烯对聚丙烯酰胺和天然多糖海藻酸铜交联的双网络结构进行增强。石墨烯增强后的海藻酸铜气溶胶催化剂具有良好的机械强度。
发明内容
1.本发明的目的是,从分子设计的角度出发,采用有机增强体和氧化石墨烯对天然多糖海藻酸铜交联结构进行增强,得到双网络结构海藻酸铜水溶胶,再通过冷冻干燥手段,制备具有不同双网络结构的多孔金属海藻酸铜气溶胶。克服海藻酸铜气溶胶催化剂的机械性能低的缺点。
高强度海藻酸铜气溶胶的制备步骤如下:
第一步,把50-400 mg氧化石墨烯溶于30 ml蒸馏水中,经超声处理10 min,使石墨烯充分分散在水中,得到溶液A。
第二步,将1.0-4.0 g海藻酸钠,0.5-6.0 g聚丙烯酰胺加入到溶液A中,进行机械搅拌,直到混合物充分溶解,得到混合物B。
第三步,分别配制浓度为0.1-0.4 mol/L的CuCl2溶液,备用。
第四步,将溶解好的混合物B滴入准备好的96孔培养板模具中,再将其浸入到配制好的盐溶液中,在恒温水浴锅中反应24 h。
第五步,从水浴锅中取出模具,得到水凝胶,用蒸馏水冲洗,直至洗液无色,然后把冲洗好的水凝胶放入-10 ℃的冰箱中预冷冻10 h。
第六步,把预冻好的水凝胶放入冷冻干燥机中进行干燥,即得成品。
2.本发明提供的把海藻酸铜气溶胶作为催化剂,用于苯酚羟基化制对苯二酚和邻苯二酚的方法,其步骤和条件如下:
(1)把反应介质置于带有磁力搅拌器、能加温并能恒温的三口反应器内;反应介质是水、乙醇或乙腈;所述的反应介质优选是水。
(2)苯酚和催化剂海藻酸铜气溶胶的质量比为10:1-100:1,苯酚和双氧水的摩尔比为:2:1 -1:3,苯酚的质量g和反应介质的体积mL的配比为1:30;
(3)按配比,将苯酚和催化剂海藻酸铜气溶胶置于装有反应介质的将三口反应器中,在磁力搅拌下,反应温度为30-80 ℃,当温度达到设定温度后恒温,将双氧水滴加到三口反应器中,滴加速率为0.1 mL/min,滴加完毕开始计算反应时间,反应时间为1-6 h,得到目标产物;
有益效果:(1)本发明的高强度海藻酸铜气溶胶催化剂制备工艺简单,反应活性高,选择性好,机械性能好,使用过程对生产设备无腐蚀,对环境无不良影响,是一种环境友好型催化剂。(2)本发明的催化剂海藻酸铜对苯酚转化率高,高达76.5%。适于工业化推广。
具体实施方式:
下面结合具体实施例,对本发明进行详细说明。
设计正交试验:
试验条件:
第一步,把氧化石墨烯溶于30 ml蒸馏水中,经超声处理10 min,使石墨烯充分分散在水中,得到溶液A。
第二步,选取1 g海藻酸钠,聚丙烯酰胺加入到溶液A中,得到混合物B,进行机械搅拌,直到混合物B充分溶解。
第三步,配制好CuCl2溶液,备用。
第四步,将溶解好的混合物B滴入准备好的96孔培养板模具中,再将其浸入到配制好的CuCl2溶液中,在60 ℃的恒温水浴锅中反应24 h。
第五步,从水浴锅中取出模具,得到水凝胶,用蒸馏水冲洗,直至洗液无色,然后把冲洗好的水凝胶放入-10 ℃的冰箱中预冷冻10 h。
第六步,把预冻好的水凝胶放入冷冻干燥机中进行干燥,即得成品。
下表为设计的正交试验中各个变量的数值:
组别 石墨烯(g) 聚丙烯酰胺(g) CuCl2(mol\L)
1 0.10 1 0.1
2 0.10 2 0.2
3 0.10 3 0.3
4 0.10 4 0.4
5 0.15 1 0.2
6 0.15 2 0.1
7 0.15 3 0.4
8 0.15 4 0.3
9 0.20 1 0.3
10 0.20 2 0.4
11 0.20 3 0.1
12 0.20 4 0.2
13 0.30 1 0.4
14 0.30 2 0.3
15 0.30 3 0.2
16 0.30 4 0.1
下表为16组正交试验制备的高强度海藻酸铜气溶胶的压缩强度:
组别 硬度(kg/cm2 组别 硬度(kg/cm2
1 13.80 9 25.80
2 13.87 10 26.02
3 14.13 11 26.23
4 14.52 12 26.56
5 18.40 13 29.05
6 18.98 14 29.56
7 19.84 15 30.02
8 20.12 16 30.16
实施例1
取正交试验的十六组催化剂,按苯酚和催化剂的质量比为20:1称取苯酚1.0 g(10mmol)、催化剂50 mg,按苯酚的质量g和反应介质的体积mL的配比为1:30 ,称取30 mL 水;把称好的苯酚、催化剂和水置于三口瓶中,将三口瓶置于恒温水浴中,在磁力搅拌下,当温度达到70 ℃时,将按苯酚与双氧水摩尔比为1:2称取的双氧水2 mL (20 mmol) 按滴加速率为0.1 mL/min,逐滴滴加到三口瓶中,滴加完毕开始计时反应,反应时间为1 h,得到目标产物。把实施例中反应后的反应液抽滤,分离催化剂和反应液。
催化剂苯酚羟基化活性数据如表1。
表 1
实施例2
取正交试验的第一组催化剂,按苯酚和催化剂的质量比为50:1称取苯酚1.0 g(10mmol)、催化剂20 mg,按苯酚的质量和反应介质的体积的配比为1:30 g/mL,称取30 mL 水;把称好的苯酚、催化剂和水置于三口瓶中,将三口瓶置于恒温水浴中,在磁力搅拌下,当温度达到70 ℃时,将按苯酚与双氧水摩尔比为1:3称取的双氧水3 mL (30 mmol) 按滴加速率为0.1 mL/min,逐滴滴加到三口瓶中,滴加完毕开始计时反应,反应时间为4 h,得到目标产物。把实施例中反应后的反应液抽滤,分离催化剂和反应液。
实施例3
取正交试验的第一组催化剂,按苯酚和催化剂的质量比为100:1称取苯酚1.0 g(10mmol)、催化剂10mg,按苯酚的质量和反应介质的体积的配比为1:30 g/mL,称取30 mL 水;把称好的苯酚、催化剂和水置于三口瓶中,将三口瓶置于恒温水浴中,在磁力搅拌下,当温度达到30 ℃时,将按苯酚与双氧水摩尔比为1:1称取的双氧水1 mL (20 mmol) 按滴加速率为0.1 mL/min,逐滴滴加到三口瓶中,滴加完毕开始计时反应,反应时间为2 h,得到目标产物。把实施例中反应后的反应液抽滤,分离催化剂和反应液。
实施例4
取正交试验的第一组催化剂,按苯酚和催化剂的质量比为10:1称取苯酚1.0 g(10mmol)、催化剂100 mg,按苯酚的质量和反应介质的体积的配比为1:30 g/mL,称取30 mL水;把称好的苯酚、催化剂和水置于三口瓶中,将三口瓶置于恒温水浴中,在磁力搅拌下,当温度达到70 ℃时,将按苯酚与双氧水摩尔比为2:1称取的双氧水0.5 mL (10 mmol) 按滴加速率为0.1 mL/min,逐滴滴加到三口瓶中,滴加完毕开始计时反应,反应时间为4 h,得到目标产物。把实施例中反应后的反应液抽滤,分离催化剂和反应液。
实施例5
取正交试验的第一组催化剂,按苯酚和催化剂的质量比为20:1称取苯酚1.0 g(10mmol)、催化剂50 mg,按苯酚的质量和反应介质的体积的配比为1:30 g/mL,称取30 mL 乙腈;把称好的苯酚、催化剂和乙腈置于三口瓶中,将三口瓶置于恒温水浴中,在磁力搅拌下,当温度达到70 ℃时,将按苯酚与双氧水摩尔比为1:2称取的双氧水2 mL (5 mmol) 按滴加速率为0.1 mL/min,逐滴滴加到三口瓶中,滴加完毕开始计时反应,反应时间为4 h,得到目标产物。把实施例中反应后的反应液抽滤,分离催化剂和反应液。
实施例6
取正交试验的第一组催化剂,按苯酚和催化剂的质量比为20:1称取苯酚1.0 g(10mmol)、催化剂50 mg,按苯酚的质量和反应介质的体积的配比为1:30 g/mL,称取30 mL 乙醇;把称好的苯酚、催化剂和乙醇置于三口瓶中,将三口瓶置于恒温水浴中,在磁力搅拌下,当温度达到70 ℃时,将按苯酚与双氧水摩尔比为1:2称取的双氧水2 mL (5 mmol) 按滴加速率为0.1 mL/min,逐滴滴加到三口瓶中,滴加完毕开始计时反应,反应时间为4 h,得到目标产物。把实施例中反应后的反应液抽滤,分离催化剂和反应液。
用气相色谱仪Agilent GC6890分析,分析条件:HP-5毛细管柱,FID检测器,进样口温度为280 ℃,检测器温度为300 ℃。结果见表2。表2表明,本发明的催化剂海藻酸铜对苯酚转化率高,高达76.5%,适于工业化推广使用。
表2

Claims (5)

1.一种高强度海藻酸铜气溶胶的制备方法,其特征在于具体步骤如下:
(1)在蒸馏水中加入氧化石墨烯,超声至分散均匀,加入海藻酸钠和聚丙烯酰胺,通过机械搅拌直至混合均匀;
(2)将所得混合溶液滴入模具中,将模具浸入到可溶于水的金属盐溶液中;
(3)将金属盐溶液放入恒温水浴锅内,在一定温度下反应,获得水凝胶;
(4)将所得水凝胶用蒸馏水冲洗直至去除外部表面金属离子,将其放入-10 ℃冰箱中预冷冻10 h;
(5)将预冻好的水凝胶放入到冷冻干燥机中进行干燥,即得成品。
2.根据权利要求1所述的一种高强度海藻酸铜气溶胶催化剂的制备方法,其特征在于:所述氧化石墨烯的质量为50-400 mg,聚丙烯酰胺的质量为0.5-6.0 g,海藻酸钠的质量为0.5-6.0 g,金属盐溶液的浓度为0.05-0.5 mol/L。
3.根据权利要求1所述的一种高强度海藻酸铜气溶胶催化剂的制备方法,其特征在于:所述混合溶液进行水浴加热的温度为40 -80 ℃,时间为20-36 h。
4.根据权利要求1所述的一种高强度海藻酸铜气溶胶催化剂的制备方法,其特征在于:石墨烯放入蒸馏水中,需要进行超声分散5-30 min。
5.根据权利要求1所述的一种高强度海藻酸铜气溶胶催化剂的制备方法,其特征在于:石墨烯增强后的海藻酸铜气溶胶具有良好的机械强度。
CN201710234701.5A 2017-04-12 2017-04-12 一种高强度海藻酸铜气溶胶催化剂的制备方法 Pending CN106955741A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710234701.5A CN106955741A (zh) 2017-04-12 2017-04-12 一种高强度海藻酸铜气溶胶催化剂的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710234701.5A CN106955741A (zh) 2017-04-12 2017-04-12 一种高强度海藻酸铜气溶胶催化剂的制备方法

Publications (1)

Publication Number Publication Date
CN106955741A true CN106955741A (zh) 2017-07-18

Family

ID=59483462

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710234701.5A Pending CN106955741A (zh) 2017-04-12 2017-04-12 一种高强度海藻酸铜气溶胶催化剂的制备方法

Country Status (1)

Country Link
CN (1) CN106955741A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109433264A (zh) * 2018-12-05 2019-03-08 长春工业大学 一种二氧化硅和氧化石墨烯增强海藻酸铜气溶胶催化剂的制备方法
CN113842952A (zh) * 2021-09-24 2021-12-28 长春工业大学 一种高活性海藻酸盐气溶胶催化剂的制备方法
CN113941363A (zh) * 2021-11-25 2022-01-18 长春工业大学 一种高催化活性海藻酸铜气溶胶催化剂的制备方法及其应用
CN115382545A (zh) * 2022-09-28 2022-11-25 长春工业大学 一种Cu/石墨烯复合材料的制备方法及应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102627532B (zh) * 2012-03-19 2015-01-28 长春工业大学 一种海藻酸铜的应用
CN104785177A (zh) * 2015-03-23 2015-07-22 同济大学 一种海藻酸盐-石墨烯复合双网络凝胶球的制备方法
CN105504364A (zh) * 2016-01-28 2016-04-20 安徽大学 一种高强度荧光水凝胶及其制备方法
CN105749970A (zh) * 2016-03-02 2016-07-13 青岛大学 一种海藻酸钙-石墨烯-纳米金复合物水凝胶催化剂的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102627532B (zh) * 2012-03-19 2015-01-28 长春工业大学 一种海藻酸铜的应用
CN104785177A (zh) * 2015-03-23 2015-07-22 同济大学 一种海藻酸盐-石墨烯复合双网络凝胶球的制备方法
CN105504364A (zh) * 2016-01-28 2016-04-20 安徽大学 一种高强度荧光水凝胶及其制备方法
CN105749970A (zh) * 2016-03-02 2016-07-13 青岛大学 一种海藻酸钙-石墨烯-纳米金复合物水凝胶催化剂的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GUICAILI ET.AL: ""Preparation of graphene oxide/polyacrylamide composite hydrogeland its effect on Schwann cells attachment and proliferation"", 《COLLOIDS AND SURFACES B: BIOINTERFACES》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109433264A (zh) * 2018-12-05 2019-03-08 长春工业大学 一种二氧化硅和氧化石墨烯增强海藻酸铜气溶胶催化剂的制备方法
CN113842952A (zh) * 2021-09-24 2021-12-28 长春工业大学 一种高活性海藻酸盐气溶胶催化剂的制备方法
CN113842952B (zh) * 2021-09-24 2024-05-14 长春工业大学 一种高活性海藻酸盐气溶胶催化剂的制备方法
CN113941363A (zh) * 2021-11-25 2022-01-18 长春工业大学 一种高催化活性海藻酸铜气溶胶催化剂的制备方法及其应用
CN115382545A (zh) * 2022-09-28 2022-11-25 长春工业大学 一种Cu/石墨烯复合材料的制备方法及应用

Similar Documents

Publication Publication Date Title
CN106955741A (zh) 一种高强度海藻酸铜气溶胶催化剂的制备方法
Liu et al. Novel approach for attapulgite/poly (acrylic acid)(ATP/PAA) nanocomposite microgels as selective adsorbent for Pb (II) ion
Ateşin et al. Experimental and theoretical examination of C− CN and C− H bond activations of acetonitrile using zerovalent nickel
Yao et al. In-situ graft-polymerization preparation of cation-exchange supermacroporous cryogel with sulfo groups in glass columns
Sahiner et al. Utilization of smart hydrogel–metal composites as catalysis media
CN105504760B (zh) 一种用于处理含重金属污水的水凝胶材料及其制备方法
Ozer et al. Crosslinked PS-DVB microspheres with sulfonated polystyrene brushes as new generation of ion exchange resins
Chun et al. Catalytic production of hydroxymethylfurfural from sucrose using 1-methyl-3-octylimidazolium chloride ionic liquid
CN109482110A (zh) 一种壳聚糖水凝胶的制备方法与应用
WO2021007987A1 (zh) 一种MOFs/MIPs催化剂及其原位生长制备方法与应用
Zhang et al. A novel thermo and pH-double sensitive hydrogel immobilized Pd catalyst for Heck and Suzuki reactions in aqueous media
Tomoi et al. Importance of mass transfer and intraparticle diffusion in polymer-supported phase-transfer catalysis
Demirci et al. Superporous neutral, anionic, and cationic cryogel reactors to improved enzymatic activity and stability of α-Glucosidase enzyme via entrapment method
CN104356258A (zh) 稀土元素改性脱醛树脂的制备方法及其在乙二醇精制中的应用
CN106111691A (zh) 一种土壤修复吸附网及其修复方法
Liu et al. Selective partial hydrogenation of methyl linoleate using highly active palladium nanoparticles in polyethylene glycol
CN108862355A (zh) 一种微通道法制备硫酸钡颗粒的方法
Dulman et al. Batch and fixed bed column studies on removal of Orange G acid dye by a weak base functionalized polymer
CN109433264A (zh) 一种二氧化硅和氧化石墨烯增强海藻酸铜气溶胶催化剂的制备方法
CN106391000B (zh) CO脱氢净化反应用Pd(111)/γ-Al2O3催化剂及其制备方法
Zhang et al. Effect of organic montmorillonite type on the swelling behavior of superabsorbent nanocomposites
Sun et al. Molecularly imprinted polymers based on calcined rape pollen and deep eutectic solvents for efficient sinapic acid extraction from rapeseed meal extract
CN109174178B (zh) 一种氧化铝负载离子液体-钯催化剂及其制备和在乙炔前加氢反应中的应用
Salminen et al. Alkaline modifiers as performance boosters in citral hydrogenation over supported ionic liquid catalysts (SILCAs)
Huang et al. Flexible Sponge Ball-like Temperature-Responsive Molecularly Imprinted Polymer with Self-Driven “Transformation Recovery” and Mechanism Exploration

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20170718