CN106953352A - 钠氯化物储热蓄电发电装置 - Google Patents

钠氯化物储热蓄电发电装置 Download PDF

Info

Publication number
CN106953352A
CN106953352A CN201610005196.2A CN201610005196A CN106953352A CN 106953352 A CN106953352 A CN 106953352A CN 201610005196 A CN201610005196 A CN 201610005196A CN 106953352 A CN106953352 A CN 106953352A
Authority
CN
China
Prior art keywords
heat
chloride
storage
power
electric power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN201610005196.2A
Other languages
English (en)
Inventor
张建城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201610005196.2A priority Critical patent/CN106953352A/zh
Publication of CN106953352A publication Critical patent/CN106953352A/zh
Withdrawn legal-status Critical Current

Links

Classifications

    • H02J3/383
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K27/00Plants for converting heat or fluid energy into mechanical energy, not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S60/00Arrangements for storing heat collected by solar heat collectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/003Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using thermochemical reactions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • H01M10/39Accumulators not provided for in groups H01M10/05-H01M10/34 working at high temperature
    • H01M10/399Cells with molten salts
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • H02J3/386
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/18Structural association of electric generators with mechanical driving motors, e.g. with turbines
    • H02K7/1807Rotary generators
    • H02K7/1823Rotary generators structurally associated with turbines or similar engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/0034Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using liquid heat storage material
    • F28D2020/0047Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using liquid heat storage material using molten salts or liquid metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Power Engineering (AREA)
  • Secondary Cells (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Electrochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)

Abstract

钠氯化物储热蓄电发电装置主要选择钠氯化物电池与太阳能、风能等可再生能源相结合寻求建立适合工频电网的经济型、规模化、大功率蓄电储能装置。采用聚光太阳能(CSP)聚热、或利用光伏、风电为高温钠氯化物蓄电池建立所需高温工况环境,既可以保证高温钠氯化物蓄电池正常工作,同时也可以充分利用蓄电池充放电产生的化学热与储热互补发电。全新设计的钠氯化物单电池构造新颖,零部件少、工艺简单、特别适合规模化批量生产,为降低制造成本提供有利条件。由若干个钠氯化物单电池组成电池堆后具有功率密度高、安全可靠、皮实耐用、成本低廉等特点。该装置既可以配置给聚光太阳能、风力或光伏发电站,也可以作为电网削峰填谷、稳压调频的主要蓄电调节装置。该发明属高温化学蓄电技术领域。

Description

钠氯化物储热蓄电发电装置
技术领域
本发明选择高温钠氯化物化学蓄电技术与太阳能、风能等可再生能源相结合寻求建立适合工频电网的经济型、规模化、大功率蓄电储能装置。采用聚光太阳能(CSP)聚热、或利用光伏、风电为高温钠氯化物蓄电池建立所需高温工况环境,既可以保证高温钠氯化物蓄电池正常工作,同时也可以充分利用蓄电池充放电产生的化学热与储热互补发电。该装置既可以配置给聚光太阳能、风力或光伏发电站,也可以作为电网削峰填谷、调压调频的主要蓄电调节装置。该发明属高温化学蓄电技术领域。
背景技术
大量可再生能源的使用和智能电网的建立,迫切需要建立大功率、规模化、低成本的储能设备为其配套,目前可选择的蓄电池主要有铅酸电池、锂电池、液流电池、钠硫电池,其中钠硫电池使用量最大,但是钠硫电池和同类的钠镍电池以及液体金属电池一样都属于高温电池,虽然优点突出,蓄电密度高,成本相对较低,但其明显的缺点是结构复杂、工艺性差、零部件多、制造成本高,需要高温工况环境,甚至存在安全隐患,因此抵消了自身在蓄电方面的技术优势。发明人在专利201410653755.1中对利用太阳能聚光装置提供热源和利用高温化学蓄电池充放电产生的化学热实现互补发电的技术路线做了阐释,但是没有公布高温化学蓄电池具体的电池构造,因此还无法证明其经济性和可行性。目前熔盐热电池的结构设计大致有两种,一是传统的圆柱形、高度300毫米左右的钠硫和钠镍单体电池,如最早的南非Zebra钠氯化镍电池,以及瑞士FIAMM SoNick公司、美国GE、德国AEG和日本NGK的产品;另一种是采用平面结构设计的单体电池,这种结构最早见诸于美国太平洋西北国家实验室(PNNL)公开的实验报告和论文,类似的如改进后的中国专利201210285477.X,但是这些结构均无法满足储热和蓄电相结合并实施热力发电的设计要求,因此,根据电力规模化储能和大幅降低制造成本的经济性目标,创新单体电池结构和建立具有储热功能的钠氯化物高温电池堆势在必行。
发明内容
本发明所要解决的技术问题是为创新钠氯化物储热蓄电发电装置提出全新的构造和方法。
本发明是通过以下技术方案实现的:
钠氯化物储热蓄电发电装置包括钠氯化物电池堆、热力循环系统、电力存储和电力输入输出系统,热力发电循环系统,其中:
1)所述钠氯化物电池堆是圆体、或正方体、或长方体结构,包括由金属、或陶瓷、或玻璃、或水泥及砖混材料构成的堆壁,由固体颗粒和耐火材料构成的保温层,以及由金属或陶瓷材料构成的耐腐蚀耐高温内壁;钠氯化物单体电池及固定支架、电池正负极输出接口、储热介质或传热介质进出口、陶瓷内盖板、外盖板、储热介质或传热介质传输管线;钠氯化物单体电池周边或底部布置换热管道;
2)所述钠氯化物单体电池直接置入钠氯化物电池堆池体内;钠氯化物电池堆池体内灌注低结晶点熔盐或固体储热介质;
3)所述热力循环系统包括以聚光太阳能装置、传热工质、换热装置、传热工质储罐、电力加热器、压力泵、传输管线、一体化换热蒸发储热罐或储热池、储热介质、蒸发器、钠氯化物蓄电池堆;或以电力加热器为核心的电力热循环系统,包括一体化换热蒸发储热罐或储热池、传输管线、电力加热器、钠氯化物蓄电池堆;或配置天燃气、沼气、烷烃类气体燃气热力循环系统;
4)所述一体化换热蒸发储热罐或储热池内设置传热介质、储热介质进出口,以及太阳能传热工质及换热装置;或电力加热器;或在罐内,或在罐外设置的动力工质蒸发器;
5)所述热力发电系统包括传热工质、一体化换热蒸发储热罐或储热池、蒸发器、涡轮透平、或螺杆动力机、冷凝器、压力泵、动力工质及储罐、或冷凝剂储罐有机组成的蒸汽朗肯循环、或有机朗肯循环、或卡琳娜循环的动力发电机组;或由涡扇压缩机、换热器、涡轮透平、发电机组成的布雷顿循环动力发电机组;或配以直流永磁电动机直接驱动的交流发电机组;
6)所述动力工质为水蒸气、二氧化碳气、一氧化氮气、有机工质、氨及氨与水的混合液;
7)所述传热工质为空气、或氮气、或二氧化碳气,或惰性气体氦、氖、氩、氪、氙的其中一种,或水蒸汽、或乙二醇、或丙二醇、或导热油、或熔盐包括三元硝酸类、氯化钠类低结晶点熔盐、或硫及硫的改性物;
8)所述储热介质包括固体储热介质、或熔盐储热介质,或两者的混合物;熔盐储热介质为三元低结晶点熔盐;固体储热介质包括玻璃微珠、碳化硅颗粒、陶瓷颗粒、石英流沙颗粒;或粉态固体颗粒包括水泥熟料、粉煤灰,或经球磨制作的花岗岩、玄武岩、火成岩、石英岩粉粒;或为提高固体储热介质导热系数在其中添加的金属粉末如铝粉、铜粉、铁粉;或由金属冶炼产生的废渣如铝废渣、铜废渣、铁矿渣、钢渣;或由废弃的金属切削渣制作的颗粒料;或回收的具有较高导热系数的金属粉尘;经充分混合成为兼具比热容和导热系数良好的固体储热介质;
9)所述电力存储和电力输入输出系统包括整流器、逆变器;温度自动控制和电力自动控制系统;
其主要特征在于:
1)聚光太阳能装置出口连接动力工质蒸发器端进口,出口连接一体化换热蒸发储热罐或储热池的换热装置进口,换热装置出口连接压力泵进口,其出口连接传热工质储罐然后至聚光太阳能装置进口;或同时在一体化换热蒸发储热罐或储热池内设置电力加热器,确保无光照时热环境稳定;或不设置聚光太阳能装置热力循环系统,由风力、光伏或电网提供电力直接加热电力加热器为一体化换热蒸发储热罐或储热池储热介质提供热源;
2)钠氯化物电池堆经串联或并联后其正负极端口分别连接逆变器,逆变器连接电网;或将钠氯化物电池堆正负极端口连接直流永磁电动机,并驱动交流发电机直接并网发电;或并联设置逆变器和直流永磁电动机,可任意选择其中一种技术向电网送电;电网超负荷过载富裕电力,或被风电、光伏放弃的垃圾电力经整流器连接电力控制装置至钠氯化物蓄电池堆储能蓄电;
3)在一体化换热蒸发储热罐或储热池内或外设置动力工质蒸发器,动力工质蒸发器一端为传热工质进出口,另一端为动力工质进出口;动力工质蒸发器动力工质端出口分别顺序连接动力发电机组的涡轮透平或螺杆动力机、冷凝器、动力工质储罐或冷凝液储罐、或压力泵、或换热器、或涡扇压缩机,经压力泵或换热器送出的动力工质输入到一体化换热蒸发储热罐或储热池的蒸发器动力工质端进口,完成动力工质膨胀做功循环和驱动发电机发电;
4)钠氯化物电池堆由数量不等的钠氯化物单体电池组成,钠氯化物电池堆设置储热或传热介质进出口,储热或传热介质进口经控制阀连接一体化换热蒸发储热罐或储热池储热或传热介质出口,储热或传热介质出口连接压力或熔盐泵进口,压力或熔盐泵出口连接一体化换热蒸发储热罐或储热池储热或传热介质进口;钠氯化物单体电池浸没在钠氯化物电池堆储热介质内;钠氯化物储热蓄电发电装置可根据容量设计由若干个钠氯化物电池堆串联或并联形成兆瓦甚至数十兆瓦蓄电发电能力;
钠氯化物单体电池是本装置核心所在,钠氯化物单体电池包括陶瓷或硼硅玻璃外壳;阴极板;阳极板;电极集流体;β-Al2O3或微晶玻璃固体电解质;四氯铝酸钠无水结晶体;陶瓷或玻璃电极固定板;选择陶瓷或玻璃、或玻璃棉制作的固定卡环;陶瓷或玻璃固定盖板,电极紧固件和电极端子;
1)所述陶瓷或硼硅玻璃外壳为立方体外壳,内设数量不等的阴极或阳极电极插槽,或另行设置电极片托槽框架;在其顶部设置电极固定板及托槽和固定盖板及托槽;
2)所述阴极板包括两块对称的平面、或带凸起槽、或凹槽的β-Al2O3或微晶玻璃固体电解质板,其内表面真空溅射、或气相沉积、或涂覆钠金属润湿剂;电极集流体的基体为铜、或纯镍、或镀镍不锈钢、或镀镍铜金属板;电极集流体金属板两面分别固定由铜、纯镍、镀镍不锈钢、镀镍铜或石墨制作的金属毡、或石墨毡、或丝网、或泡沫,将完整的电极集流体放置在两块对称的β-Al2O3或微晶玻璃固体电解质板中间,合并β-Al2O3或微晶玻璃固体电解质板,边缘四周经玻璃陶瓷热熔封接,然后封接顶端阴极盖板,阴极盖板设有集流体输出端和排气孔,再经高温真空排气形成完整的阴极板;β-Al2O3或微晶玻璃固体电解质板或压制成对称盘型结构有利集流体安装和封接、排气;或β-Al2O3或微晶玻璃固体电解质保持管状,集流体设置在管中心;
3)所述阳极板是由金属板材或金属网为纯镍、或镀镍不锈钢、或金属铜、或金属钼、或氯化镍、或金属钨材质经冲压制作,为提高使用寿命和蓄电密度可在金属板表面或金属网内涂覆或烧结活性物质;阳极板顶端一侧设有集流体输出端;
所述钠氯化物单体电池主要特征在于:
将规模化制作的成品阴极和阳极板分别相间逐个插入陶瓷或硼硅玻璃外壳预留的插槽内,或安装在托槽框架内装入陶瓷或硼硅玻璃外壳内;将无水熔盐电解质四氯铝酸钠结晶体均匀灌入陶瓷或硼硅玻璃外壳,然后覆盖电极固定板及固定卡环;电极固定板设有两个电极槽孔,阴极和阳极集流体分别穿过预留的电极槽孔;电极紧固件分别连接阴极或阳极集流体,并连接电极端子;电极端子穿过固定盖板;固定盖板设排气孔,高温真空排气后采用高温粘结剂封固、或采用玻璃金属封接技术封闭固定盖板与陶瓷或硼硅玻璃外壳以及电极端子;钠氯化物单体电池串联或并联组合成钠氯化物电池堆;
上述结构同样适用钠硫电池,其制作工艺与钠硫电池管式结构相同,阴极板在组装封固之前需在惰性气体环境中灌注液态金属钠,四氯铝酸钠熔盐电解质则改换为单质硫和多硫化钠、或掺杂的氯化亚铁;或将高温液体金属电池放置在电池堆池体内;其它与本发明相同。
本发明新颖之处在于:
1)钠氯化物单体电池放置在电池堆内低结晶点熔盐或固体储热介质中,通过熔盐或传热工质调节和管理电池堆温度,或通过熔盐与一体化换热蒸发储热罐或储热池连接组成热循环系统,充分利用蓄电池充放电产生的化学热实现发电和热利用。
2)本发明钠氯化物电池堆不需要单独配备热管理装置及其控制系统,即简化了电池结构,又大幅度降低系统造价。
3)本发明全新的钠氯化物单体电池结构与众不同,在增加蓄电池体积和比表面积的同时努力提高电池功率密度,尽可能减少关键零部件数量,且核心部件阴极板和阳极板特别适合大规模专业化生产,为降低电池单位造价创造前提。
4)由于该发明钠氯化物蓄电站电压高、功率大,因此可不经逆变器并网,而经由直流永磁电动机直接驱动交流发电机并网发电,这就从根本上克服了光伏发电经逆变器入网谐波分量过大的缺陷。
5)为充分利用高温蓄电池充放电产生的化学热,或结合聚光太阳能,或利用弃风弃光垃圾电储热进行热力发电,可进一步提高可再生能源利用效率。
附图说明
图1是本发明钠氯化物单体电池及阳极板示意图
图2是本发明钠氯化物单体电池阴极板构造示意图
图3是本发明聚光太阳能钠氯化物电池储热蓄电发电装置示意图
图4是本发明光伏、风电钠氯化物电池储热蓄电发电装置示意图
其中:1陶瓷或硼硅玻璃外壳;2阴极板;3阳极板;4电极集流体;5四氯铝酸钠电解质、6电极端子、7逆变器、8交流发电机、9直流永磁电动机、10聚光太阳能装置、11传热工质罐、12压力泵、13整流器、14电网、15阴极盖板、16单电池固定盖板、17一体化换热蒸发储热罐或储热池、18换热装置、19钠氯化物电池堆、20风力发电、21光伏发电、22电力加热器、23金属毡、24钠氯化物单电池、25排气孔
具体实施方式
方案1
将规模化制作的成品阴极板2和阳极板3分别相间逐个插入陶瓷或硼硅玻璃外壳1预留的插槽内,或安装在托槽框架内装入陶瓷或硼硅玻璃外壳1内;将无水熔盐电解质四氯铝酸钠5结晶体均匀灌入陶瓷或硼硅玻璃外壳1内,然后覆盖电极固定板15及固定卡环;电极固定板15设有两个电极槽孔,阴极电极集流体4和阳极电极集流体4分别穿过预留的电极槽孔;电极紧固件分别连接阴极或阳极集流体4,并连接电极端子6;电极端子6透过固定盖板16采用玻璃金属封接;固定盖板16设排气孔,高温真空排气后采用高温粘结剂封固、或采用玻璃金属封接技术封闭固定盖板16与陶瓷或硼硅玻璃外壳1以及电极端子6;钠氯化物单体电池串联或并联组合成钠氯化物单体电池堆。
阴极板2由电极集流体4和前后两片金属毡23和对称的两片固体电解质24组成,金属毡23焊接或粘结至电极集流体4后,然后将固体电解质24合并封接,或先封接固体电解质24,然后装入带金属毡的电极集流体4,再将阴极盖板15与固体电解质24封接,排气后将电极集流体4与阴极盖板15玻璃金属封接,形成完整的阴极板。阳极板3则由电极集流体4烧结或涂覆活性物质后形成。
方案2
以图3为例说明,聚光太阳能装置10出口连接一体化换热蒸发储热罐或储热池17的换热装置18进口,其出口连接压力泵12然后经传热工质罐11至聚光太阳能装置10进口;钠氯化物电池堆19熔盐出口连接压力泵12进口,压力泵12出口连接一体化换热蒸发储热罐或储热池17熔盐进口,一体化换热蒸发储热罐或储热池17熔盐出口连接钠氯化物电池堆19熔盐进口,组成热循环管理系统。如果将数量不等的钠氯化物电池堆19并联后对高温热环境进行循环控制和管理可获得更大效益。
方案3
采用风力20和光伏21放弃电力作为电力加热器22的电力来源,加热一体化换热蒸发储热罐或储热池17熔盐,一体化换热蒸发储热罐或储热池17熔盐出口连接钠氯化物电池堆19的换热装置18进口,钠氯化物电池堆19的换热装置18出口连接压力泵12进口,压力泵12出口连接一体化换热蒸发储热罐或储热池17进口,由此组成热循环管理系统。钠氯化物电池堆19连接逆变器7,逆变器7连接电网14,或连接直流永磁电动机9驱动交流发电机8直接上网。电网超负荷过载电力经整流器为钠氯化物电池堆19充电,或接受风力20或光伏21电力为钠氯化物电池堆19充电蓄电。
本发明可以在多功能热利用上有更多选择,但只要不背离本发明创意原则或等同变换应用范围均在本发明保护范围之内。

Claims (3)

1.钠氯化物储热蓄电发电装置包括钠氯化物电池堆、热力循环系统、电力存储和电力输出系统,热力发电循环系统,其中:
1)所述钠氯化物电池堆是圆体、或正方体、或长方体结构,包括由水泥或砖混材料、固体颗粒和耐火材料构成的保温层、金属或陶瓷材料构成的耐腐蚀耐高温内壁;钠氯化物单体电池及固定支架、电池正负极输出接口、储热介质进出口、陶瓷内盖板、外盖板、储热介质传输管线;
2)所述钠氯化物单体电池直接置入钠氯化物电池堆池体内;钠氯化物电池堆池体内灌注低结晶点熔盐或固体储热介质;钠氯化物单体电池周边或底部布置换热管道;
3)所述热力循环系统包括以聚光太阳能装置、传热工质、换热装置、传热工质储罐、电力加热器、压力泵、传输管线、一体化换热蒸发储热罐或储热池、储热介质、蒸发器、钠氯化物电池堆;或以电力加热器为核心的电力热循环系统,包括一体化换热蒸发储热罐或储热池、传输管线、电力加热器、钠氯化物电池堆;或配置天燃气、沼气、烷烃类气体燃气热力循环系统;
4)所述一体化换热蒸发储热罐或储热池内设置传热介质和储热介质进出口,以及太阳能传热工质及换热装置;或电力加热器;或在罐内、或在罐外设置动力工质蒸发器;
5)所述热力发电系统包括传热工质、一体化换热蒸发储热罐或储热池、蒸发器、涡轮透平、或螺杆动力机、冷凝器、压力泵、动力工质及储罐、或冷凝剂储罐有机组成的蒸汽朗肯循环、或有机朗肯循环、或卡琳娜循环的动力发电机组;或由涡扇压缩机、换热器、涡轮透平、发电机组成的布雷顿循环动力发电机组;或配以直流永磁电动机直接驱动的交流发电机组;
6)所述动力工质为水蒸气、二氧化碳气、一氧化氮气、有机工质、氨及氨与水的混合液;
7)所述传热工质为空气、或氮气、或二氧化碳气,或惰性气体氦、氖、氩、氪、氙的其中一种,或水蒸汽、或乙二醇、或丙二醇、或导热油、或熔盐包括三元硝酸类、氯化钠类低结晶点熔盐、或硫及硫的改性物;
8)所述储热介质包括固体储热介质、或熔盐储热介质,或两者的混合物;熔盐储热介质为三元低结晶点熔盐;固体储热介质包括玻璃微珠、碳化硅颗粒、陶瓷颗粒、石英流沙颗粒;或粉态固体颗粒包括水泥熟料、粉煤灰,或经球磨制作的花岗岩、玄武岩、火成岩、石英岩粉粒;或为提高固体储热介质导热系数在其中添加的金属粉末如铝粉、铜粉、铁粉;或由金属冶炼产生的废渣如铝废渣、铜废渣、铁矿渣、钢渣;或由废弃的金属切削渣制作的颗粒料;或回收的具有较高导热系数的金属粉尘;经充分混合成为兼具比热容和导热系数良好的固体储热介质;
9)所述电力存储和电力输入输出系统包括整流器、逆变器;温度自动控制和电力自动控制系统;
其主要特征在于:
1)聚光太阳能装置出口连接动力工质蒸发器端进口,出口连接一体化换热 蒸发储热罐或储热池的换热装置进口,换热装置出口连接压力泵进口,其出口连接传热工质储罐然后至聚光太阳能装置进口;或同时在一体化换热蒸发储热罐或储热池内设置电力加热器,确保无光照时热环境稳定;或不设置聚光太阳能装置热力循环系统,由风力、光伏或电网提供电力直接加热电力加热器为一体化换热蒸发储热罐或储热池储热介质提供热源;
2)钠氯化物电池堆经串联或并联后其正负极端口分别连接逆变器,逆变器连接电网;或将钠氯化物电池堆正负极端口连接直流永磁电动机,并驱动交流发电机直接并网发电;或并联设置逆变器和直流永磁电动机,可任意选择其中一种技术向电网送电;电网超负荷过载富裕电力,或被风电、光伏放弃的垃圾电力经整流器连接电力控制装置至钠氯化物蓄电池堆储能蓄电;
3)在一体化换热蒸发储热罐或储热池内或外设置动力工质蒸发器,动力工质蒸发器一端为传热工质进出口,另一端为动力工质进出口;动力工质蒸发器动力工质端出口分别顺序连接动力发电机组的涡轮透平或螺杆动力机、冷凝器、动力工质储罐或冷凝液储罐、或压力泵、或换热器、或涡扇压缩机,经压力泵或换热器送出的动力工质输入到一体化换热蒸发储热罐或储热池的蒸发器动力工质端进口,完成动力工质膨胀做功循环和驱动发电机发电;
4)钠氯化物电池堆由数量不等的钠氯化物单体电池组成,钠氯化物电池堆设置储热或传热介质进出口,储热或传热介质进口经控制阀连接一体化换热蒸发储热罐或储热池储热或传热介质出口,储热或传热介质出口连接压力或熔盐泵进口,压力或熔盐泵出口连接一体化换热蒸发储热罐或储热池储热或传热介质进口;钠氯化物单体电池浸没在钠氯化物电池堆储热介质内;钠氯化物储热蓄电发电装置可根据容量设计由若干个钠氯化物电池堆串联或并联形成兆瓦甚至数十兆瓦蓄电发电能力。
2.根据权利要求1所述钠氯化物储热蓄电发电装置,其钠氯化物单体电池包括陶瓷或硼硅玻璃外壳;阴极板;阳极板;电极集流体;四氯铝酸钠无水结晶体;陶瓷或玻璃电极固定板;选择陶瓷或玻璃、或玻璃棉制作的固定卡环;陶瓷或玻璃固定盖板,电极紧固件和电极端子;
1)所述陶瓷或硼硅玻璃外壳制作成立方体,内设数量不等的阴极或阳极电极插槽,或另行设置电极片托槽框架;在其顶部设置电极固定板及托槽和固定盖板及托槽;
2)所述阴极板由两块对称的平面、或带凸起槽、或凹槽的β-Al2O3或微晶玻璃固体电解质板,内表面真空溅射、或气相沉积、或涂覆钠金属润湿剂;电极集流体的基体为铜、或纯镍、或镀镍不锈钢、或镀镍铜金属板;电极集流体金属板两面分别固定采用铜、纯镍、镀镍不锈钢、镀镍铜或石墨制作的金属毡、或石墨毡、或丝网、或泡沫,将完整的电极集流体放置在两块对称的β-Al2O3或微晶玻璃固体电解质板中间,合并β-Al2O3或微晶玻璃固体电解质板,边缘四周经玻璃陶瓷热熔封接,然后封接顶端阴极盖板,阴极盖板设有集流体输出端和排气孔,再经高温真空排气形成完整的阴极板;β-Al2O3或微晶玻璃固体电解质板或压制成对称盘型结构有利集流体安装和封接、排气;或β-Al2O3或微晶玻璃固体电解质保持管状,集流体设置在管中心;
3)所述阳极板是由金属板材或金属网为纯镍、或镀镍不锈钢、或金属铜、或金属钼、或氯化镍、或金属钨材质经冲压制作,为提高使用寿命和蓄电密度可在金属板表面或金属网内涂覆或烧结活性物质;阳极板顶端一侧设有集流体输出端;
主要特征在于:
将规模化制作的成品阴极板和阳极板分别相间逐个插入陶瓷或硼硅玻璃外壳预留的插槽内,或安装在托槽框架内装入陶瓷或硼硅玻璃外壳内;将熔盐电解质四氯铝酸钠无水结晶体均匀灌入陶瓷或硼硅玻璃外壳内,然后覆盖电极固定板及固定卡环;电极固定板设有两个电极槽孔,阴极和阳极集流体分别穿过预留的电极槽孔;电极紧固件分别连接阴极或阳极集流体,并连接电极端子;电极端子透过固定盖板;固定盖板设排气孔,高温真空排气后采用高温粘结剂封固、或采用玻璃金属封接技术封闭固定盖板与陶瓷或硼硅玻璃外壳,以及电极端子;钠氯化物单体电池串联或并联组合成钠氯化物电池堆。
3.根据权利要求1所述钠氯化物储热蓄电发电装置,钠氯化物单体电池结构同样适用钠硫电池,其制作工艺与钠硫电池管式结构相同,阴极板在组装封固之前需在惰性气体环境中灌注液态金属钠,四氯铝酸钠熔盐电解质则改换为单质硫和多硫化钠、或掺杂的氯化亚铁;或将高温液体金属电池放置在电池堆池体内;其它构造与本发明相同。
CN201610005196.2A 2016-01-07 2016-01-07 钠氯化物储热蓄电发电装置 Withdrawn CN106953352A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610005196.2A CN106953352A (zh) 2016-01-07 2016-01-07 钠氯化物储热蓄电发电装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610005196.2A CN106953352A (zh) 2016-01-07 2016-01-07 钠氯化物储热蓄电发电装置

Publications (1)

Publication Number Publication Date
CN106953352A true CN106953352A (zh) 2017-07-14

Family

ID=59466230

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610005196.2A Withdrawn CN106953352A (zh) 2016-01-07 2016-01-07 钠氯化物储热蓄电发电装置

Country Status (1)

Country Link
CN (1) CN106953352A (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108531671A (zh) * 2018-06-29 2018-09-14 四川川润股份有限公司 一种高炉熔渣固体介质换热回收和综合利用工艺方法及成套装备
CN109698389A (zh) * 2017-10-23 2019-04-30 张建城 钠氯化物单体电池
CN109994786A (zh) * 2018-01-03 2019-07-09 张建城 槽式太阳能钠氯化物电池储热蓄电发电装置
WO2020025802A1 (de) * 2018-08-03 2020-02-06 Karlsruher Institut für Technologie Vorrichtung und verfahren zur thermisch-elektrochemischen energiespeicherung und energiebereitstellung
CN111276762A (zh) * 2019-12-24 2020-06-12 郑州大学 基于石榴石固态电解质的新型锂-氯化亚铁电池及其制备方法
WO2021112674A3 (en) * 2019-12-02 2021-07-15 Summerheat Group B.V. Thermal energy storage
NL2024355B1 (en) * 2019-12-02 2021-08-31 Summerheat Group B V Thermal energy storage
CN113595107A (zh) * 2021-06-10 2021-11-02 国网河北省电力有限公司衡水供电分公司 太阳能发电系统及其储能装置
US20220042181A1 (en) * 2018-09-11 2022-02-10 Tercosys Oy Energy management method and arrangement
US11542863B1 (en) * 2021-11-16 2023-01-03 Siemens Energy, Inc. Method and device to improve the performance of a power plant integrated with a thermal energy storage system
US20230175740A1 (en) * 2021-12-07 2023-06-08 Xi'an Jiaotong University Cyclical salinity-gradient power generating system and method based on phase change materials and solar photothermal conversion

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6371997B1 (en) * 1999-04-21 2002-04-16 Samsung Sdi Co., Ltd. Method for manufacturing lithium polymer secondary battery and lithium polymer secondary battery made by the method
US20110250494A1 (en) * 2009-04-24 2011-10-13 Dai Nippon Printing Co., Ltd. Cathode plate for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
CN103490089A (zh) * 2013-06-17 2014-01-01 中国科学院物理研究所 电极组件、其制造方法和锂二次电池
CN103843170A (zh) * 2011-12-27 2014-06-04 株式会社Lg化学 电极组件和使用电极组件的二次电池
CN204212934U (zh) * 2014-11-18 2015-03-18 张建城 聚光太阳能蓄电发电装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6371997B1 (en) * 1999-04-21 2002-04-16 Samsung Sdi Co., Ltd. Method for manufacturing lithium polymer secondary battery and lithium polymer secondary battery made by the method
US20110250494A1 (en) * 2009-04-24 2011-10-13 Dai Nippon Printing Co., Ltd. Cathode plate for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
CN103843170A (zh) * 2011-12-27 2014-06-04 株式会社Lg化学 电极组件和使用电极组件的二次电池
CN103490089A (zh) * 2013-06-17 2014-01-01 中国科学院物理研究所 电极组件、其制造方法和锂二次电池
CN204212934U (zh) * 2014-11-18 2015-03-18 张建城 聚光太阳能蓄电发电装置

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109698389A (zh) * 2017-10-23 2019-04-30 张建城 钠氯化物单体电池
CN109994786A (zh) * 2018-01-03 2019-07-09 张建城 槽式太阳能钠氯化物电池储热蓄电发电装置
CN108531671A (zh) * 2018-06-29 2018-09-14 四川川润股份有限公司 一种高炉熔渣固体介质换热回收和综合利用工艺方法及成套装备
WO2020025802A1 (de) * 2018-08-03 2020-02-06 Karlsruher Institut für Technologie Vorrichtung und verfahren zur thermisch-elektrochemischen energiespeicherung und energiebereitstellung
US11959664B2 (en) * 2018-08-03 2024-04-16 Jonathan Flesch Device and method for thermal-electrochemical energy storage and energy provision
US20210164696A1 (en) * 2018-08-03 2021-06-03 Karlsruher Institut für Technologie Device and method for thermal-electrochemical energy storage and energy provision
US20220042181A1 (en) * 2018-09-11 2022-02-10 Tercosys Oy Energy management method and arrangement
US11873565B2 (en) * 2018-09-11 2024-01-16 Tercosys Oy Energy management method and arrangement
NL2024355B1 (en) * 2019-12-02 2021-08-31 Summerheat Group B V Thermal energy storage
WO2021112674A3 (en) * 2019-12-02 2021-07-15 Summerheat Group B.V. Thermal energy storage
CN111276762A (zh) * 2019-12-24 2020-06-12 郑州大学 基于石榴石固态电解质的新型锂-氯化亚铁电池及其制备方法
CN113595107A (zh) * 2021-06-10 2021-11-02 国网河北省电力有限公司衡水供电分公司 太阳能发电系统及其储能装置
US11542863B1 (en) * 2021-11-16 2023-01-03 Siemens Energy, Inc. Method and device to improve the performance of a power plant integrated with a thermal energy storage system
US20230175740A1 (en) * 2021-12-07 2023-06-08 Xi'an Jiaotong University Cyclical salinity-gradient power generating system and method based on phase change materials and solar photothermal conversion

Similar Documents

Publication Publication Date Title
CN106953352A (zh) 钠氯化物储热蓄电发电装置
CN105888994B (zh) 聚光太阳能蓄电发电装置
CN107221677B (zh) 一种高能量密度的液态金属电池
JP5723425B2 (ja) 熱交換器を含むアルカリ金属熱電変換器
CN110299512A (zh) 一种碳/锡复合基底支撑的锂金属电池负极的制备方法
CN105261770B (zh) 一种新能源电解储能系统
CN108183197A (zh) 一种复合金属锂负极结构及其制备方法
CN107758613A (zh) 一种联合电解铝和铝水反应制氢的调峰储能系统
CN104948400B (zh) 采用独立循环储热蓄电和梯级换热蒸发的太阳能热发电站
CN101237199A (zh) 结合光伏技术的太阳能热风发电系统
CN110729470A (zh) 一种液态或半液态金属电池的正极材料及制备方法和应用
CN109950640B (zh) 金属石墨中温储能电池及其制备方法
CN105006601A (zh) 一种液态金属电池
CN204212934U (zh) 聚光太阳能蓄电发电装置
WO2015081196A1 (en) Hybrid thermal and electrochemical energy storage
CN106711382A (zh) 一种用于高温电池的非氧化物多孔隔膜材料及其制备方法
CN104764218B (zh) 利用太阳能聚光装置为化学蓄电池提供热能的装置
CN205081546U (zh) 一种太阳能供电装置
CN104124444A (zh) 一种用于液固金属电池的正极材料
CN106785105A (zh) 一种液态金属电池及其密封绝缘装置
CN101604864B (zh) 钠硫电池与碱金属热电直接转换器集成能量装置
CN206497961U (zh) 一种液态金属电池及其密封绝缘装置
CN206657844U (zh) 一种液态金属电池
CN109935810A (zh) 一种钠离子电池负极材料的制备方法
CN207910014U (zh) 槽式太阳能钠氯化物电池储热蓄电发电装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication

Application publication date: 20170714

WW01 Invention patent application withdrawn after publication