CN106946788B - 一种二苯甲酮类离子液、抗菌材料及其制备方法 - Google Patents
一种二苯甲酮类离子液、抗菌材料及其制备方法 Download PDFInfo
- Publication number
- CN106946788B CN106946788B CN201710188553.8A CN201710188553A CN106946788B CN 106946788 B CN106946788 B CN 106946788B CN 201710188553 A CN201710188553 A CN 201710188553A CN 106946788 B CN106946788 B CN 106946788B
- Authority
- CN
- China
- Prior art keywords
- antibacterial
- formula
- preparation
- compound
- ionic liquid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D233/00—Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
- C07D233/54—Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members
- C07D233/56—Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, attached to ring carbon atoms
- C07D233/60—Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, attached to ring carbon atoms with hydrocarbon radicals, substituted by oxygen or sulfur atoms, attached to ring nitrogen atoms
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N43/00—Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
- A01N43/48—Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with two nitrogen atoms as the only ring hetero atoms
- A01N43/50—1,3-Diazoles; Hydrogenated 1,3-diazoles
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J7/00—Chemical treatment or coating of shaped articles made of macromolecular substances
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2327/00—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
- C08J2327/02—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
- C08J2327/04—Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing chlorine atoms
- C08J2327/06—Homopolymers or copolymers of vinyl chloride
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2375/00—Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
- C08J2375/04—Polyurethanes
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Pest Control & Pesticides (AREA)
- Dentistry (AREA)
- Medicinal Chemistry (AREA)
- Agronomy & Crop Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Plant Pathology (AREA)
- Engineering & Computer Science (AREA)
- Polymers & Plastics (AREA)
- General Health & Medical Sciences (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Environmental Sciences (AREA)
- Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
- Agricultural Chemicals And Associated Chemicals (AREA)
- Materials For Medical Uses (AREA)
Abstract
本发明属于材料领域,公开了一种二苯甲酮类离子液、抗菌材料及其制备方法。本发明所述二苯甲酮类离子液化合物具有式Ⅰ所示结构,该离子液制备过程反应条件温和,操作简单。本发明所述抗菌材料为基材表面经式Ⅰ所示化合物改性,基材表面共价接枝抗菌涂层。本发明所述抗菌材料的制备方法操作简单且普适性高、工艺参数易控制,对材料的种类及外形要求低,可方便地在高分子材料及金属材料表面构建抗菌涂层,制备抗菌材料。实验表明基材经该式Ⅰ所示化合物浸没或喷涂,并经紫外光固化后,亲水性得到明显改善,杀菌效果显著。
Description
技术领域
本发明属于材料领域,具体涉及一种二苯甲酮类离子液、抗菌材料及其制备方法。
背景技术
细菌、真菌和病毒等病原微生物能引发机体组织发生病变,严重威胁着人类健康。2011年,美国发生72.2万例院内感染,导致近7.5万病人死亡。每年增加医疗费用45~110亿美元。医疗器械在介(植)入体内后,在其表面滋生细菌是引发体内感染的最主要原因,给病患带来巨大的痛苦,甚至会导致残疾,危及生命安全。
细菌在生物医用材料表面粘附是引起感染的第一步,细菌先要粘附于物质表面,然后通过信号分子进行相互间的信息交流,引来同类细菌聚集,从而形成完整的生物膜结构(Pavithra D.,et al..Biofilm formation,bacterial adhesion and host responseon polymeric implants—issues and prevention.Biomedical Materials 2008;3:034003)。生物膜一旦形成,膜内细菌抵抗抗生素等杀菌药物及对抗机体免疫系统清除的能力将大大加强,从而引起细菌持续性感染。因此,针对医疗器械的感染,开展医用材料抗菌性能研究具有非常重要的意义(Harding J.L.,et al..Combating medical devicefouling.Trends in Biotechnology 2014;32:140-146)。
赋予材料表面抗菌性能,需要依据细菌感染发生机制,有针对性地进行抗菌表面的构建,目前已发展的主要有抗细菌粘附、杀菌、抗细菌粘附-杀菌(抗-杀)结合和抗细菌粘附-杀菌转化等策略(Yu Q.,et al..Dual-function antibacterial surfaces forbiomedical applications.Acta Biomaterialia 2015;16:1–13)。其中在材料表面引入抗菌剂杀菌是一种构建抗菌表面非常有效的方法,目前主要有两类方法:第一类是利用物理方法,例如,旋涂、沉积、在表面构建拓扑结构、等离子体注入等在表面修饰上如抗菌肽、抗生素、银离子和季铵盐类化合物等抗菌剂(Shi H.,et al..Antibacterial andbiocompatible properties of polyurethane nanofiber composites with integratedantifouling and bactericidal components.Composites Science and Technology2016;127:28-35);第二类是通过化学共价键在材料表面键合上抗菌剂,包括表面聚合接枝法、本体添加法、层层自组装法等(Schlenoff J.B.Zwitteration:Coating surfaces withzwitterionic functionality to reduce nonspecific adsorption.Langmuir 2014;30:9625-9636)。
物理方法虽然操作简单,但由于抗菌涂层与基材的结合力较弱,抗菌涂层具有易脱落、使用寿命较短的缺点(Desmet T.,et al..Nonthermal plasma technology as aversatile strategy for polymeric biomaterials surface modification:Areview.Biomacromolecules 2009;10:2351-2378)。与物理方法相比,化学方法由于抗菌涂层与基材利用共价键结合,因而抗菌涂层具有更好的稳定性,较长的使用寿命等特点。但目前已有的化学制备方法往往操作相对较复杂,制备周期较长,且有些只能在特定的基材上进行,普适性较差(Wei T.,et al..A smart antibacterial surface for the on-demandkilling and releasing of bacteria.Advanced Healthcare Materials 2016;5:449-456)。
发明内容
有鉴于此,本发明的目的在于针对现有技术中抗菌表面制备繁琐、基材种类有限的不足,提供一种抗菌材料及其制备方法,所述抗菌涂层稳定性高,使用寿命长,且制备方法简单。
为实现本发明的目的,本发明采用如下技术方案:
一种式Ⅰ所示化合物,为二苯甲酮类离子液化合物,
其中,n为1-6的整数。
在一些实施方案中,n为3,所述化合物结构式如式Ⅱ所示。
本发明还提供了式Ⅰ所示化合物的制备方法,式Ⅲ所示化合物与4-苯甲酰基苯甲酰氯进行反应,
其中,n为1-6的整数。
式Ⅲ所示化合物为末端为羟基的咪唑类衍生物。在一些实施方案中,n为3,所述化合物结构式如式Ⅳ所示
优选的,所述式Ⅲ所示化合物与4-苯甲酰基苯甲酰氯的摩尔比为1:1-1:3。
在一些实施方案中,所述反应具体为式Ⅲ所示化合物用溶剂溶解,加入缚酸剂,然后在冰浴条件下加入的4-苯甲酰苯甲酰氯的二氯甲烷溶液,室温反应1-6h。
本领域技术人员可以理解,所述溶剂包括但不限于丙酮、三氯甲烷或甲苯,所述缚酸剂包括但不限于三乙胺。
本发明还提供了一种抗菌材料,为基材表面经式Ⅰ所示化合物改性,基材表面共价接枝抗菌涂层。
本领域技术人员可以理解,本发明所述抗菌材料的基材可以为高分子材料如聚氨酯、聚氯乙烯、聚乙烯、聚丙烯、聚甲基丙烯酸甲酯、聚乙烯-乙烯醇、聚砜、聚酰胺、聚乙烯醇、聚碳酸酯、聚对苯二甲酸乙二醇酯、聚对苯二甲酸丁二醇酯或醋酸纤维素等,也可以为烷基化的金属材料,如钛片,或无机非金属材料,如硅片等。
本发明还提供了所述抗菌材料的制备方法,为式Ⅰ所示化合物与溶剂混合配制成涂层溶液,将预处理的基材与所述涂层溶液相接触,紫外光照射固化,溶剂清洗获得基材表面改性的抗菌材料。
作为优选,所述溶剂为丙酮、三氯甲烷、甲醇、乙醇或甲苯。
作为优选,所述涂层溶液中式Ⅰ所示化合物的浓度为1mg/ml-20mg/ml。在一些实施例中,所述涂层溶液中式Ⅰ所示化合物的浓度为10mg/ml。
在一些实施方案中,将预处理的基材浸没于所述涂层溶液,取出后紫外光照射固化,溶剂清洗获得基材表面改性的抗菌材料。
在一些实施方案中,也可采用喷涂的方式,将涂层溶液喷涂于基材表面后紫外光照射固化,溶剂清洗获得基材表面改性的抗菌材料。
本领域技术人员可以理解大部分的高分子材料的预处理为使用去离子水和乙醇清洗干燥。而金属材料如钛片,或无机非金属材料如硅片,则需在表面修饰上一层烷基层才可进行下一步的改性。
在一些实施方案中,本发明所述制备方法中金属钛片的预处理为用“piranha”溶液(硫酸:双氧水=7:3,体积比)清洗,然后置于十二烷基三乙氧基硅烷的甲苯溶液中反应18小时,以使金属钛片表面修饰上一层烷基层。
本发明所述制备方法对基材的外形没有要求,可以为片状、粒状、薄膜、管状、棒状或其它形状的固态材料。如聚氨酯片状材料,聚氯乙烯膜片状材料等。
作为优选,本发明所述制备方法中,所述基材浸没于所述涂层溶液的浸没时间为1-2min。
本发明所述制备方法通过紫外光照射使涂层溶液在预处理的基材表面固化,从而在基材表面构建具有高效杀菌效率的抗菌功能涂层,形成抗菌材料。
作为优选,所述紫外光波长为365nm。
作为优选,所述紫外光波长照射固化时间为1~5min。
由上述技术方案可知,本发明提供了一种二苯甲酮类离子液、抗菌材料及其制备方法。本发明所述二苯甲酮类离子液具有式Ⅰ所示结构,该离子液制备过程反应条件温和,操作简单。本发明所述抗菌材料为基材表面经式Ⅰ所示化合物改性,基材表面共价接枝抗菌涂层。本发明所述抗菌材料的制备方法操作简单且普适性高、工艺参数易控制,对材料的种类及外形要求低,可方便地在高分子材料及烷基化的金属材料表面构建抗菌涂层,制备抗菌材料。实验表明基材经该式Ⅰ所示化合物浸没或喷涂、紫外光固化后,亲水性改善,杀菌效果显著。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍。
图1示实施例1制备的二苯甲酮类离子液核磁共振检测(氢谱)图;
图2示实施例2聚氨酯片状材料改性前后表面杀菌效果的荧光图;
图3示实施例2聚氨酯片状材料改性前后示实施例2聚氨酯片状材料改性前后的活细菌密度结果图。
具体实施方式
本发明公开了一种二苯甲酮类离子液、抗菌表面及其制备方法。本领域技术人员可以借鉴本文内容,适当改进工艺参数实现。特别需要指出的是,所有类似的替换和改动对本领域技术人员来说是显而易见的,它们都被视为包括在本发明。本发明的方法及产品已经通过较佳实施例进行了描述,相关人员明显能在不脱离本发明内容、精神和范围内对本文所述的方法进行改动或适当变更与组合,来实现和应用本发明技术。
为了进一步理解本发明,下面将结合本发明实施例,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
如无特殊说明,本发明实施例中所涉及的试剂均为市售产品,均可以通过商业渠道购买获得。
实施例1、二苯甲酮类离子液的制备:
称取式Ⅳ所示的末端为羟基的咪唑类衍生物2.0g,用20ml三氯甲烷进行溶解,并加入2ml三乙胺。随后在冰浴条件下逐滴加入2M的4-苯甲酰苯甲酰氯的二氯甲烷溶液,滴加完毕后移至室温反应过夜,反应结束后经提纯得到式Ⅱ所示化合物。对制得的式Ⅱ所示化合物进行核磁检测(氢谱),结果见图1,产率为85%,纯度为96%。
实施例2:抗菌材料的制备
将实施例1制得的二苯甲酮类离子液单体配制成3mg/ml的丙酮溶液,将聚氨酯片状材料依次经去离子水和乙醇清洗,干燥后浸入上述溶液中1-2min取出,并在室温下晾干,然后在紫外光照射后固化2min,经丙酮溶液清洗后干燥制得表面改性的聚氨酯片状材料。
采用停滴法(Dong Y.,et al..Antibacterial surfaces based on poly(cationic liquid)brushes:switchability between killing and releasing viaanion counterion switching.Journal of Materials Chemistry B,2016;4:6111-6116)对材料表面进行亲水性检测,显示改性前聚氨酯片状材料静态水接触角大致为60°左右,改性后的聚氨酯片状材料静态水接触角大致为20°左右,表明聚氨酯片状材料表面改性成功,经二苯甲酮类离子液改性后的聚氨酯片状材料表面有较好的亲水性。
实施例3:抗菌性能检测
将大肠杆菌DH5α在37℃,无菌LB溶液中培养过夜,用无菌PBS溶液将细菌溶液稀释,使得在600nm下测得光密度(OD)为0.01。
分别移取稀释好的40μL细菌液至改性前的聚氨酯片状材料和改性后聚氨酯片状材料37℃下培养3小时,将SYTO 9绿色荧光核酸染液和PI红色荧光核酸染液(1:1)滴于样品表面,避光条件下染色15min后,用滤纸吸干样品材料表面的染液后在荧光显微镜下观察并拍照,其中,绿色代表活菌,红色代表死菌,结果见图2。统计并计算杀菌效率,结果见图3。其中杀菌效率的计算公式如下:
杀菌效率=(死菌的数量/细菌的总数量)×100%
结果显示聚氨酯片状材料表面经二苯甲酮类离子液改性后杀菌效果显著,杀菌效率为95%。
实施例4:
将丙酮溶液超声洗净的金属钛片用“piranha”溶液(硫酸:双氧水=7:3,体积比)进行预处理,然后置于十二烷基三乙氧基硅烷的甲苯溶液中反应18h,在金属钛片表面修饰上一层烷基层。随后将实施例1制得的二苯甲酮类离子液单体配制成10mg/ml的甲苯溶液,将修饰有烷基层的金属钛片浸入上述溶液中1-2min后取出,并在室温下晾干,然后在紫外光照射后固化2min,光照完毕后经甲苯清洗并干燥制得表面改性的金属钛片。
亲水性检测显示改性后的金属钛的表面有较好的亲水性,静态水接触角为20°左右,表明金属钛表面改性成功。按照实施例3上述方法进行抗菌性能检测,结果显示改性后的金属钛的表面杀菌效果较好,杀菌效率可达96%。
实施例5:
将实施例1制得的二苯甲酮类离子液单体配制成10mg/ml的丙酮溶液,将预先清洗过干燥后的聚氯乙烯膜片状材料浸入上述溶液中1-2min取出,并在室温下晾干,然后在紫外光照射后固化2min,光照完毕后经丙酮溶液清洗并干燥制得表面改性的聚氯乙烯膜状材料。
亲水性检测显示改性后的PVC膜片状材料的表面有较好的亲水性,静态水接触角为20°左右,表明PVC膜片状材料表面改性成功。按照实施例3上述方法进行抗菌性能检测,结果显示改性后的聚氯乙烯膜片状材料的表面杀菌效果较好,杀菌效率为94%。
实施例6:
将实施例1制得的二苯甲酮类离子液单体配制成10mg/ml的乙醇溶液,将预先清洗过干燥后的醋酸纤维素电纺膜材料浸入上述溶液中1-2min取出,并在室温下晾干,然后在紫外光照射后固化2min,光照完毕后经乙醇溶液清洗并干燥制得表面改性的醋酸纤维素电纺膜材料。
亲水性检测显示改性的醋酸纤维素电纺膜材料的表面有较好的亲水性,静态水接触角为20°左右,表明醋酸纤维素电纺膜材料表面改性成功。按照实施例3上述方法进行抗菌性能检测,结果显示改性的醋酸纤维素电纺膜材料的表面杀菌效果较好,杀菌效率可达97%。
Claims (9)
3.根据权利要求2所述的制备方法,其特征在于,所述式Ⅲ所示化合物与4-苯甲酰基苯甲酰氯的摩尔比为1:1-1:3。
4.根据权利要求2所述的制备方法,其特征在于,所述反应具体为式Ⅲ所示化合物用溶剂溶解,加入缚酸剂,然后在冰浴条件下加入的4-苯甲酰苯甲酰氯的二氯甲烷溶液,室温反应1-6h。
5.一种抗菌材料,其特征在于,基材表面经权利要求1所述式Ⅰ所示化合物改性。
6.权利要求5所述抗菌材料,其特征在于,所述基材为聚氨酯、聚氯乙烯、聚乙烯、聚丙烯、聚甲基丙烯酸甲酯、聚乙烯-乙烯醇、聚砜、聚酰胺、聚乙烯醇、聚碳酸酯、聚对苯二甲酸乙二醇酯、聚对苯二甲酸丁二醇酯、醋酸纤维素、钛片或硅片。
7.权利要求5所述抗菌材料的制备方法,其特征在于,权利要求1所述式Ⅰ所示化合物与溶剂混合配制成涂层溶液,将预处理的基材与所述涂层溶液相接触,紫外光照射固化,溶剂清洗获得改性后的抗菌基材表面。
8.根据权利要求7所述制备方法,其特征在于,所述溶剂为丙酮、三氯甲烷、二氯甲烷、甲醇、乙醇或甲苯;所述涂层溶液中式Ⅰ所示化合物的浓度为1mg/ml-20mg/ml。
9.根据权利要求7所述制备方法,其特征在于,所述紫外光波长为365nm,固化时间为1-5min。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710188553.8A CN106946788B (zh) | 2017-03-27 | 2017-03-27 | 一种二苯甲酮类离子液、抗菌材料及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710188553.8A CN106946788B (zh) | 2017-03-27 | 2017-03-27 | 一种二苯甲酮类离子液、抗菌材料及其制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106946788A CN106946788A (zh) | 2017-07-14 |
CN106946788B true CN106946788B (zh) | 2020-01-17 |
Family
ID=59472255
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710188553.8A Active CN106946788B (zh) | 2017-03-27 | 2017-03-27 | 一种二苯甲酮类离子液、抗菌材料及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106946788B (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115010697A (zh) * | 2022-06-21 | 2022-09-06 | 广西大学 | 一种阳离子光敏剂季铵盐接枝醋酸纤维素反渗透膜的制备 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102942812A (zh) * | 2012-12-07 | 2013-02-27 | 中国人民解放军国防科学技术大学 | 一种可紫外光交联的咪唑盐型高分子抗菌剂及其制备方法 |
CN103316712A (zh) * | 2013-06-26 | 2013-09-25 | 天津工业大学 | 用于染料降解的聚丙烯催化膜及其制备方法 |
CN104710563A (zh) * | 2015-03-27 | 2015-06-17 | 严锋 | 一种长效离子型抗菌复合膜及其制备方法 |
CN104744866A (zh) * | 2015-03-30 | 2015-07-01 | 苏州大学 | 一种聚离子液体抗菌复合膜及其制备方法 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100752150B1 (ko) * | 2006-05-11 | 2007-08-29 | 한국과학기술연구원 | 이미다졸륨 염을 갖는 광경화성 단량체, 상기 이미다졸륨염을 함유하는 항균성 광경화형 조성물 및 상기조성물로부터 제조되는 항균성 고분자 재료 |
JP5332569B2 (ja) * | 2008-09-10 | 2013-11-06 | 東レ株式会社 | 医療用材料 |
-
2017
- 2017-03-27 CN CN201710188553.8A patent/CN106946788B/zh active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102942812A (zh) * | 2012-12-07 | 2013-02-27 | 中国人民解放军国防科学技术大学 | 一种可紫外光交联的咪唑盐型高分子抗菌剂及其制备方法 |
CN103316712A (zh) * | 2013-06-26 | 2013-09-25 | 天津工业大学 | 用于染料降解的聚丙烯催化膜及其制备方法 |
CN104710563A (zh) * | 2015-03-27 | 2015-06-17 | 严锋 | 一种长效离子型抗菌复合膜及其制备方法 |
CN104744866A (zh) * | 2015-03-30 | 2015-07-01 | 苏州大学 | 一种聚离子液体抗菌复合膜及其制备方法 |
Non-Patent Citations (2)
Title |
---|
Antibacterial surfaces based on poly(cationic liquid) brushes: switchability between killing and releasing via anion counterion switching;Yi-Shi Dong;《J. Mater. Chem. B》;20160824;第4卷;6111-6116 * |
Smart Antibacterial Surfaces Established by One-Step Photo-Crosslinking;Yishi Dong et al.;《Adv. Mater. Interfaces》;20171031;第4卷;1700953 * |
Also Published As
Publication number | Publication date |
---|---|
CN106946788A (zh) | 2017-07-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Yang et al. | Smart antibacterial surface made by photopolymerization | |
Zhu et al. | Antifouling and antibacterial behavior of membranes containing quaternary ammonium and zwitterionic polymers | |
Jiang et al. | Antifouling and antimicrobial polymer membranes based on bioinspired polydopamine and strong hydrogen-bonded poly (N-vinyl pyrrolidone) | |
Zhang et al. | Antifouling polyimide membrane with grafted silver nanoparticles and zwitterion | |
Ren et al. | Highly stable, protein-resistant surfaces via the layer-by-layer assembly of poly (sulfobetaine methacrylate) and tannic acid | |
Dhende et al. | One-step photochemical synthesis of permanent, nonleaching, ultrathin antimicrobial coatings for textiles and plastics | |
CN103477227B (zh) | 配体官能化基底 | |
Zhang et al. | Micro-and macroscopically structured zwitterionic polymers with ultralow fouling property | |
Wang et al. | Dual-functional anti-biofouling coatings with intrinsic self-healing ability | |
CN102921318B (zh) | 一种外压式荷电中空纤维纳滤膜及其制备方法 | |
Xu et al. | Tea stains-inspired antifouling coatings based on tannic acid-functionalized agarose | |
TW201512333A (zh) | 具有活體物質的附著抑制能之離子複合材料及其製造方法 | |
Hibbs et al. | Designing a biocidal reverse osmosis membrane coating: Synthesis and biofouling properties | |
Dong et al. | Antibacterial surfaces based on poly (cationic liquid) brushes: switchability between killing and releasing via anion counterion switching | |
JP2012506771A (ja) | 官能化ナノ粒子を含む付着防止コーティング組成物 | |
Lien et al. | A zwitterionic interpenetrating network for improving the blood compatibility of polypropylene membranes applied to leukodepletion | |
CN109021229B (zh) | 一种含硫超支化聚缩水甘油醚共聚物的制备方法及其应用 | |
JP2016503486A (ja) | リガンドグラフト化基材 | |
CN109200835A (zh) | 一种仿生构建聚季铵盐型抗菌pvdf膜的制备方法 | |
Liang et al. | Salt-responsive polyzwitterion brushes conjugated with silver nanoparticles: Preparation and dual antimicrobial/release properties | |
Cai et al. | Multi-functionalization of poly (vinylidene fluoride) membranes via combined “grafting from” and “grafting to” approaches | |
CN104804195A (zh) | 贻贝粘附和细胞膜抗污双仿生多臂peg及其制备方法 | |
US10744748B2 (en) | Micro nanoporous membrane, preparing method thereof and microfluidic device using thereof | |
Xie et al. | Photo-responsive membrane surface: Switching from bactericidal to bacteria-resistant property | |
Su et al. | Solvent-free fabrication of self-regenerating antibacterial surfaces resisting biofilm formation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |