CN106936445B - 一种低复杂度近似最大似然的多元ldpc码译码方法 - Google Patents

一种低复杂度近似最大似然的多元ldpc码译码方法 Download PDF

Info

Publication number
CN106936445B
CN106936445B CN201710149296.7A CN201710149296A CN106936445B CN 106936445 B CN106936445 B CN 106936445B CN 201710149296 A CN201710149296 A CN 201710149296A CN 106936445 B CN106936445 B CN 106936445B
Authority
CN
China
Prior art keywords
bit
decoding
deleted
ldpc code
binary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710149296.7A
Other languages
English (en)
Other versions
CN106936445A (zh
Inventor
白宝明
邓堤峡
徐恒舟
张冀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xidian University
Original Assignee
Xidian University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xidian University filed Critical Xidian University
Priority to CN201710149296.7A priority Critical patent/CN106936445B/zh
Publication of CN106936445A publication Critical patent/CN106936445A/zh
Application granted granted Critical
Publication of CN106936445B publication Critical patent/CN106936445B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/03Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words
    • H03M13/05Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits
    • H03M13/11Error detection or forward error correction by redundancy in data representation, i.e. code words containing more digits than the source words using block codes, i.e. a predetermined number of check bits joined to a predetermined number of information bits using multiple parity bits
    • H03M13/1102Codes on graphs and decoding on graphs, e.g. low-density parity check [LDPC] codes
    • H03M13/1105Decoding

Landscapes

  • Physics & Mathematics (AREA)
  • Probability & Statistics with Applications (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Error Detection And Correction (AREA)

Abstract

一种低复杂度近似最大似然的多元LDPC码译码方法,解决了现有技术的多元LDPC码的迭代译码方法陷入险阱集不收敛的问题和多元LDPC码的近似最大似然译码方法复杂度较高的问题。本发明实现方法的步骤:进行迭代译码;多元形式到二元形式的转换;挑选删除比特位;挑选附加删除比特位;对二元判决序列进行比特删除操作;对删除序列进行二元列表纠删译码;构建候选码字列表;确定当前最小欧氏距离;将当前最小欧氏距离赋值给当前门限欧氏距离;译码结束。本发明通过将FFT‑QSPA算法级联复杂度较低的二元列表纠删译码LED译码方法,使得译码性能近似最大似然译码性能且译码复杂度较低。

Description

一种低复杂度近似最大似然的多元LDPC码译码方法
技术领域
本发明属于无线通信技术领域,更进一步涉及信道编码技术领域中一种低复杂度近似最大似然的多元低密度奇偶检验LDPC(Low-Density Parity-Check)码译码方法。本发明可用于机器类通信、远程指令链路和智能测量网络等短帧长应用领域中的差错控制译码。
背景技术
多元低密度奇偶校验LDPC码自提出以来就引起了研究人员的关注。现有的研究结果表明,相比于二元低密度奇偶校验LDPC码,多元低密度奇偶校验LDPC码具有更好的纠错性能、更强的抗突发错误能力和更高的数据传输速率。
鉴于多元低密度奇偶校验LDPC码的上述优点,人们对多元低密度奇偶校验LDPC码的编译码方案做了许多研究。其中针对多元低密度奇偶校验LDPC码的译码方面,人们提出了多元和积译码算法QSPA(q-ary sum-product algorithm)、基于快速傅里叶变换的多元和积译码算法FFT-QSPA(fast Fourier transform based q-ary sum-productalgorithm)以及扩展最小和EMS(Extended Min-Sum)算法等迭代译码算法。由于低密度奇偶校验LDPC码的Tanner图中存在环,迭代译码算法成为了低密度奇偶校验LDPC码的一种次优译码算法。当迭代译码算法陷入陷阱集时,算法将不会收敛,进而导致译码失败。
北京航空航天大学在其申请的专利文献“低复杂度的多进制LDPC码译码方法”(申请公告日:2014年9月17日,申请公告号:CN104052501A)中公开了一种低复杂度的多进制低密度奇偶检验LDPC码译码方法。该专利申请中的译码方法在迭代中采用多进制符号的二进制表示简化码字信息置信度的表示方式,每次迭代通过校验节点的计算更新边信息的置信度,在变量节点的计算中引入加权加强变量节点对边信息的使用效率,并且采用二进制的信息更新方式计算码字信息和外信息。该发明码字每个符号的信息长度远低于现有方法中的长度,边信息仅有一个有限域符号及其置信度,具有很低的存储复杂度,变量节点和校验节点的计算主要为整数加法和整数比较运算,只有少量的有限域运算和乘法运算,具有很低的计算复杂度。该方法虽然较之传统置信度传播BP(Belief Propagation)译码方法在一定程度上降低了译码复杂度,但是,该方法仍然存在的不足之处是,陷入陷阱集后译码不收敛,导致译码失败。
Baldi等人在其发表的论文“A hybrid decoding scheme for short non-binaryLDPC codes”(IEEE Communications Letters,2014:2093-2096.)中提出了一种针对短码长多元低密度奇偶校验LDPC码的混合译码方法。该方法将置信度传播BP(BeliefPropagation)方法和分级统计译码OSD(Ordered Statistic Decoding)方法结合,很大程度上解决了迭代译码算法陷入陷阱集不收敛的问题,得到了近似最大似然的译码性能。该方法存在的不足之处是:分级统计译码OSD方法获取单个候选码字的计算复杂度较高而且需要获取的候选码字数量大,导致混合译码方法的整体计算复杂度高,译码效率低。
发明内容
本发明的目的在于针对上述已有技术的不足,提出一种低复杂度近似最大似然的多元低密度奇偶校验LDPC码译码方法,以较低复杂度解决了迭代译码算法陷入陷阱集不收敛的问题。
为了实现上述目的,本发明方法的思路是:首先采用基于快速傅里叶变换的和积算法FFT-QSPA对加噪的消息进行迭代译码,如果基于快速傅里叶变换的和积算法FFT-QSPA陷入陷阱集,不能在最大迭代次数内找到合法码字,那么再利用二元列表纠删译码LED(List Erasure Decoder)算法译码,从而使本方法达到近似最大似然的译码性能。
本发明方法的实现步骤如下:
(1)设置译码最大迭代次数I=100;
(2)进行迭代译码:
(2a)对多元低密度奇偶校验LDPC码进行二进制相移键控BPSK调制后,将调制后的信息送入加性高斯白噪声AWGN信道进行加噪处理,得到加噪后的消息;
(2b)采用基于快速傅里叶变换的和积算法FFT-QSPA,对加噪后的消息进行迭代译码;
(3)判断在基于快速傅里叶变换的和积算法FFT-QSPA最大迭代次数内是否找到合法码字,若是,则执行步骤(19),否则,执行步骤(4);
(4)多元形式到二元形式的转换:
(4a)将基于快速傅里叶变换的和积算法FFT-QSPA的第次迭代输出的多元消息向量转换成对应的二元消息向量,其中,g表示多元低密度奇偶校验LDPC码的环长,表示向下取整操作;
(4b)将基于快速傅里叶变换的和积算法FFT-QSPA的第次迭代输出的多元判决序列,转换成对应的二元判决序列;
(4c)将基于有限域G(q)构造的多元低密度奇偶校验LDPC码的多元校验矩阵中的每一个元素h∈GF(q),替换为与其对应的矩阵表示形式,得到多元校验矩阵对应的二元校验矩阵,其中,h表示多元校验矩阵中的元素,q表示有限域GF(q)中元素的个数,∈表示属于符号;
(5)挑选删除比特位:
(5a)对二元消息向量的分量按绝对值的大小,从小到大排序,得到排序后的消息向量;
(5b)将排序后的消息向量前L1位对应的比特位依次标记为删除位,将这些删除位加入删除比特集合中;
(6)将挑选附加删除位的次数初始化为零;
(7)判断挑选附加删除位的次数是否等于最大挑选次数,若是,则执行步骤(19),否则,执行步骤(8);
(8)将挑选附加删除位的次数加1后,从排序后消息向量的第L1位分量对应的比特位到第L1+2L2位分量对应的比特位中,依次随机挑选L2个比特位,作为附加删除位,将这些附加删除位加入到删除比特集合中;
(9)对二元判决序列进行比特删除操作:
将步骤(4b)得到的二元判决序列,按照删除比特集合中的删除位进行比特删除操作,得到删除序列;
(10)对删除序列进行二元列表纠删译码:
利用二元列表纠删译码LED算法,对删除序列进行译码,得到译码序列和残余删除比特集合;
(11)将比特翻转次数初始化为零;
(12)判断比特翻转次数是否等于最大比特翻转次数,若是,则执行步骤(14),否则,执行步骤(13);
(13)将二元列表纠删译码LED算法输出的译码序列,按照残余删除比特集合中的比特位进行一次比特翻转,得到一个候选码字,将该候选码字列入候选码字列表中,将比特翻转次数加1后,执行步骤(12);
(14)确定当前欧氏最小距离:
(14a)按照下式,计算候选码字列表中的每一个候选码字的欧氏距离:
其中,uk表示候选码字列表中的第k个候选码字的欧氏距离,表示开根号操作,N表示候选码字和加噪后的消息分量的总数,m表示码字中的第m分量的下标,n表示加噪后的消息中的第n分量的下标,ck,m表示第k个候选码字中的第m分量,rn表示加噪后的消息的第n分量,m与n取值范围为1到N,且取值相等;
(14b)找出所有候选码字中欧氏距离最小的候选码字后,将该欧氏距离作为当前最小欧氏距离;
(15)判断挑选附加删除位的次数是否为零,若是,则执行步骤(16),否则执行步骤(17);
(16)判断当前最小欧氏距离是否小于初始门限欧氏距离为106,若是,则执行步骤(18),否则,从步骤(8)得到的删除比特集合中去除附加删除比特后,返回步骤(7);
(17)判断当前最小欧氏距离是否小于当前门限欧氏距离,若是,则执行步骤(18),否则,从步骤(8)得到的删除比特集合中去除附加删除比特后,执行步骤(7);
(18)将当前最小欧氏距离的值赋给当前门限欧式距离后,执行步骤(7);
(19)译码结束:
将译码输出的估计码字取值为步骤(14b)中得到的当前欧氏距离最小的候选码字,译码结束。
本发明与现有技术相比具有以下优点:
第一,由于本发明将二元列表纠删译码LED算法输出的译码序列,按照残余删除比特集合中的比特位进行比特翻转,克服了现有技术的迭代译码算法陷入陷阱集后译码不收敛,导致译码失败的问题,从而使得本发明获得了近似最大似然的性能。
第二,由于本发明利用二元列表纠删译码LED算法对删除序列进行译码,得到的残余删除比特集合具有较少的元素个数,使得获取单个候选码字的复杂度降低和候选码字列表的元素个数减少,克服了现有技术获取单个候选码字的复杂度较高且需要获取的候选码字数量大,导致混合译码方法的整体计算复杂度高,译码效率低的问题,使得本发明以较低的复杂度达到了近似最大似然的性能。
附图说明
图1是本发明的流程图;
图2是采用本发明方法与现有技术方法的译码性能对比图;
图3是采用本发明方法与现有技术方法的译码复杂度对比图。
具体实施方式
下面结合附图对本发明做进一步描述。
参照附图1,对本发明的实现方法做进一步描述。
步骤1,设置译码最大迭代次数I=100。
步骤2,进行迭代译码。
对多元低密度奇偶校验LDPC码进行二进制相移键控BPSK调制后,将调制后的信息送入加性高斯白噪声AWGN信道进行加噪处理,得到加噪后的消息。
采用基于快速傅里叶变换的和积算法FFT-QSPA,对加噪后的消息进行迭代译码。
步骤3,判断在基于快速傅里叶变换的和积算法FFT-QSPA最大迭代次数内是否找到合法码字,若是,则执行步骤(19),否则,执行步骤(4)。
所述的合法码字是指满足下列关系的序列:
Hgv=0
其中,H表示多元低密度奇偶校验LDPC码的校验矩阵,v表示合法码字,
g表示矩阵相乘操作。
步骤4,多元形式到二元形式的转换。
将基于快速傅里叶变换的和积算法FFT-QSPA的第2次迭代输出的多元消息向量转换成对应的二元消息向量。
将基于快速傅里叶变换的和积算法FFT-QSPA的第2次迭代输出的多元判决序列,转换成对应的二元判决序列。
将基于有限域G(q)构造的多元低密度奇偶校验LDPC码的多元校验矩阵中的每一个元素h∈GF(q),替换为与其对应的矩阵表示形式,得到多元校验矩阵对应的二元校验矩阵,其中,h表示多元校验矩阵中的元素,q表示有限域GF(q)中元素的个数,∈表示属于符号。
所述的多元校验矩阵转换成对应的二元校验矩阵步骤如下:
第一步,对于任意的0≤i≤q-2,有限域GF(q)中的元素αi的矩阵表示形式为Ai,Ai表示矩阵A的i次方,A定义为:
其中,q表示有限域GF(q)中元素的总数,q=2p,p表示本原多项式的系数的个数,α表示有限域GF(q)的本原元素,fj表示有限域GF(q)的本原多项式的第j个系数,j表示本原多项式的第j个系数的下标,j∈[0,p-1],∈表示属于符号;
第二步,将基于有限域G(q)构造的多元低密度奇偶校验LDPC码的多元校验矩阵中的每一个元素h∈GF(q),替换为与其对应的矩阵表示形式,其中,h表示多元校验矩阵中的元素。
步骤5,挑选删除比特位。
对二元消息向量的分量按绝对值的大小,从小到大排序,得到排序后的消息向量。
将排序后的消息向量前L1位对应的比特位依次标记为删除位,将这些删除位加入删除比特集合中。
步骤6,将挑选附加删除位的次数初始化为零。
步骤7,判断挑选附加删除位的次数是否等于最大挑选次数,若是,则执行步骤(19),否则,执行步骤(8)。
步骤8,将挑选附加删除位的次数加1后,从排序后消息向量的第L1位分量对应的比特位到第L1+2L2位分量对应的比特位中,依次随机挑选L2个比特位,作为附加删除位,将这些附加删除位加入到删除比特集合中。
所述L1和L2是指满足下列关系的整数:
L1+2L2≤N (L1>0,L2≥0)
其中,L1表示初始删除比特个数,L2表示附加删除比特的个数,N表示编码长度。
步骤9,对二元判决序列进行比特删除操作。
将步骤(4b)得到的二元判决序列,按照删除比特集合中的删除位进行比特删除操作,得到删除序列。
步骤10,对删除序列进行二元列表纠删译码。
利用二元列表纠删译码LED算法,对删除序列进行译码,得到译码序列和残余删除比特集合。
步骤11,将比特翻转次数初始化为零。
步骤12,判断比特翻转次数是否等于最大比特翻转次数,若是,则执行步骤(14),否则,执行步骤(13)。
所述最大比特翻转次数是由下式得到:
其中,Jmax表示最大比特翻转次数,min表示取最小值操作,∑表示求和操作,L表示残余删除比特集合中删除比特的个数,表示从残余删除比特集合中选出t个删除比特的组合数。
步骤13,将二元列表纠删译码LED算法输出的译码序列,按照残余删除比特集合中的比特位进行一次比特翻转,得到一个候选码字,将该候选码字列入候选码字列表中,将比特翻转次数加1后,执行步骤(12)。
步骤14,确定当前欧氏最小距离。
按照下式,计算候选码字列表中的每一个候选码字的欧氏距离:
其中,uk表示候选码字列表中的第k个候选码字的欧氏距离,表示开根号操作,N表示候选码字和加噪后的消息分量的总数,m表示码字中的第m分量的下标,n表示加噪后的消息中的第n分量的下标,ck,m表示第k个候选码字中的第m分量,rn表示加噪后的消息的第n分量,m与n取值范围为1到N,且取值相等。
找出所有候选码字中欧氏距离最小的候选码字后,将该欧氏距离作为当前最小欧氏距离。
步骤15,判断挑选附加删除位的次数是否为零,若是,则执行步骤(16),否则执行步骤(17)。
步骤16,判断当前最小欧氏距离是否小于初始门限欧氏距离为106,若是,则执行步骤(18),否则,从步骤(8)得到的删除比特集合中去除附加删除比特后,返回步骤(7)。
步骤17,判断当前最小欧氏距离是否小于当前门限欧氏距离,若是,则执行步骤(18),否则,从步骤(8)得到的删除比特集合中去除附加删除比特后,执行步骤(7)。
步骤18,将当前最小欧氏距离的值赋给当前门限欧式距离后,执行步骤(7)。
步骤19,译码结束。
将译码输出的估计码字取值为步骤(14b)中得到的当前欧氏距离最小的候选码字,译码结束。
本发明的效果可通过以下仿真进一步说明:
1.仿真条件:
本发明的实验仿真选用CCSDS标准中GF(256)上码率为1/2码长为16的多元低密度奇偶检验LDPC码。表1是本发明方法所使用的仿真参数。表1中参数包括信噪比、初始删除比特个数L1、附加删除比特的个数L2和最大挑选次数Ni
2.仿真内容:
仿真1.对CCSDS标准中GF(256)上码率为1/2码长为16的多元低密度奇偶检验LDPC码进行二进制相移键控BPSK调制,再经过加性高斯白噪声AWGN信道加噪处理,最后分别采用本发明方法和现有技术方法进行译码,仿真结果如图2所示。
图2中以星形标记的曲线表示在加性高斯白噪声AWGN信道下,基于快速傅里叶变换的和积算法FFT-QSPA在不同信噪比下的误帧率。
图2中虚线表示GF(256)上码率为1/2码长为16的多元低密度奇偶检验LDPC码的香农球包界。
图2中以菱形标示的曲线表示在加性高斯白噪声AWGN信道下,本发明译码方法在不同信噪比下的误帧率。
由图2可以看出,在误帧率为10-4时,本发明方法与基于快速傅里叶变换的和积算法FFT-QSPA相比有0.4dB的性能增益。相比于基于快速傅里叶变换的和积算法FFT-QSPA距离香农球包界1dB左右的性能差距,本发明方法将与香农球包界的性能差距缩短至了0.6dB。可见,本发明相比传统迭代译码算法具有更优的译码性能,达到了近似最大似然的译码性能。
仿真2.对CCSDS标准中GF(256)上码率为1/2码长为16的多元低密度奇偶检验LDPC码进行二进制相移键控BPSK调制,再经过加性高斯白噪声AWGN信道加噪处理,最后分别采用本发明方法和现有技术方法进行译码,译码复杂度如图3所示。
图3中以圆形标示的曲线表示在加性高斯白噪声信道AWGN下,现有近似最大似然译码方法在不同信噪比下的平均二元操作次数。
图3中以叉形标示的曲线表示在加性高斯白噪声信道AWGN下,现有本发明的译码方法在不同信噪比下的平均二元操作次数。
由图3可以看出,当信噪比较小,如信噪比等于0.5dB时,现有近似最大似然译码方法平均需要4×109次二元操作,才能完成译码。而本发明的译码方法平均只需要8×107次二元操作,即可完成译码。可见,本发明译码方法的复杂度是现有近似最大似然译码方法复杂度的
由图3可以看出,当信噪比适中,如信噪比等于2.0dB时,现有近似最大似然译码方法平均需要4×108次二元操作,才能完成译码。而本发明的译码方法平均只需要4×107次二元操作,即可完成译码。可见,本发明译码方法的复杂度是现有近似最大似然译码方法复杂度的
由图3可以看出,当信噪比适中,如信噪比等于4.0dB时,现有近似最大似然译码方法与本发明的译码方法都平均需要1×106次二元操作,才能完成译码。由此可见,本发明的译码方法较之现有近似最大似然译码有复杂度低的特点。
表1本发明方法的仿真参数

Claims (5)

1.一种低复杂度近似最大似然的多元LDPC码译码方法,包括如下步骤:
(1)设置译码最大迭代次数I=100;
(2)进行迭代译码:
(2a)对多元低密度奇偶校验LDPC码进行二进制相移键控BPSK调制后,将调制后的信息送入加性高斯白噪声AWGN信道进行加噪处理,得到加噪后的消息;
(2b)采用基于快速傅里叶变换的和积算法FFT-QSPA,对加噪后的消息进行迭代译码;
(3)判断在基于快速傅里叶变换的和积算法FFT-QSPA最大迭代次数内是否找到合法码字,若是,则执行步骤(19),否则,执行步骤(4);
(4)多元形式到二元形式的转换:
(4a)将基于快速傅里叶变换的和积算法FFT-QSPA的第次迭代输出的多元消息向量转换成对应的二元消息向量,其中,g表示多元低密度奇偶校验LDPC码的环长,表示向下取整操作;
(4b)将基于快速傅里叶变换的和积算法FFT-QSPA的第次迭代输出的多元判决序列,转换成对应的二元判决序列;
(4c)将基于有限域G(q)构造的多元低密度奇偶校验LDPC码的多元校验矩阵中的每一个元素h∈GF(q),替换为与其对应的矩阵表示形式,得到多元校验矩阵对应的二元校验矩阵,其中,h表示多元校验矩阵中的元素,q表示有限域GF(q)中元素的个数,∈表示属于符号;
(5)挑选删除比特位:
(5a)对二元消息向量的分量按绝对值的大小,从小到大排序,得到排序后的消息向量;
(5b)将排序后的消息向量前L1位对应的比特位依次标记为删除位,将这些删除位加入删除比特集合中;
(6)将挑选附加删除位的次数初始化为零;
(7)判断挑选附加删除位的次数是否等于最大挑选次数,若是,则执行步骤(19),否则,执行步骤(8);
(8)将挑选附加删除位的次数加1后,从排序后消息向量的第L1位分量对应的比特位到第L1+2L2位分量对应的比特位中,依次随机挑选L2个比特位,作为附加删除位,将这些附加删除位加入到删除比特集合中;
(9)对二元判决序列进行比特删除操作:
将步骤(4b)得到的二元判决序列,按照删除比特集合中的删除位进行比特删除操作,得到删除序列;
(10)对删除序列进行二元列表纠删译码:
利用二元列表纠删译码LED算法,对删除序列进行译码,得到译码序列和残余删除比特集合;
(11)将比特翻转次数初始化为零;
(12)判断比特翻转次数是否等于最大比特翻转次数,若是,则执行步骤(14),否则,执行步骤(13);
(13)将二元列表纠删译码LED算法输出的译码序列,按照残余删除比特集合中的比特位进行一次比特翻转,得到一个候选码字,将该候选码字列入候选码字列表中,将比特翻转次数加1后,执行步骤(12);
(14)确定当前最小欧氏距离:
(14a)按照下式,计算候选码字列表中的每一个候选码字的欧氏距离:
其中,uk表示候选码字列表中的第k个候选码字的欧氏距离,表示开根号操作,Nc表示候选码字和加噪后的消息分量的总数,m表示码字中的第m分量的下标,n表示加噪后的消息中的第n分量的下标,ck,m表示第k个候选码字中的第m分量,rn表示加噪后的消息的第n分量,m与n取值范围为1到Nc,且取值相等;
(14b)找出所有候选码字中欧氏距离最小的候选码字后,将该欧氏距离作为当前最小欧氏距离;
(15)判断挑选附加删除位的次数是否为零,若是,则执行步骤(16),否则执行步骤(17);
(16)判断当前最小欧氏距离是否小于取值为106的初始门限欧氏距离,若是,则执行步骤(18),否则,从步骤(8)得到的删除比特集合中去除附加删除比特后,返回步骤(7);
(17)判断当前最小欧氏距离是否小于当前门限欧氏距离,若是,则执行步骤(18),否则,从步骤(8)得到的删除比特集合中去除附加删除比特后,执行步骤(7);
(18)将当前最小欧氏距离的值赋给当前门限欧式距离后,执行步骤(7);
(19)译码结束:
将译码输出的估计码字取值为步骤(14b)中得到的当前欧氏距离最小的候选码字,译码结束。
2.根据权利要求1所述的一种低复杂度近似最大似然的多元LDPC码译码方法,其特征在于,步骤(3)中所述的合法码字是指满足下列关系的序列:
Hgv=0
其中,H表示多元低密度奇偶校验LDPC码的校验矩阵,v表示合法码字,g表示矩阵相乘操作。
3.根据权利要求1所述的一种低复杂度近似最大似然的多元LDPC码译码方法,其特征在于,步骤(4c)中所述的多元校验矩阵转换成对应的二元校验矩阵步骤如下:
第一步,对于任意的0≤i≤q-2,有限域GF(q)中的元素αi的矩阵表示形式为Ai,Ai表示矩阵A的i次方,A定义为:
其中,q表示有限域GF(q)中元素的总数,q=2p,p表示本原多项式的系数的个数,α表示有限域GF(q)的本原元素,fj表示有限域GF(q)的本原多项式的第j个系数,j表示本原多项式的第j个系数的下标,j∈[0,p-1],∈表示属于符号;
第二步,将基于有限域G(q)构造的多元低密度奇偶校验LDPC码的多元校验矩阵中的每一个元素h∈GF(q),替换为与其对应的矩阵表示形式,其中,h表示多元校验矩阵中的元素。
4.根据权利要求1所述的一种低复杂度近似最大似然的多元LDPC码译码方法,其特征在于,步骤(8)中所述L1和L2是指满足下列关系的整数:
L1+2L2≤N(L1>0,L2≥0)
其中,L1表示初始删除比特个数,L2表示附加删除比特的个数,N表示编码长度。
5.根据权利要求1所述的一种低复杂度近似最大似然的多元LDPC码译码方法,其特征在于,步骤(12)中所述最大比特翻转次数是由下式得到:
其中,Jmax表示最大比特翻转次数,min表示取最小值操作,∑表示求和操作,L表示残余删除比特集合中删除比特的个数,表示从残余删除比特集合中选出t个删除比特的组合数。
CN201710149296.7A 2017-03-14 2017-03-14 一种低复杂度近似最大似然的多元ldpc码译码方法 Active CN106936445B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710149296.7A CN106936445B (zh) 2017-03-14 2017-03-14 一种低复杂度近似最大似然的多元ldpc码译码方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710149296.7A CN106936445B (zh) 2017-03-14 2017-03-14 一种低复杂度近似最大似然的多元ldpc码译码方法

Publications (2)

Publication Number Publication Date
CN106936445A CN106936445A (zh) 2017-07-07
CN106936445B true CN106936445B (zh) 2019-06-21

Family

ID=59433163

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710149296.7A Active CN106936445B (zh) 2017-03-14 2017-03-14 一种低复杂度近似最大似然的多元ldpc码译码方法

Country Status (1)

Country Link
CN (1) CN106936445B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110784230B (zh) * 2018-07-31 2021-07-02 西安电子科技大学 一种基于bp-led的多元sc-ldpc码滑窗译码方法
CN110061815A (zh) * 2019-04-28 2019-07-26 中国石油大学(华东) 一种采用分段策略的极化码译码方法
CN110708078B (zh) * 2019-11-08 2023-02-07 西安电子科技大学 基于基模图的全局耦合ldpc码构造方法
CN110661532B (zh) * 2019-11-12 2023-02-10 西安电子科技大学 基于多元ldpc码噪声增强的符号翻转译码方法
CN115642924B (zh) * 2022-11-01 2024-02-27 杭州海宴科技有限公司 一种高效的qr-tpc译码方法及译码器
CN116961736B (zh) * 2023-09-20 2023-12-08 成都本原星通科技有限公司 一种面向功率受限的低轨卫星终端的上行链路通信方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103973317A (zh) * 2014-04-30 2014-08-06 北京交通大学 一种多元ldpc码的快速译码方法
CN104052501A (zh) * 2014-06-26 2014-09-17 北京航空航天大学 低复杂度的多进制ldpc码译码方法
CN105024705A (zh) * 2015-08-19 2015-11-04 西安电子科技大学 一种低复杂度的多元ldpc码译码方法及译码器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103973317A (zh) * 2014-04-30 2014-08-06 北京交通大学 一种多元ldpc码的快速译码方法
CN104052501A (zh) * 2014-06-26 2014-09-17 北京航空航天大学 低复杂度的多进制ldpc码译码方法
CN105024705A (zh) * 2015-08-19 2015-11-04 西安电子科技大学 一种低复杂度的多元ldpc码译码方法及译码器

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
多元LDPC差分编码调制技术研究;李明华;《中国优秀硕士学位论文全文数据库》;20141130;I136-165
多元LDPC码:解调、译码与实现;何光华等;《中国博士学位论文全文数据库》;20141130;I136-20
循环差族构造的多元LDPC码;徐恒舟等;《西安电子科技大学学报》;20160523;第6-11页

Also Published As

Publication number Publication date
CN106936445A (zh) 2017-07-07

Similar Documents

Publication Publication Date Title
CN106936445B (zh) 一种低复杂度近似最大似然的多元ldpc码译码方法
CN106100794B (zh) 一种基于打孔的极化码的编码协作方法
Vangala et al. A comparative study of polar code constructions for the AWGN channel
US8185797B2 (en) Basic matrix, coder/encoder and generation method of the low density parity check codes
RU2450442C2 (ru) Способ и устройство для кодирования и декодирования канала в системе связи с использованием кодов с низкой плотностью проверок на четность
US7757150B2 (en) Structured puncturing of irregular low-density parity-check (LDPC) codes
CN107863972B (zh) 一种低译码复杂度的快速多元ldpc码译码方法
Uchôa et al. Design of LDPC codes based on progressive edge growth techniques for block fading channels
CN110504997B (zh) 一种基于mimo的快速编码ldpc光通信系统
WO2009072854A1 (en) Method and apparatus for encoding and decoding channel in a communication system using low-density parity-check codes
Buchberger et al. Pruning neural belief propagation decoders
US20080022191A1 (en) System And Method For Adaptive Low-Density Parity-Check (Ldpc) Coding
CN105763203A (zh) 一种基于硬可靠度信息的多元ldpc码译码方法
KR20150137430A (ko) 통신 시스템에서 비-이진 ldpc 부호를 복호화하는 방법 및 장치
Uchôa et al. Generalised Quasi-Cyclic LDPC codes based on progressive edge growth techniques for block fading channels
Yuan et al. Construction and decoding algorithms for polar codes based on 2× 2 non-binary kernels
CN110166171A (zh) 多元ldpc码基于ems的分段式补偿高性能译码方案
CN106209305A (zh) 一种多址信道下的喷泉码译码方法
Hu et al. Performance-complexity tradeoffs of Raptor codes over Gaussian channels
KR102277758B1 (ko) 이진 직렬 연결된 부호를 사용하는 시스템에서 복호 방법 및 장치
CN100539441C (zh) 一种低密度奇偶校验码的译码方法
CN107404323A (zh) 一种基于交错行列消息传递的ldpc码改进译码算法
CN107612559B (zh) 基于乘性重复的多元极化码的生成方法
Qingle et al. A low complexity model-driven deep learning ldpc decoding algorithm
CN101150377A (zh) 用于低密度奇偶校验编码的32apsk系统的比特映射方案

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant