CN106935293A - 核燃料棒密度测量装置 - Google Patents

核燃料棒密度测量装置 Download PDF

Info

Publication number
CN106935293A
CN106935293A CN201610078405.6A CN201610078405A CN106935293A CN 106935293 A CN106935293 A CN 106935293A CN 201610078405 A CN201610078405 A CN 201610078405A CN 106935293 A CN106935293 A CN 106935293A
Authority
CN
China
Prior art keywords
fuel rod
nuclear fuel
gamma
ray
measuring equipment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610078405.6A
Other languages
English (en)
Other versions
CN106935293B (zh
Inventor
崔洛玟
朴赞弦
金亨燮
李信永
白文晳
金道仁
崔星龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kepco Nuclear Fuel Co Ltd
Original Assignee
Kepco Nuclear Fuel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kepco Nuclear Fuel Co Ltd filed Critical Kepco Nuclear Fuel Co Ltd
Publication of CN106935293A publication Critical patent/CN106935293A/zh
Application granted granted Critical
Publication of CN106935293B publication Critical patent/CN106935293B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C17/00Monitoring; Testing ; Maintaining
    • G21C17/06Devices or arrangements for monitoring or testing fuel or fuel elements outside the reactor core, e.g. for burn-up, for contamination
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C17/00Monitoring; Testing ; Maintaining
    • G21C17/10Structural combination of fuel element, control rod, reactor core, or moderator structure with sensitive instruments, e.g. for measuring radioactivity, strain
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N9/00Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity
    • G01N9/24Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity by observing the transmission of wave or particle radiation through the material
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/02Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diaphragms, collimators
    • G21K1/04Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diaphragms, collimators using variable diaphragms, shutters, choppers
    • G21K1/043Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diaphragms, collimators using variable diaphragms, shutters, choppers changing time structure of beams by mechanical means, e.g. choppers, spinning filter wheels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • General Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

本发明涉及一种能够调节照射到核燃料棒的伽马射线源的照射量的核燃料棒密度测量装置,该装置用于调查核燃料棒的结合,该装置包括:屏蔽体(110),其与核燃料棒(1)通过的燃料棒移送孔(111)相邻,且内置有137Cs伽马射线源(120),并且,所述屏蔽体(110)包括开闭部件(130),所述开闭部件可开闭连接所述137Cs伽马射线源(120)与所述燃料棒移送孔(111)的伽马射线引导孔(112)。

Description

核燃料棒密度测量装置
技术领域
本发明涉及一种能够调节照射到核燃料棒的伽马射线源的照射量的核燃料棒密度测量装置。
背景技术
一般情况下,在原子核反应堆等中使用的核燃料为,由铀氧化物烧结而形成芯块(pellet),并将烧结的多个芯块(pellet)和弹簧装入到长度约4m的空心锆合金套管内并填充氦气之后密封端塞而制成核燃料棒,并将核燃料棒束组成一个集合体而在原子核反应堆内用作核燃料。
为了使这些核燃料棒在原子核反应堆内产生稳定的核裂变,需要预先利用探伤机检测核燃料棒内的烧结体的缝隙、浓缩度、脱离与否等缺陷,并消除缺陷之后将其装入到原子核反应堆内。
作为现有技术中用于检测核燃料棒的探伤机,可举出NDA-TECH公司(美国)制造的被动式(passive)探伤机和主动式(active)探伤机。
被动式探伤机通过检测从核燃料棒放射的放射性并进行分析来检测核燃料棒的缺陷,虽然其不需要中子射线源,不过为了准确地检测核燃料棒的缺陷,设备的体积会变得很大,从而需要很大的设置空间,因此不能被广泛使用。
与此不同,主动式探伤机通过将中子射线源照射到核燃料棒之后,检测在核燃料棒内与中子反应的铀放射的伽马射线,并对其进行分析来掌握核燃料棒的缺陷,并利用伽马射线源的透射力来测量芯块(pellet)的缝隙、燃料棒的长度、弹簧的长度等,因此,所述主动式探伤机可设置在狭小的场所,且核燃料棒缺陷的检测准确度高,因此使用最广泛。
参照图1,主动式探伤机包括:,由铅制成的屏蔽盒10;密度测量器12,形成在圆筒形屏蔽盒10一侧的移送核燃料棒1的投入口11的位置上,用于测量烧结体的长度及密度;252Cf射线源13,包括中子射线源252Cf,且位于屏蔽盒10的内侧;伽马射线检测器14,形成在核燃料棒1被引出的屏蔽盒10的外侧面上,且内置有可检测伽马射线(γ-ray)的光学检测器及BGO等。
核燃料棒通过设置在屏蔽盒10的入口和出口的燃料棒移送机(未示出)被引入至屏蔽盒10内,而完成检测的核燃料棒被引出至屏蔽盒10的外面。
在现有技术的主动式探伤机中使用的密度测量器使用137Cs射线源,且所述密度测量器由准直器(collimator)(直径为1mm)和检测器组成,通过伽马射线源将伽马射线照射到核燃料棒,然后利用检测器检测透射的伽马射线量,并利用包括在核燃料棒的组成部件的密度差来测量芯块(pellet)之间的缝隙。
但是,现有技术的主动式探伤机在所使用的137Cs射线源与作为检测对象的核燃料棒之间并没有单独设置能够调节伽马射线的照射量的装置。
现有技术文献
专利文献
授权专利公报第10-0988574号(公告日:2010年10月18日)
发明内容
(一)要解决的技术问题
本发明的目的在于提供一种核燃料棒密度测量装置,该装置能够在主动式核燃料探伤装置中调节照射到核燃料棒的伽马射线源照射量。
(二)技术方案
实现上述目的的本发明的核燃料棒密度测量装置,用于检测核燃料棒的结合,所述装置包括:屏蔽体,其与核燃料棒所通过的燃料棒移送孔相邻,且内置有137Cs伽马射线源,并且,所述屏蔽体包括开闭部件,所述开闭部件可开闭连接所述137Cs伽马射线源与所述燃料棒移送孔的伽马射线引导孔。
优选地,本发明的核燃料棒密度测量装置,其特征在于,所述伽马射线引导孔与所述燃料棒移送孔垂直连接。
进一步优选地,本发明的核燃料棒密度测量装置,其特征在于,所述开闭部件是能够与所述燃料棒移送孔并排地进行滑动从而开闭将所述伽马射线引导孔的杆(bar)。
再进一步优选地,本发明的核燃料棒密度测量装置,其特征在于,所述杆设置有驱动源,所述驱动源设置在屏蔽体外侧,用于直线驱动所述杆。
(三)有益效果
本发明的核燃料棒密度测量装置,在屏蔽体内设置有伽马射线引导孔,所述引导孔贯穿形成在137Cs伽马射线源与作为检查对象的核燃料棒之间,并且所述测量装置设置有可开闭所述伽马射线引导孔的开闭部件,从而可通过调节准直器的插槽的大小来调节照射到核燃料棒的伽马射线源的照射量,因此具有能够更加精确地测量芯块的缝隙间距尺寸的效果。
附图说明
图1是一般的主动式核燃料棒探伤装置的一部分被剖开的立体图。
图2是本发明的核燃料棒密度测量装置的主要部分的结构图。
图3的(a)和(b)是用于说明本发明的核燃料棒密度测量装置的运行例的图。
附图说明标记
1:核燃料棒 110:屏蔽体
111:燃料棒移送孔 112:伽马射线引导孔
120:137Cs伽马射线源 130:开闭部件
具体实施方式
在本发明的实施例中提出的特定结构和功能性说明仅仅是为了说明根据本发明的概念的实施例而例示的,因此,根据本发明的概念的实施例可以以多种形式实施。而且,不应解释为本发明限定于本说明书中的实施例,而应当理解为包括本发明的思想和技术范围内的所有变更物、等同物以及替代物。
另外,在本发明中,第一和/或第二等术语可用来说明各种组件,但所述组件并不限定于所述术语。所述术语只是为了将一个组件与其他组件区分开而使用的,例如,在不脱离本发明的概念的权利保护范围内,第一组件可定义为第二组件,类似地,第二组件可定义为第一组件。
当提到一个组件与另一个组件“连接”或者“接合”时,可以理解为所述一个组件与另一个组件直接连接或者直接接合,也可以理解为两者之间还存在其他的组件。另外,当提到一个组件与另一个组件“直接连接”或者“直接接触”时,应理解为两者之间不存在其他组件。用于说明各组件之间关系的其他表述,即“~之间”和“直接~之间”或者“与~相邻的”和“与~直接相邻的”等表述也应以相同的方式解释。
另外,省略了与本发明相关的公知的功能及其结构的说明,重点说明与本发明的技术特征相关的主要部分的结构。
以下,参照附图对本发明的实施例进行详细说明。
参照图2和图3,本发明的核燃料棒密度测量装置,其特征在于,包括:屏蔽体110,其与核燃料棒通过的燃料棒移送孔111相邻,且内置有137Cs伽马射线源120,并且,屏蔽体110包括开闭部件130,所述开闭部件可开闭连接137Cs伽马射线源120与燃料棒移送孔111的伽马射线引导孔112。
屏蔽体110可使用能够有效屏蔽放射性的公知的铅(Pb),在外侧可以另设屏蔽盒,并可将所述屏蔽体设置在屏蔽盒内。另外,整个屏蔽体可以使用两种以上的材料,而不只使用一种材料,且在能够有效屏蔽放射性的范围内,对其材料、结构或形状并不限定。
137Cs伽马射线源120可容纳并设置在射线源装入孔内,以便在屏蔽体110内进行交换。
屏蔽体110形成有燃料棒移送孔111,以使核燃料棒1能够沿水平方向通过所述燃料棒移送孔,并且与燃料棒移送孔111相邻设置137Cs伽马射线源120。虽然在本实施例中燃料棒移送孔的上部和下部设置有137Cs伽马射线源,但是由于其结构相同,下面重点说明位于上部的137Cs伽马射线源。
具体地,参照图3,燃料棒移送孔111与137Cs伽马射线源120隔开而相互并排设置,伽马射线引导孔112与燃料棒移送孔111垂直连接。
开闭部件130可以是能够与所述燃料棒移送孔并排地进行滑动从而开闭伽马射线引导孔112的杆(bar),此时,可将钨作为杆(bar)的材料。
所述开闭部件130可以直线移动,并且,根据移动量来开闭伽马射线引导孔112或者调节开闭量,从而调节照射到燃料棒的伽马射线的照射量。
并且,开闭部件130可设置有单独的驱动源,所述驱动源设置在屏蔽体的外侧,用于直线驱动开闭部件,所述驱动源可以是液压或电动式驱动器(Actuator),或者向开闭部件机械地传递驱动力。
以上说明的本发明并不限定于上述的实施例和附图,本发明所属技术领域的普通技术人员能够理解,在不脱离本发明的技术思想的范围内,可进行各种置换、变形及变更。

Claims (4)

1.一种核燃料棒密度测量装置,其用于检测核燃料棒的结合,所述装置包括:
屏蔽体,其与核燃料棒通过的燃料棒移送孔相邻,且内置有137Cs伽马射线源,
所述屏蔽体包括开闭部件,所述开闭部件可开闭连接所述137Cs伽马射线源与所述燃料棒移送孔的伽马射线引导孔。
2.根据权利要求1所述的核燃料棒密度测量装置,其特征在于,所述伽马射线引导孔与所述燃料棒移送孔垂直连接。
3.根据权利要求2所述的核燃料棒密度测量装置,其特征在于,所述开闭部件是能够与所述燃料棒移送孔并排地进行滑动从而开闭所述伽马射线引导孔的杆。
4.根据权利要求3所述的核燃料棒密度测量装置,其特征在于,所述杆设置有驱动源,所述驱动源设置在屏蔽体的外侧,用于直线驱动所述杆。
CN201610078405.6A 2015-12-30 2016-02-04 核燃料棒密度测量装置 Active CN106935293B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0189178 2015-12-30
KR20150189178 2015-12-30

Publications (2)

Publication Number Publication Date
CN106935293A true CN106935293A (zh) 2017-07-07
CN106935293B CN106935293B (zh) 2019-10-15

Family

ID=59096043

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610078405.6A Active CN106935293B (zh) 2015-12-30 2016-02-04 核燃料棒密度测量装置

Country Status (2)

Country Link
CN (1) CN106935293B (zh)
ES (1) ES2621025B1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114188053A (zh) * 2021-12-06 2022-03-15 中国核电工程有限公司 燃料棒自动入盒装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2850778B2 (es) * 2020-02-28 2023-02-21 Consejo Superior Investigacion Detector de rayos gamma con colimador multi-orificio y region de muestreo variable

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3728544A (en) * 1970-07-24 1973-04-17 Nat Nuclear Corp Method and apparatus for measurement of concentration of thermal neutron absorber contained in nuclear fuel
US4629600A (en) * 1983-04-13 1986-12-16 Doryokuro Kakunenryo Kaihatsu Jigyodan Method and apparatus for measuring uranium isotope enrichment
US4902467A (en) * 1988-08-31 1990-02-20 General Electric Company Non-destructive testing of nuclear fuel rods
CN2366129Y (zh) * 1998-08-13 2000-03-01 深圳奥沃国际科技发展有限公司 一种源强调节装置
US20060056566A1 (en) * 2002-12-24 2006-03-16 Belgonucleaire Sa Method and apparatus for carrying out a mox fuel rod quality control
CN1878503A (zh) * 2003-11-20 2006-12-13 Ge医疗系统环球技术有限公司 准直器和放射线辐射器
KR20100076487A (ko) * 2008-12-26 2010-07-06 한전원자력연료 주식회사 중성자 발생기를 이용한 연료봉 탐상기
WO2010142830A1 (es) * 2009-06-08 2010-12-16 Enusa Industrias Avanzadas, S.A. Escáner para el análisis de una barra de combustible nuclear
CN103337272A (zh) * 2013-06-27 2013-10-02 东软飞利浦医疗设备系统有限责任公司 X射线准直器及其准直开缝宽度调整方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012185108A (ja) * 2011-03-08 2012-09-27 Nuclear Fuel Ind Ltd 原子燃料棒の内部検査方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3728544A (en) * 1970-07-24 1973-04-17 Nat Nuclear Corp Method and apparatus for measurement of concentration of thermal neutron absorber contained in nuclear fuel
US4629600A (en) * 1983-04-13 1986-12-16 Doryokuro Kakunenryo Kaihatsu Jigyodan Method and apparatus for measuring uranium isotope enrichment
US4902467A (en) * 1988-08-31 1990-02-20 General Electric Company Non-destructive testing of nuclear fuel rods
CN2366129Y (zh) * 1998-08-13 2000-03-01 深圳奥沃国际科技发展有限公司 一种源强调节装置
US20060056566A1 (en) * 2002-12-24 2006-03-16 Belgonucleaire Sa Method and apparatus for carrying out a mox fuel rod quality control
CN1878503A (zh) * 2003-11-20 2006-12-13 Ge医疗系统环球技术有限公司 准直器和放射线辐射器
KR20100076487A (ko) * 2008-12-26 2010-07-06 한전원자력연료 주식회사 중성자 발생기를 이용한 연료봉 탐상기
WO2010142830A1 (es) * 2009-06-08 2010-12-16 Enusa Industrias Avanzadas, S.A. Escáner para el análisis de una barra de combustible nuclear
CN103337272A (zh) * 2013-06-27 2013-10-02 东软飞利浦医疗设备系统有限责任公司 X射线准直器及其准直开缝宽度调整方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
邓景珊 等: "新一代核燃料棒UO2芯块间隙检测设备研制", 《核电子学与探测技术》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114188053A (zh) * 2021-12-06 2022-03-15 中国核电工程有限公司 燃料棒自动入盒装置

Also Published As

Publication number Publication date
ES2621025A1 (es) 2017-06-30
CN106935293B (zh) 2019-10-15
ES2621025B1 (es) 2018-02-27

Similar Documents

Publication Publication Date Title
US8946645B2 (en) Radiation-monitoring diagnostic hodoscope system for nuclear-power reactors
Holcombe et al. A Novel gamma emission tomography instrument for enhanced fuel characterization capabilities within the OECD Halden Reactor Project
Liem et al. Nondestructive burnup verification by gamma-ray spectroscopy of LEU silicide fuel plates irradiated in the RSG GAS multipurpose reactor
CN106935293A (zh) 核燃料棒密度测量装置
CN109712725A (zh) 一种用于屏蔽伽玛射线的装置及方法
CN104464853B (zh) 一种在线式硼浓度监测装置
KR100988574B1 (ko) 중성자 발생기를 이용한 연료봉 탐상기
Menlove et al. A 252Cf based nondestructive assay system for fissile material
US20180137945A1 (en) Systems and methods for assaying nuclear fuel
Lee et al. Development of the ACP safeguards neutron counter for PWR spent fuel rods
Park et al. Measurement of the neutron flux distribution in a research reactor by neutron activation analysis
Kaiba et al. Evaluation of neutron flux and fission rate distributions inside the JSI TRIGA Mark II reactor using multiple in-core fission chambers
CN201359637Y (zh) 一种有源探测器的屏蔽钨块
JP5957174B2 (ja) 使用済み燃料の放射線計測装置
US2872400A (en) Reactor monitoring
CN106803434A (zh) 用于测量通道内的中子通量密度的系统
KR101142164B1 (ko) 사용후핵연료 집합체의 축방향 연소도 분포 측정 방법 및 이를 이용한 시스템
Ahmadnia et al. Improving the Performance of the Power Monitoring Channel in Tehran Research Reactor (TRR)
JP2016217876A (ja) 溶融燃料の同定装置及び同定方法
Gagliardi et al. Assessing performance of Nucleco Passive/Active System (PANWAS) through a long-term verification campaign
KR20160123157A (ko) 핵연료봉 탐상장치
Ajdacic et al. Semiconductor measures fluxes in operating core
Cho et al. Design and verification of shielding for the advanced spent fuel conditioning process facility
Gold et al. Characterization of Fuel Distribution in the Three Mile Island Unit 2 (TMI-2) Reactor System by Neutron and Gamma-Ray Dosimetry
Hebel et al. Irradiation devices for BR-2 reactor design and operating characteristics

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant