CN106934113A - 适用于区域电离层垂直总电子含量建模的改进多项式模型的建模方法 - Google Patents

适用于区域电离层垂直总电子含量建模的改进多项式模型的建模方法 Download PDF

Info

Publication number
CN106934113A
CN106934113A CN201710093239.1A CN201710093239A CN106934113A CN 106934113 A CN106934113 A CN 106934113A CN 201710093239 A CN201710093239 A CN 201710093239A CN 106934113 A CN106934113 A CN 106934113A
Authority
CN
China
Prior art keywords
model
modeling
latitude
ionosphere
regional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710093239.1A
Other languages
English (en)
Inventor
胡伍生
韩理想
余龙飞
孙博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN201710093239.1A priority Critical patent/CN106934113A/zh
Publication of CN106934113A publication Critical patent/CN106934113A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

本发明公开了一种适用于区域电离层垂直总电子含量建模的改进多项式模型的建模方法,包括以下步骤:S1:获取区域观测点的穿刺点地理经纬度信息和相应时刻的电离层垂直总电子含量信息;S2:通过已知数据转化获得太阳时角差、地磁纬度和地方时的信息;S3:选定模型参数,构建计算量与所选参数的方程,建立区域电离层垂直总电子含量模型;S4:通过最小二乘法计算改进的多项式模型参数,完成区域电离层垂直总电子含量改正模型的构建。本发明很好的保留了传统多项式拟合模型在空间曲面拟合上的优势,并顾及了电离层延迟信息随时间的非线性振动特性,较好的模拟了区域电离层的时空变化特征,相比传统的多项式模型精度得到了提高。

Description

适用于区域电离层垂直总电子含量建模的改进多项式模型的 建模方法
技术领域
本发明涉及全球导航系统领域,特别是涉及适用于区域电离层垂直总电子含量建模的改进多项式模型的建模方法。
背景技术
GNSS电离层建模研究和应用中,主要分为两类电离层模型:一类是经验模型,包括GPS中使用的Klobuchar模型、IRI模型、Bent模型等,经验模型比较复杂且修正效果较差,一般不适用于高精度的电离层延迟建模和GNSS定位中;另一类是基于高精度GNSS双频观测数据构建的拟合电离层模型,根据建模区域的不同,一般常用的电离层模型包括下面三种:多项式模型(POLY)、球谐函数模型(SHF)、三角级数(TSF)模型。然而,现有技术中这三种电离层模型的电离层延迟的拟合精度较低,因此有必要研究出一种拟合精度高的模型。
发明内容
发明目的:本发明的目的是提供一种能够解决现有技术中存在的缺陷的适用于区域电离层垂直总电子含量建模的改进多项式模型的建模方法。
技术方案:为达到此目的,本发明采用以下技术方案:
本发明所述的适用于区域电离层垂直总电子含量建模的改进多项式模型的建模方法,包括以下步骤:
S1:获取区域观测点的穿刺点地理经纬度信息和相应时刻的电离层垂直总电子含量信息;
S2:通过已知数据转化获得太阳时角差、地磁纬度和地方时的信息;
S3:选定模型参数,构建计算量与所选参数的方程,建立区域电离层垂直总电子含量模型;
S4:通过最小二乘法计算改进的多项式模型参数,完成区域电离层垂直总电子含量模型的构建。
进一步,所述步骤S1中,区域观测点的穿刺点地理经纬度信息通过式(1)和式(2)得到:
式(1)中,λi为区域观测点的穿刺点地理经度,λ0为测站接收机的地理经度,Ψpp为地心张角,如式(3)所示,A为卫星方位角,为区域观测点的穿刺点地理纬度;
式(2)中,为测站接收机的地理纬度;
式(3)中,E为卫星高度角,R为地球半径,H为电离层单层模型的等效高度。
进一步,所述步骤S2中,太阳时角差、地磁纬度和地方时分别通过式(4)、(5)和(6)得到:
ΔS=(λ-λ0)+(t-t0) (4)
式(4)中,ΔS为太阳时角差,λ为穿刺点经度,λ0为测站接收机的地理经度,t为观测时刻点,t0为建模时间段的中间时刻点;
式(5)中,为地磁纬度,为北磁极的地理纬度,为区域观测点的穿刺点地理纬度,λi为区域观测点的穿刺点地理经度,λS为北磁极的地理经度;
τ=UTC+λ/15° (6)
式(6)中,τ为地方时,UTC为协调世界时。
进一步,所述步骤S3中,区域电离层垂直总电子含量模型如式(7)所示:
式(7)中,VTEC为区域电离层垂直总电子含量,a00、a01、a02、a10、a11、a12、a20、a21、a22、b01、b02、b03、b04和b05均为待求系数,ΔS为太阳时角差,为穿刺点距离区域中心纬度的差值,为地磁纬度,τ为地方时。
有益效果:本发明公开了一种适用于区域电离层垂直总电子含量建模的改进多项式模型的建模方法,该方法很好的保留了传统多项式拟合模型在空间曲面拟合上的优势,并顾及了电离层延迟信息随时间的非线性振动特性,较好的模拟了区域电离层的时空变化特征,相比传统的多项式模型精度得到了提高。
附图说明
图1为本发明具体实施方式的改进多项式模型与传统的9-DPM模型的建模效果对比图;
图1(a)为前55条检验数据;
图1(b)为后56条检验数据;
图2为本发明具体实施方式的0:00UTC时刻电离层延迟实际空间分布图;
图3为本发明具体实施方式的0:00UTC时刻POLY-SIN模型的改正偏差的空间分布图;
图4为本发明具体实施方式的2:00UTC时刻电离层延迟实际空间分布图;
图5为本发明具体实施方式的2:00UTC时刻POLY-SIN模型的改正偏差的空间分布图;
图6为本发明具体实施方式的4:00UTC时刻电离层延迟实际空间分布图;
图7为本发明具体实施方式的4:00UTC时刻POLY-SIN模型的改正偏差的空间分布图。
具体实施方式
下面结合附图和具体实施方式对本发明的技术方案作进一步的介绍。
本具体实施方式公开了一种适用于区域电离层垂直总电子含量建模的改进多项式模型的建模方法,包括以下步骤:
S1:获取区域观测点的穿刺点地理经纬度信息和相应时刻的电离层垂直总电子含量信息;
S2:通过已知数据转化获得太阳时角差、地磁纬度和地方时的信息;
S3:选定模型参数,构建计算量与所选参数的方程,建立区域电离层垂直总电子含量模型;
S4:通过最小二乘法计算改进的多项式模型参数,完成区域电离层垂直总电子含量改正模型的构建。
步骤S1中,区域观测点的穿刺点地理经纬度信息通过式(1)和式(2)得到:
式(1)中,λi为区域观测点的穿刺点地理经度,λ0为测站接收机的地理经度,Ψpp为地心张角,如式(3)所示,A为卫星方位角,为区域观测点的穿刺点地理纬度;
式(2)中,为测站接收机的地理纬度;
式(3)中,E为卫星高度角;R为地球半径,一般取6371km;H为电离层单层模型的等效高度,H对基线和电子密度的影响都不敏感,一般取电子密度最大的层所在的高度,如350km、400km、450km等,本具体实施方式中取450KM。
步骤S2中,太阳时角差、地磁纬度和地方时分别通过式(4)、(5)和(6)得到:
ΔS=(λ-λ0)+(t-t0) (4)
式(4)中,ΔS为太阳时角差,λ为穿刺点经度,λ0为测站接收机的地理经度,t为观测时刻点,t0为建模时间段的中间时刻点;
式(5)中,为地磁纬度,为北磁极的地理纬度,为区域观测点的穿刺点地理纬度,λi为区域观测点的穿刺点地理经度,λS为北磁极的地理经度;
τ=UTC+λ/15° (6)
式(6)中,τ为地方时,UTC为协调世界时。
步骤S3中,区域电离层垂直总电子含量模型如式(7)所示:
式(7)中,VTEC为区域电离层垂直总电子含量,a00、a01、a02、a10、a11、a12、a20、a21、a22、b01、b02、b03、b04和b05均为待求系数,ΔS为太阳时角差,为穿刺点距离区域中心纬度的差值,为地磁纬度,τ为地方时。
下面以一个实施例为例,对本发明的技术方案作进一步的介绍。
实施例1:
本实施例公开了一种适用于区域电离层垂直总电子含量建模的改进多项式模型的建模方法,包括以下步骤:
S1:获取区域观测点的穿刺点地理经纬度信息和相应时刻的电离层垂直总电子含量信息;
采用的数据来源于江苏省73个CORS站2010年年积日323(11月19日)的数据,根据测站位置信息,利用相位平滑伪距方法提取相关电离层数据,即包括穿刺点(IPP)的经纬度、观测时间、VTEC值等信息,具体见情况见表1。
由于数据量比较大,表1仅展示了部分建模数据。对于选取的年积日323当天的UTC时间为0:00-4:00的时间段内的4416条数据,在具体建模阶段随机选取3532条数据进行建模,剩下的884条数据用来作为检验数据。
表1部分电离层建模数据
S2:通过已知数据转化获得太阳时角差、地磁纬度和地方时的信息;
S3:选定模型参数,构建计算量与所选参数的方程,建立区域电离层垂直总电子含量模型;
对于选取的年积日323当天的UTC时间为0:00-4:00的时间段内的4416条数据,在具体建模阶段随机选取3532条数据进行建模,取N'=3532,y=VTEC,对应的误差方程为:
VN′×1=AN′×14·X14×1-lN′×1 (8)
其中,
AN′×14=[BN′×9CN'×5] (10)
S4:通过最小二乘法计算改进的多项式模型参数,完成区域电离层垂直总电子含量改正模型的构建。
按照最小二乘原理,可以得出POLY-SIN模型的系数解为:
在求出模型系数后,对于构建的改进的多项式模型(POLY-SIN),利用检验样本数据对模型精度进行检验。为了比较新提出来的POLY-SIN模型和传统的完全二阶多项式模型(9-DPM)的预测性能,在模拟结束后,分别计算了其均方根误差(root mean square error,RMSE),绝对误差(absolute error,Eabs),相对误差(relative error,Erel),以及相关系数(correlation coefficient,ρcor),具体的公式如下:
上述式子中,N表示进行误差分析的数据个数;VTECpred表示VTEC的模型预测值;VTECtrue表示根据CORS数据利用相位平滑伪距方法提取的VTEC真值;分别表示VTEC预测值和真值的平均值。
表2给出了POLY-SIN模型同9-DPM模型的精度对比,为了进一步说明POLY-SIN的拟合效果优于传统的9-DPM模型,按照0:00UT-4:00UT时间顺序等间隔选取了111条检验数据绘制了两种模型的模型偏差对比图,如图1所示。图2—图7为给出了0:00UTC、2:00UTC(中心时刻)、4:00UTC等三个时刻电离层延迟实际空间分布情况和对应的POLY-SIN模型的改正偏差的空间分布情况。
表2不同模型改正效果比较
从表2可以看出:POLY-SIN模型和9-DPM模型的检验中误差分别为1.181TECU、1.291TECU,相对误差分别为8.29%、9.39%,POLY-SIN模型拟合精度明显优于传统的9-DPM模型,较9-DPM拟合精度提高了8.5%。
由图1可以看出,在分图(a)和分图(b)中数据编号50~60(恰好为建模的中心时刻2:00UT附近)区间,9-DPM模型与POLY-SIN模型拟合偏差均比较小,大致收敛在-2TECU~2TECU之间,从中心时刻位置向两边延伸,除了个别数据外(如编号80),POLY-SIN模型的拟合偏差大多都小于9-DPM模型偏差,表明在模拟TEC信息随时间的变化规律时,POLY-SIN模型优于9-DPM。
对比分析图2至图7,可以看出在2:00UTC时刻,POLY-SIN模型改正偏差空间分布比较均匀,很少出现等值线密集区域。在0:00UTC和4:00UTC时刻,POLY-SIN模型改正偏差图中出现较多密集区域,且改正偏差图中出现等值线密集的区域也基本对应着VTEC空间分布图中的密集区域,表明POLY-SIN模型较好地模拟了TEC信息空间分布。

Claims (4)

1.适用于区域电离层垂直总电子含量建模的改进多项式模型的建模方法,其特征在于:包括以下步骤:
S1:获取区域观测点的穿刺点地理经纬度信息和相应时刻的电离层垂直总电子含量信息;
S2:通过已知数据转化获得太阳时角差、地磁纬度和地方时的信息;
S3:选定模型参数,构建计算量与所选参数的方程,建立区域电离层垂直总电子含量模型;
S4:通过最小二乘法计算改进的多项式模型参数,完成区域电离层垂直总电子含量模型的构建。
2.根据权利要求1所述的适用于区域电离层垂直总电子含量建模的改进多项式模型的建模方法,其特征在于:所述步骤S1中,区域观测点的穿刺点地理经纬度信息通过式(1)和式(2)得到:
式(1)中,λi为区域观测点的穿刺点地理经度,λ0为测站接收机的地理经度,Ψpp为地心张角,如式(3)所示,A为卫星方位角,为区域观测点的穿刺点地理纬度;
式(2)中,为测站接收机的地理纬度;
Ψ p p = π 2 - E - a r c s i n ( R R + H cos E ) - - - ( 3 )
式(3)中,E为卫星高度角,R为地球半径,H为电离层单层模型的等效高度。
3.根据权利要求1所述的适用于区域电离层垂直总电子含量建模的改进多项式模型的建模方法,其特征在于:所述步骤S2中,太阳时角差、地磁纬度和地方时分别通过式(4)、(5)和(6)得到:
ΔS=(λ-λ0)+(t-t0) (4)
式(4)中,ΔS为太阳时角差,λ为穿刺点经度,λ0为测站接收机的地理经度,t为观测时刻点,t0为建模时间段的中间时刻点;
式(5)中,为地磁纬度,为北磁极的地理纬度,为区域观测点的穿刺点地理纬度,λi为区域观测点的穿刺点地理经度,λS为北磁极的地理经度;
τ=UTC+λ/15° (6)
式(6)中,τ为地方时,UTC为协调世界时。
4.根据权利要求1所述的适用于区域电离层垂直总电子含量建模的改进多项式模型的建模方法,其特征在于:所述步骤S3中,区域电离层垂直总电子含量模型如式(7)所示:
式(7)中,VTEC为区域电离层垂直总电子含量,a00、a01、a02、a10、a11、a12、a20、a21、a22、b01、b02、b03、b04和b05均为待求系数,ΔS为太阳时角差,为穿刺点距离区域中心纬度的差值,为地磁纬度,τ为地方时。
CN201710093239.1A 2017-02-21 2017-02-21 适用于区域电离层垂直总电子含量建模的改进多项式模型的建模方法 Pending CN106934113A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710093239.1A CN106934113A (zh) 2017-02-21 2017-02-21 适用于区域电离层垂直总电子含量建模的改进多项式模型的建模方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710093239.1A CN106934113A (zh) 2017-02-21 2017-02-21 适用于区域电离层垂直总电子含量建模的改进多项式模型的建模方法

Publications (1)

Publication Number Publication Date
CN106934113A true CN106934113A (zh) 2017-07-07

Family

ID=59424625

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710093239.1A Pending CN106934113A (zh) 2017-02-21 2017-02-21 适用于区域电离层垂直总电子含量建模的改进多项式模型的建模方法

Country Status (1)

Country Link
CN (1) CN106934113A (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107622304A (zh) * 2017-08-21 2018-01-23 东南大学 一种基于bp神经网络技术的电离层球谐函数改进方法
CN109283400A (zh) * 2018-08-28 2019-01-29 南京信息工程大学 一种电离层vtec扰动与雷电相关性分析方法
CN110146904A (zh) * 2019-05-14 2019-08-20 江苏师范大学 一种适用于区域电离层tec的精确建模方法
CN111369034A (zh) * 2020-01-16 2020-07-03 北京航空航天大学 一种电离层总电子含量长期变化分析方法
CN112034500A (zh) * 2020-08-20 2020-12-04 上海华测导航技术股份有限公司 基于实时ppp模糊度固定技术的区域格网电离层建模方法
CN114818478A (zh) * 2022-04-02 2022-07-29 东南大学 一种基于集成学习的区域电离层电子含量预报方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130234886A1 (en) * 2012-03-09 2013-09-12 Thales Adaptive Method for Estimating the Electron Content of the Ionosphere
CN103455702A (zh) * 2012-11-28 2013-12-18 东南大学 一种确定区域电离层延迟的方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130234886A1 (en) * 2012-03-09 2013-09-12 Thales Adaptive Method for Estimating the Electron Content of the Ionosphere
CN103455702A (zh) * 2012-11-28 2013-12-18 东南大学 一种确定区域电离层延迟的方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
MOHAMAD MAHDI ALIZADEH等: "Ray tracing technique for global 3-D modeling of ionospheric electron density using GNSS measurements", 《RADIO SCIENCE》 *
李成清: "基于地基GPS中国区域电离层延迟建模研究", 《中国优秀硕士学位论文全文数据库 基础科学辑》 *
李晓斌等: "《航空重力测量GPS后处理方法及应用》", 30 June 2015 *
梁秀娟: "基于双频GNSS信号的电离层延迟模型的研究", 《中国优秀硕士学位论文全文数据库 基础科学辑》 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107622304A (zh) * 2017-08-21 2018-01-23 东南大学 一种基于bp神经网络技术的电离层球谐函数改进方法
CN109283400A (zh) * 2018-08-28 2019-01-29 南京信息工程大学 一种电离层vtec扰动与雷电相关性分析方法
CN109283400B (zh) * 2018-08-28 2020-10-09 南京信息工程大学 一种电离层vtec扰动与雷电相关性分析方法
CN110146904A (zh) * 2019-05-14 2019-08-20 江苏师范大学 一种适用于区域电离层tec的精确建模方法
CN111369034A (zh) * 2020-01-16 2020-07-03 北京航空航天大学 一种电离层总电子含量长期变化分析方法
CN111369034B (zh) * 2020-01-16 2022-05-10 北京航空航天大学 一种电离层总电子含量长期变化分析方法
CN112034500A (zh) * 2020-08-20 2020-12-04 上海华测导航技术股份有限公司 基于实时ppp模糊度固定技术的区域格网电离层建模方法
CN114818478A (zh) * 2022-04-02 2022-07-29 东南大学 一种基于集成学习的区域电离层电子含量预报方法

Similar Documents

Publication Publication Date Title
CN106934113A (zh) 适用于区域电离层垂直总电子含量建模的改进多项式模型的建模方法
CN107085626A (zh) 一种基于bp‑多项式模型融合的区域电离层垂直总电子含量建模方法
CN103323888B (zh) Gnss大气探测数据中对流层延迟误差的消除方法
Alber et al. Obtaining single path phase delays from GPS double differences
CN106873009B (zh) 利用非组合ppp辅助的长基线模糊度解算方法
CN105929424A (zh) 一种bds/gps高精度定位方法
CN105787556B (zh) 一种基于Saastamoinen模型的BP神经网络对流层延迟改正方法
CN107622304A (zh) 一种基于bp神经网络技术的电离层球谐函数改进方法
CN107402395A (zh) 一种用于单系统和多系统卫星组合导航的选星方法
CN104090280A (zh) 一种基于区域cors的电离层延迟修正预报方法
Du et al. Experimental study on GPS non-linear least squares positioning algorithm
CN110488332A (zh) 基于网络rtk技术的定位信息处理方法和装置
CN113176596B (zh) 气压高程约束定位方法
CN110146904A (zh) 一种适用于区域电离层tec的精确建模方法
Ashraf et al. Tropospheric wet delay estimation using GNSS: Case study of a permanent network in Egypt
Klimenko et al. Longitudinal variation in the ionosphere-plasmasphere system at the minimum of solar and geomagnetic activity: Investigation of temporal and latitudinal dependences
CN115980809A (zh) 一种全球导航卫星系统的对流层延迟预测方法
CN103869326A (zh) 一种基于伪距指纹匹配的区域快速定位方法
CN111766614B (zh) 一种守时实验室联合组网的亚纳秒实时时间比对方法
CN107656295A (zh) 一种基于原始观测数据的gnss高精度基线处理方法
CN114280650A (zh) 基于leo获取gnss卫星频间偏差的方法和系统
CN115113246A (zh) 一种基于余弦模型的罗兰天波经过电离层时延预测方法和装置
Cheng An updated estimate of geocenter variation from analysis of SLR data
Kotova et al. Ground-Based GNSS data for the ionosphere model correction at high-latitudes
CN115407367B (zh) 一种混合星座卫星导航定位精度衰减因子估计方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20170707