CN106933299A - Low-power consumption DDS circuit with amplitude and phase error self-calibration function - Google Patents
Low-power consumption DDS circuit with amplitude and phase error self-calibration function Download PDFInfo
- Publication number
- CN106933299A CN106933299A CN201710135908.7A CN201710135908A CN106933299A CN 106933299 A CN106933299 A CN 106933299A CN 201710135908 A CN201710135908 A CN 201710135908A CN 106933299 A CN106933299 A CN 106933299A
- Authority
- CN
- China
- Prior art keywords
- circuit
- code
- calibration
- delay
- output
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000001514 detection method Methods 0.000 claims abstract description 84
- 238000006243 chemical reaction Methods 0.000 claims description 59
- 238000013139 quantization Methods 0.000 claims description 52
- 238000000034 method Methods 0.000 claims description 22
- 230000008569 process Effects 0.000 claims description 16
- 230000005540 biological transmission Effects 0.000 claims description 14
- 238000012545 processing Methods 0.000 claims description 14
- 238000005070 sampling Methods 0.000 claims description 14
- 238000005516 engineering process Methods 0.000 claims description 13
- 230000003321 amplification Effects 0.000 claims description 10
- 238000003199 nucleic acid amplification method Methods 0.000 claims description 10
- 238000001914 filtration Methods 0.000 claims description 2
- XAUDJQYHKZQPEU-KVQBGUIXSA-N 5-aza-2'-deoxycytidine Chemical compound O=C1N=C(N)N=CN1[C@@H]1O[C@H](CO)[C@@H](O)C1 XAUDJQYHKZQPEU-KVQBGUIXSA-N 0.000 claims 18
- 230000005611 electricity Effects 0.000 claims 7
- 240000002853 Nelumbo nucifera Species 0.000 claims 1
- 235000006508 Nelumbo nucifera Nutrition 0.000 claims 1
- 235000006510 Nelumbo pentapetala Nutrition 0.000 claims 1
- 230000004913 activation Effects 0.000 claims 1
- 230000003139 buffering effect Effects 0.000 claims 1
- 238000010586 diagram Methods 0.000 description 22
- 239000003990 capacitor Substances 0.000 description 15
- 238000012937 correction Methods 0.000 description 5
- 230000001360 synchronised effect Effects 0.000 description 5
- 238000012546 transfer Methods 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 2
- 230000003111 delayed effect Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000007493 shaping process Methods 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F1/00—Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
- G06F1/02—Digital function generators
- G06F1/022—Waveform generators, i.e. devices for generating periodical functions of time, e.g. direct digital synthesizers
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Analogue/Digital Conversion (AREA)
- Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
Abstract
本发明提供了一种具有幅度和相位误差自校准功能的低功耗DDS电路,该DDS电路包括:电荷域幅度误差检测放大电路、电荷域相位误差检测放大电路、K位电荷域模数转换器、控制电路、ROM模块、SRAM模块、相位累加器、第一延迟电路、相位幅度转换器、第二延迟电路、补偿电路和N位电流模DAC。所述具有幅度和相位误差自校准功能的低功耗DDS电路可根据系统精度和硬件开销自动折衷选择校准精度,并且具有低功耗特点。
The present invention provides a low-power DDS circuit with amplitude and phase error self-calibration functions. The DDS circuit includes: a charge domain amplitude error detection amplifier circuit, a charge domain phase error detection amplifier circuit, and a K-bit charge domain analog-to-digital converter , a control circuit, a ROM module, an SRAM module, a phase accumulator, a first delay circuit, a phase amplitude converter, a second delay circuit, a compensation circuit and an N-bit current modulus DAC. The low-power DDS circuit with amplitude and phase error self-calibration function can automatically trade off the calibration precision according to system precision and hardware overhead, and has the characteristics of low power consumption.
Description
技术领域technical field
本发明涉及一种误差校准电路,具体来说是一种具有幅度和相位误差自校准功能的低功耗DDS电路。The invention relates to an error calibration circuit, in particular to a low-power DDS circuit with amplitude and phase error self-calibration functions.
背景技术Background technique
直接数字频率合成技术是一种通过数字手段合成所需要的各种不同频率的信号,最后通过数字模拟转换器将其转换成模拟信号输出的技术。该技术以其特有的特点:可编程、跳频快、分辨率高、调频精度高等优点而成为当今频率合成技术中的主要技术之一,广泛应用于移动通讯,军用和商用雷达系统等通讯领域。Direct digital frequency synthesis technology is a technology that synthesizes signals of various frequencies required by digital means, and finally converts them into analog signal output through a digital-to-analog converter. This technology has become one of the main technologies in today's frequency synthesis technology due to its unique characteristics: programmable, fast frequency hopping, high resolution, high frequency modulation accuracy, etc. It is widely used in mobile communications, military and commercial radar systems and other communication fields .
直接数字频率合成器(DDS)主要由三个模块组成:相位累加器,相位幅度转换器和数模转换器(DAC)。整个DDS系统通常有两个输入量:参考时钟fs和频率控制字X。相位累加器在时钟的控制下,在每一个时钟脉冲输入时,不断对频率控制字进行线性相位累加。相位累加器输出的数据就是合成信号的相位,相位累加器的输出频率也就是直接数字频率合成器输出的信号频率。截取累加器输出的相位值输入相位幅度转换器,经运算转换输出与该相位值相对应的数字化幅度值。通过数模转换器将数字量转变成模拟量,再经过低通滤波器平滑并滤除不需要的取样信号,输出频率纯净的正弦或余弦信号。A direct digital frequency synthesizer (DDS) is mainly composed of three modules: a phase accumulator, a phase-to-magnitude converter, and a digital-to-analog converter (DAC). The whole DDS system usually has two input quantities: reference clock fs and frequency control word X. Under the control of the clock, the phase accumulator continuously performs linear phase accumulation on the frequency control word when each clock pulse is input. The data output by the phase accumulator is the phase of the synthesized signal, and the output frequency of the phase accumulator is also the signal frequency output by the direct digital frequency synthesizer. The phase value output by the intercepting accumulator is input into the phase-magnitude converter, and the digitized amplitude value corresponding to the phase value is output through operation conversion. The digital quantity is converted into an analog quantity through a digital-to-analog converter, and then the undesired sampling signal is smoothed and filtered out by a low-pass filter, and a sine or cosine signal with a pure frequency is output.
从DDS的工作原理我们可以看出,时钟非理想特性、DAC输入信号不同步、DAC内部模块时序不同步、电源以及电路设计上可能存在的信号串扰等因素的影响,会使得DAC的输出信号存在幅度和相位误差。在实际应用中,由于加工工艺的波动、工作环境的变化等,还会使DDS幅度和相位误差存在一定的随机性,具体表现为不同DDS芯片的幅度和相位误差不尽相同。在相控雷达等要求对DDS幅度和相位误差一致性进行精确控制的应用中,DDS芯片之间幅度和相位误差不一致导致的问题将会使得DDS芯片无法满足精度要求。因此设计集成于DDS芯片内的高精度幅度和相位误差自校准电路很有现实意义。From the working principle of DDS, we can see that the influence of factors such as the non-ideal characteristics of the clock, the asynchronous DAC input signal, the asynchronous timing of the internal modules of the DAC, the possible signal crosstalk in the power supply and circuit design, etc., will cause the output signal of the DAC to exist. magnitude and phase error. In practical applications, due to fluctuations in processing technology and changes in the working environment, there will also be some randomness in the DDS amplitude and phase errors. The specific performance is that the amplitude and phase errors of different DDS chips are not the same. In applications such as phased radar that require precise control of DDS amplitude and phase error consistency, the problems caused by the inconsistency of amplitude and phase errors between DDS chips will make the DDS chips unable to meet the accuracy requirements. Therefore, it is of practical significance to design a self-calibration circuit of high-precision amplitude and phase error integrated in the DDS chip.
发明内容Contents of the invention
本发明的目的是克服现有技术中存在的不足,提供一种具有幅度和相位误差自校准功能的低功耗DDS电路,其内部集成了高精度的幅度和相位误差自校准电路。The purpose of the present invention is to overcome the deficiencies in the prior art, and provide a low-power DDS circuit with amplitude and phase error self-calibration function, which integrates high-precision amplitude and phase error self-calibration circuit inside.
本发明的目的可以通过以下技术方案实现,所述的具有幅度和相位误差自校准功能的低功耗DDS电路,其结构包括:电荷域幅度误差检测放大电路、电荷域相位误差检测放大电路、K位电荷域模数转换器、控制电路、ROM模块、SRAM模块、相位累加器、第一延迟电路、相位幅度转换器、第二延迟电路、补偿电路和N位电流模DAC;The object of the present invention can be achieved through the following technical solutions, the described low-power DDS circuit with amplitude and phase error self-calibration function, its structure includes: charge domain amplitude error detection amplifier circuit, charge domain phase error detection amplifier circuit, K A bit charge domain analog-to-digital converter, a control circuit, a ROM module, an SRAM module, a phase accumulator, a first delay circuit, a phase amplitude converter, a second delay circuit, a compensation circuit and an N-bit current modulo DAC;
电荷域相位误差检测放大电路的第一、第二输入端分别连接到N位电流模DAC的信号输出差分端口,电荷域相位误差检测放大电路的控制输入端连接到控制电路的第一K位选择码输出端口,电荷域相位误差检测放大电路的差分电压输出端连接到K位电荷域模数转换器的差分电压输入端;电荷域幅度误差检测放大电路的第一、第二输入端分别连接到N位电流模DAC的信号输出差分端口,电荷域幅度误差检测放大电路的控制输入端连接到控制电路的第二K位选择码输出端口,电荷域幅度误差检测放大电路的差分电压输出端连接到K位电荷域模数转换器的差分电压输入端;K位电荷域模数转换器的K位量化码输出到控制电路的误差输入端口;The first and second input ends of the charge domain phase error detection amplifier circuit are respectively connected to the signal output differential port of the N-bit current mode DAC, and the control input end of the charge domain phase error detection amplifier circuit is connected to the first K-bit selector of the control circuit The code output port, the differential voltage output terminal of the charge domain phase error detection amplifier circuit is connected to the differential voltage input terminal of the K-bit charge domain analog-to-digital converter; the first and second input terminals of the charge domain amplitude error detection amplifier circuit are respectively connected to The signal output differential port of the N-bit current mode DAC, the control input end of the charge domain amplitude error detection amplifier circuit is connected to the second K bit selection code output port of the control circuit, and the differential voltage output end of the charge domain amplitude error detection amplifier circuit is connected to The differential voltage input terminal of the K-bit charge domain analog-to-digital converter; the K-bit quantization code of the K-bit charge domain analog-to-digital converter is output to the error input port of the control circuit;
控制电路的ROM控制端口输出控制信号给ROM模块,控制电路的SRAM控制端口输出控制信号给SRAM模块,控制电路的第一K位延迟码输出端连接到第一延迟电路的第二输入端口,控制电路的第二K位延迟码输出端连接到第二延迟电路的第二输入端口,控制电路的校准控制信号Ctrl输出端口同时连接到电荷域相位误差检测放大电路、K位电荷域模数转换器、补偿电路、第一延迟电路以及第二延迟电路的校准控制信号Ctrl输入端口;The ROM control port of the control circuit outputs the control signal to the ROM module, the SRAM control port of the control circuit outputs the control signal to the SRAM module, and the first K-bit delay code output end of the control circuit is connected to the second input port of the first delay circuit to control The second K-bit delay code output end of the circuit is connected to the second input port of the second delay circuit, and the calibration control signal Ctrl output port of the control circuit is simultaneously connected to the charge domain phase error detection amplifying circuit, the K-bit charge domain analog-to-digital converter , the calibration control signal Ctrl input port of the compensation circuit, the first delay circuit and the second delay circuit;
第一延迟电路的第一输入端口连接ROM模块的第一N位校准码输出端,第一延迟电路的第三输入端口连接相位累加器的X位相位控制输入码,第一延迟电路的输出端口将X位转换码输出到相位幅度转换器;第二延迟电路的第一输入端口连接ROM模块的第二N位校准码输出端,第二延迟电路的第三输入端口连接相位幅度控制器输出的N位幅度控制输入码,第二延迟电路的输出端口将N位转换码输出到补偿电路;补偿电路的第一输入端口连接ROM模块的第三N位校准码输出端,补偿电路的第三输入端口连接第二延迟电路输出的N位转换码,补偿电路的输出端口将N位输出码输出到N位电流模DAC的数据输入端;其中,N为正整数,K为不大于N的正整数。The first input port of the first delay circuit is connected to the first N-bit calibration code output end of the ROM module, the third input port of the first delay circuit is connected to the X-bit phase control input code of the phase accumulator, and the output port of the first delay circuit Output the X-bit conversion code to the phase-amplitude converter; the first input port of the second delay circuit is connected to the second N-bit calibration code output end of the ROM module, and the third input port of the second delay circuit is connected to the output terminal of the phase-amplitude controller. N-bit amplitude control input code, the output port of the second delay circuit outputs the N-bit conversion code to the compensation circuit; the first input port of the compensation circuit is connected to the third N-bit calibration code output end of the ROM module, and the third input of the compensation circuit The port is connected to the N-bit conversion code output by the second delay circuit, and the output port of the compensation circuit outputs the N-bit output code to the data input terminal of the N-bit current modulo DAC; wherein, N is a positive integer, and K is a positive integer not greater than N .
所述具有幅度和相位误差自校准功能的低功耗DDS电路,其工作模式包括校准模式和补偿模式;并且在电路工作时先进入校准模式,后进入补偿模式;在进入校准模式时,X位相位控制输入码、N位幅度控制输入码、N位输出码、第一K位延迟码、第二K位延迟码和K位补偿码均无效,第一N位校准码输入到第一延迟电路,第二N位校准码输入到第二延迟电路,第三N位校准码输入到补偿电路;所述电荷域幅度误差校准电路先对N位电流模DAC进行幅度误差校准,然后所述电荷域相位误差校准电路依次对N位电流模DAC和相位幅度转换器进行相位误差校准;在进入补偿模式时,X位相位控制输入码输入到第一延迟电路,N位幅度控制输入码输入到第二延迟电路,N位输出码输入到补偿电路;第一N位校准码、第二N位校准码和第三N位校准码无效,第一K位延迟码、第二K位延迟码和K位补偿码有效;所述电荷域幅度误差校准电路开始对N位电流模DAC进行幅度误差补偿,所述电荷域相位误差校准电路同时对N位电流模DAC和相位幅度转换器进行相位补偿。Described low power consumption DDS circuit with amplitude and phase error self-calibration function, its mode of operation includes calibration mode and compensation mode; Bit control input code, N-bit amplitude control input code, N-bit output code, first K-bit delay code, second K-bit delay code and K-bit compensation code are all invalid, and the first N-bit calibration code is input to the first delay circuit , the second N-bit calibration code is input to the second delay circuit, and the third N-bit calibration code is input to the compensation circuit; the charge domain amplitude error calibration circuit first performs amplitude error calibration on the N-bit current mode DAC, and then the charge domain The phase error calibration circuit sequentially performs phase error calibration on the N-bit current mode DAC and the phase-amplitude converter; when entering the compensation mode, the X-bit phase control input code is input to the first delay circuit, and the N-bit amplitude control input code is input to the second delay circuit. Delay circuit, the N-bit output code is input to the compensation circuit; the first N-bit calibration code, the second N-bit calibration code and the third N-bit calibration code are invalid, and the first K-bit delay code, the second K-bit delay code and the K-bit The compensation code is valid; the charge domain amplitude error calibration circuit starts to perform amplitude error compensation on the N-bit current mode DAC, and the charge domain phase error calibration circuit simultaneously performs phase compensation on the N-bit current mode DAC and the phase-to-amplitude converter.
所述具有幅度和相位误差自校准功能的低功耗DDS电路,其对所述N位电流模DAC进行幅度误差校准时,电路的工作顺序如下:The low-power DDS circuit with amplitude and phase error self-calibration function, when it performs amplitude error calibration to the N-bit current mode DAC, the working order of the circuit is as follows:
控制电路通过Ctrl信号首先控制电荷域幅度误差检测放大电路、K位电荷域模数转换器和补偿电路进入校准模式,同时输出第二K位选择码给电荷域幅度误差检测放大电路;The control circuit first controls the charge domain amplitude error detection amplifying circuit, the K-bit charge domain analog-to-digital converter and the compensation circuit to enter the calibration mode through the Ctrl signal, and simultaneously outputs the second K-bit selection code to the charge domain amplitude error detection amplifying circuit;
然后控制电路产生第一组第二K位选择码,同时控制ROM模块产生第一组第三N位校准码;第一组第三N位校准码进入补偿电路并得到N位输出码,N位输出码进入待校准的N位电流模DAC电路,经数模转换得到与第三N位校准码对应的第一组幅度误差差分输出电流;电荷域幅度误差检测放大电路通过检测第一组幅度误差差分输出电流量,并处理得到第一组误差电压;K位电荷域模数转换器将第一组误差电压进行模数转换,可以得到第一组幅度误差K位量化码并输出到控制电路;控制电路将接收得到第一组幅度误差K位量化码存储在SRAM模块中,完成一种输入条件下的幅度误差量化;Then the control circuit generates the first group of second K-bit selection codes, and at the same time controls the ROM module to generate the first group of third N-bit calibration codes; the first group of third N-bit calibration codes enters the compensation circuit and obtains N-bit output codes, N-bit The output code enters the N-bit current mode DAC circuit to be calibrated, and the first group of amplitude error differential output current corresponding to the third N-bit calibration code is obtained through digital-to-analog conversion; the charge domain amplitude error detection amplifier circuit detects the first group of amplitude errors Differential output current, and processing to obtain the first set of error voltages; K-bit charge domain analog-to-digital converter performs analog-digital conversion on the first set of error voltages to obtain the first set of amplitude error K-bit quantization codes and output them to the control circuit; The control circuit stores the received first group of amplitude error K-bit quantization codes in the SRAM module, and completes the amplitude error quantization under one input condition;
紧接着,控制电路会产生第二组第二K位选择码并同时控制ROM模块产生第二组第三N位校准码,第二组第三N位校准码进入补偿电路并得到N位输出码,N位输出码进入待校准的N位电流模DAC电路,经数模转换得到与第二组第三N位校准码对应的第二组幅度误差差分输出电流;电荷域幅度误差检测放大电路通过比较第二组差分输出电流和第二组基准电压并将其差值进行放大可以得到第二组误差电压;K位电荷域模数转换器将第二组误差电压进行模数转换,可以得到第二组幅度误差K位量化码并输出到控制电路;控制电路将接收得到第二组幅度误差K位量化码存储在SRAM模块中,完成第二种输入条件下的幅度误差量化;Next, the control circuit will generate the second group of the second K-bit selection code and at the same time control the ROM module to generate the second group of the third N-bit calibration code, the second group of the third N-bit calibration code enters the compensation circuit and obtains the N-bit output code , the N-bit output code enters the N-bit current mode DAC circuit to be calibrated, and the second group of amplitude error differential output current corresponding to the second group of the third N-bit calibration code is obtained through digital-to-analog conversion; the charge domain amplitude error detection amplifier circuit passes Comparing the second group of differential output currents with the second group of reference voltages and amplifying the difference can obtain the second group of error voltages; the K-bit charge domain analog-to-digital converter performs analog-to-digital conversion on the second group of error voltages to obtain the second group of error voltages The two sets of amplitude error K-bit quantization codes are output to the control circuit; the control circuit stores the received second set of amplitude error K-bit quantization codes in the SRAM module to complete the amplitude error quantization under the second input condition;
依此循环,当控制电路产生第L组第二K位选择码并同时控制ROM模块产生第L组第三N位校准码,并得到第L组幅度误差K位量化码,并存储在SRAM模块中后,控制电路内部的运算电路将会对存储在SRAM模块中的L组幅度误差K位量化码进行计算得到K位补偿码;控制电路此时会将K位补偿码输出到补偿电路中,并将补偿电路设置成补偿模式,同时保持K位补偿码不变;至此,完成对N位电流模DAC幅度误差的校准;In this cycle, when the control circuit generates the second K-bit selection code of the L group and at the same time controls the ROM module to generate the third N-bit calibration code of the L group, and obtains the K-bit quantization code of the L group amplitude error, and stores it in the SRAM module After the middle, the operation circuit inside the control circuit will calculate the K-bit quantization code of the L group amplitude error stored in the SRAM module to obtain the K-bit compensation code; the control circuit will output the K-bit compensation code to the compensation circuit at this time, And set the compensation circuit to the compensation mode, while keeping the K-bit compensation code unchanged; so far, the calibration of the N-bit current mode DAC amplitude error is completed;
上述校准过程中,控制电路同时产生的每一组输出到补偿电路的第三N位校准码和输出到电荷域幅度误差检测放大电路的第二K位选择码必须一一对应,即:第J组第三N位校准码必须和第J组第二K位选择码配合使用;其中,L为不大于2K的正整数;J为不大于L的正整数。In the above calibration process, each group of the third N-bit calibration code output to the compensation circuit simultaneously generated by the control circuit and the second K-bit selection code output to the charge domain amplitude error detection amplifier circuit must correspond one-to-one, that is: The third N-bit calibration code of the group must be used in conjunction with the second K-bit selection code of the J-th group; where, L is a positive integer not greater than 2K ; J is a positive integer not greater than L.
所述具有幅度和相位误差自校准功能的低功耗DDS电路,其对所述N位电流模DAC和相位幅度转换器进行相位误差校准时,电路的工作顺序如下:Described low power consumption DDS circuit with amplitude and phase error self-calibration function, when it carries out phase error calibration to described N-bit current modulus DAC and phase-amplitude converter, the operating sequence of the circuit is as follows:
1、首先对N位电流模DAC进行相位误差校准:1. First, perform phase error calibration on the N-bit current mode DAC:
1.1控制电路通过Ctrl信号控制电荷域相位误差检测放大电路和第二延迟电路进入校准模式,同时输出第一K位选择码给电荷域相位误差检测放大电路,开始对N位电流模DAC进行相位误差校准;1.1 The control circuit controls the charge domain phase error detection amplifier circuit and the second delay circuit to enter the calibration mode through the Ctrl signal, and at the same time outputs the first K-bit selection code to the charge domain phase error detection amplifier circuit, and starts to perform phase error on the N-bit current mode DAC. calibration;
1.2然后控制电路产生第一组第一K位选择码,同时控制ROM模块产生第一组第二N位校准码;第一组第二N位校准码进入第二延迟电路并得到N位转换码,N位转换码进入待校准N位电流模DAC电路,经数模转换得到与第一组第二N位校准码对应的第一组相位误差差分输出电流;电荷域相位误差检测放大电路通过检测第一组相位误差差分输出电流量,并进行处理得到第一组相位误差电压;K位电荷域模数转换器将第一组相位误差电压进行模数转换,可以得到第一组相位误差K位量化码并输出到控制电路;控制电路将接收得到第一组相位误差K位量化码存储在SRAM模块中,完成一种输入条件下的N位电流模DAC电路相位误差量化;1.2 Then the control circuit generates the first group of first K-bit selection codes, and at the same time controls the ROM module to generate the first group of second N-bit calibration codes; the first group of second N-bit calibration codes enters the second delay circuit and obtains N-bit conversion codes , the N-bit conversion code enters the N-bit current mode DAC circuit to be calibrated, and the first group of phase error differential output current corresponding to the first group of the second N-bit calibration code is obtained through digital-to-analog conversion; the charge domain phase error detection amplifier circuit passes the detection The first group of phase error differential output currents are processed to obtain the first group of phase error voltages; the K-bit charge domain analog-to-digital converter performs analog-to-digital conversion on the first group of phase error voltages to obtain the first group of phase error K bits The quantization code is output to the control circuit; the control circuit stores the received first group of phase error K-bit quantization codes in the SRAM module, and completes the N-bit current mode DAC circuit phase error quantization under an input condition;
1.3紧接着,控制电路产生第二组第一K位选择码,同时控制ROM模块产生第二组第二N位校准码;第二组第二N位校准码进入第二延迟电路并得到N位转换码,N位转换码进入待校准的N位电流模DAC电路,经数模转换得到与第二组第二N位校准码对应的第二组相位误差差分输出电流;电荷域相位误差检测放大电路通过检测第二组相位误差差分输出电流量,并进行处理得到第二组相位误差电压;K位电荷域模数转换器将第二组相位误差电压进行模数转换,可以得到第二组相位误差K位量化码并输出到控制电路;控制电路将接收得到第二组相位误差K位量化码存储在SRAM模块中,完成二种输入条件下的待校准N位电流模DAC电路相位误差量化;1.3 Immediately afterwards, the control circuit generates a second group of first K-bit selection codes, and at the same time controls the ROM module to generate a second group of second N-bit calibration codes; the second group of second N-bit calibration codes enters the second delay circuit and obtains N-bit The conversion code, the N-bit conversion code enters the N-bit current mode DAC circuit to be calibrated, and the second group of phase error differential output current corresponding to the second group of the second N-bit calibration code is obtained through digital-to-analog conversion; the charge domain phase error detection amplification The circuit detects the second group of phase error differential output currents and processes them to obtain the second group of phase error voltages; the K-bit charge domain analog-to-digital converter performs analog-to-digital conversion on the second group of phase error voltages to obtain the second group of phase errors The error K-bit quantization code is output to the control circuit; the control circuit stores the received second group of phase error K-bit quantization codes in the SRAM module, and completes the phase error quantization of the N-bit current mode DAC circuit to be calibrated under the two input conditions;
1.4依此循环,当控制电路产生第L组第二N位校准码和第L组第一K位选择码,并得到第L组相位误差K位量化码,并存储在SRAM模块中后,控制电路内部的运算电路将会对存储在K位寄存器组中的L组相位误差K位量化码进行计算得到第二K位延迟码;控制电路此时会将第二K位延迟码输出到第二延迟电路中,并保持第二K位延迟码不变,控制电路将第二延迟电路设置成补偿模式,完成对N位电流模DAC的相位误差校准;1.4 In this way, when the control circuit generates the second N-bit calibration code of the L group and the first K-bit selection code of the L group, and obtains the K-bit quantization code of the L group phase error, and stores it in the SRAM module, the control The arithmetic circuit inside the circuit will calculate the K-bit quantization code of the L group phase error stored in the K-bit register group to obtain the second K-bit delay code; the control circuit will output the second K-bit delay code to the second In the delay circuit, and keeping the second K-bit delay code unchanged, the control circuit sets the second delay circuit to a compensation mode to complete the phase error calibration of the N-bit current mode DAC;
2、之后,控制电路通过Ctrl信号控制第一延迟电路进入校准模式,同时输出K位选择码给电荷域相位误差检测放大电路,开始对相位幅度转换器进行相位误差校准;2. After that, the control circuit controls the first delay circuit to enter the calibration mode through the Ctrl signal, and at the same time outputs the K-bit selection code to the charge domain phase error detection amplifier circuit, and starts to perform phase error calibration on the phase amplitude converter;
控制电路控制ROM模块产生第一N位校准码,通过第一延迟电路、电荷域相位误差检测放大电路和K位电荷域模数转换器,采用和对N位电流模DAC的相位误差校准相同的步骤和方法,得到第一K位延迟码并输出到第一延迟电路中,同时保持第一K位延迟码不变,控制电路将第一延迟电路设置成补偿模式,完成对相位幅度转换器的相位误差校准;此时,校准模式结束;The control circuit controls the ROM module to generate the first N-bit calibration code, through the first delay circuit, the charge domain phase error detection amplifier circuit and the K-bit charge domain analog-to-digital converter, the same phase error calibration as the N-bit current mode DAC is used. Steps and methods, obtain the first K-bit delay code and output it to the first delay circuit, while keeping the first K-bit delay code unchanged, the control circuit sets the first delay circuit to compensation mode, and completes the phase-to-magnitude converter Phase error calibration; at this point, the calibration mode ends;
在上述相位误差校准过程中,控制电路同时产生的每一组第一N位校准码及第二N位校准码和输出到电荷域相位误差检测放大电路的第一K位选择码必须一一对应,即:第J组第一N位校准码及第二N位校准码均必须和第J组第一K位选择码配合使用;其中,L为不大于2K的正整数,J为不大于L的正整数。In the above-mentioned phase error calibration process, each group of first N-bit calibration codes and second N-bit calibration codes simultaneously generated by the control circuit must correspond to the first K-bit selection code output to the charge domain phase error detection amplifier circuit. , that is: the first N-digit calibration code and the second N-digit calibration code of the J-th group must be used in conjunction with the first K-bit selection code of the J-th group; where, L is a positive integer not greater than 2 K , and J is not greater than A positive integer of L.
进一步的,所述具有幅度和相位误差自校准功能的低功耗DDS电路中,所述的电荷域相位误差检测放大电路包括:电流检测电阻、参考时钟产生电路、鉴相器、环路滤波器和第一电荷域电压放大电路;电流检测电阻的两端分别连接到电荷域相位误差检测放大电路的第一、第二输入端,并分别连接到鉴相器的第一和第二输入端;参考时钟产生电路在K位选择码的控制下,产生基准时钟并连接到鉴相器的第三输入端;鉴相器对3个输入端的信号进行进一步的相位比较得到相位误差信号;相位误差信号经过环路滤波器滤波得到电压信号Vi;Vi经过第一电荷域电压放大电路放大得到误差信号Vop和Von。Further, in the low-power DDS circuit with amplitude and phase error self-calibration function, the charge domain phase error detection amplifier circuit includes: current detection resistor, reference clock generation circuit, phase detector, loop filter and a first charge domain voltage amplifying circuit; the two ends of the current detection resistor are respectively connected to the first and second input terminals of the charge domain phase error detection amplifying circuit, and are respectively connected to the first and second input terminals of the phase detector; The reference clock generation circuit generates a reference clock under the control of the K-bit selection code and connects it to the third input terminal of the phase detector; the phase detector performs further phase comparison on the signals of the three input terminals to obtain a phase error signal; the phase error signal The voltage signal V i is obtained through loop filter filtering; V i is amplified by the first charge domain voltage amplification circuit to obtain error signals Vop and Von.
进一步的,所述具有幅度和相位误差自校准功能的低功耗DDS电路中,所述电荷域幅度误差检测放大电路包括:电流检测电阻、参考基准产生电路、共模不敏感高速开关电容差分电压信号采样网络和第二电荷域电压放大电路;电流检测电阻的两端分别连接到电荷域幅度误差检测放大电路的第一和第二输入端,并连接到共模不敏感高速开关电容差分电压信号采样网络的第一和第二输入端;参考基准产生电路在K位选择码的控制下,产生差分基准电压输出,并连接到共模不敏感高速开关电容差分电压信号采样网络的第三和第四输入端;开关电容差分电压信号采样网络对4个输入端的电压信号进行进一步的采样,得到差分电压信号Vi+和Vi-;经过第二电荷域电压放大电路放大得到误差信号Vop和Von。Further, in the low-power DDS circuit with amplitude and phase error self-calibration function, the charge domain amplitude error detection amplifier circuit includes: current detection resistor, reference reference generation circuit, common mode insensitive high-speed switched capacitor differential voltage A signal sampling network and a second charge domain voltage amplifying circuit; the two ends of the current detection resistor are respectively connected to the first and second input terminals of the charge domain amplitude error detection amplifying circuit, and are connected to the common mode insensitive high-speed switched capacitor differential voltage signal The first and second input ends of the sampling network; the reference reference generation circuit generates a differential reference voltage output under the control of the K-bit selection code, and is connected to the third and the third of the common-mode insensitive high-speed switched capacitor differential voltage signal sampling network Four input terminals; the switched capacitor differential voltage signal sampling network further samples the voltage signals of the four input terminals to obtain differential voltage signals V i + and V i -; the error signals Vop and Von are obtained by amplifying the second charge domain voltage amplifier circuit .
进一步的,所述具有幅度和相位误差自校准功能的低功耗DDS电路中,所述的K位电荷域模数转换器包括:P级基于电荷域信号处理技术的流水线子级电路,其用于对采样得到的电荷包进行各种处理完成模数转换和余量放大,并将每一个子级电路的输出数字码输入到延时同步寄存器,且每一个子级电路输出的电荷包进入下一级重复上述过程;第P+1级,也是最后一级A-bit Flash模数转换器电路,其将第P级传输过来的电荷包重新转换成电压信号,并进行最后一级的模数转换工作,并将本级电路的输出数字码输入到延时同步寄存器,该级电路只完成模数转换,不进行余量放大;延时同步寄存器,其用于对每个子流水级输出的数字码进行延时对准,并将对齐的数字码输入到数字校正模块;数字校正电路模块,其用于接收同步寄存器的输出数字码,将接收的数字码进行移位相加,以得到模数转换器的R位数字输出码;其中,R为正整数,P和A均为不大于R的正整数。Further, in the low-power DDS circuit with amplitude and phase error self-calibration functions, the K-bit charge domain analog-to-digital converter includes: a P-level pipeline sub-level circuit based on charge domain signal processing technology, which uses Perform various processing on the sampled charge packets to complete analog-to-digital conversion and margin amplification, and input the output digital codes of each sub-level circuit to the delay synchronization register, and the output charge packets of each sub-level circuit enter the next The first stage repeats the above process; the P+1 stage is also the last stage A-bit Flash analog-to-digital converter circuit, which reconverts the charge packet transmitted from the P-stage into a voltage signal, and performs the final stage of analog-to-digital converter circuit Conversion work, and input the output digital code of this stage circuit to the delay synchronization register, this stage circuit only completes the analog-to-digital conversion, and does not perform margin amplification; the delay synchronization register is used for digital output of each sub-pipeline stage The code is delayed and aligned, and the aligned digital code is input to the digital correction module; the digital correction circuit module is used to receive the output digital code of the synchronous register, and shift and add the received digital code to obtain the modulus The R-bit digital output code of the converter; wherein, R is a positive integer, and both P and A are positive integers not greater than R.
进一步的,所述具有幅度和相位误差自校准功能的低功耗DDS电路中,所述第一延迟电路和第二延迟电路均采用相同的延迟电路,结构包括:N个延时缓冲单元和N个K位延迟寄存器;其中,第一K位延迟寄存器~第N个K位延迟寄存器的延迟码输入端全部连接到K位延迟码,控制信号输入端全部连接到Ctrl信号;第一延时缓冲单元~第N延时缓冲单元的延迟码输入端分别连接到第一K位延迟寄存器~第N个K位延迟寄存器的延迟码输出端,第一延时缓冲单元~第N延时缓冲单元的数据输出端分别连接到第1位转换码~第N位转换码并输出,第一延时缓冲单元~第N延时缓冲单元的第一控制信号输入端全部连接到Ctrln信号,第一延时缓冲单元~第N延时缓冲单元的第二控制信号输入端全部连接到Ctrl信号;其中,Ctrl和Ctrln为一组反向信号。Further, in the low-power DDS circuit with amplitude and phase error self-calibration functions, the first delay circuit and the second delay circuit all use the same delay circuit, and the structure includes: N delay buffer units and N K-bit delay registers; wherein, the delay code input terminals of the first K-bit delay register to the Nth K-bit delay register are all connected to the K-bit delay code, and the control signal input terminals are all connected to the Ctrl signal; the first delay buffer The delay code input ends of the unit to the Nth delay buffer unit are respectively connected to the delay code output ends of the first K-bit delay register to the Nth K-bit delay register, and the delay code output ends of the first delay buffer unit to the Nth delay buffer unit The data output terminals are respectively connected to the conversion codes of the 1st bit to the Nth bit conversion code and output, and the first control signal input terminals of the first delay buffer unit to the Nth delay buffer unit are all connected to the Ctrln signal, and the first delay The second control signal input terminals of the buffer unit to the Nth delay buffer unit are all connected to the Ctrl signal; wherein, Ctrl and Ctrln are a set of reverse signals.
进一步的,所述具有幅度和相位误差自校准功能的低功耗DDS电路中,所述补偿电路内部包括:延时缓冲电路和K位加法电路,并且延时缓冲电路和K位加法电路的延时必须相等;补偿电路在Ctrl信号的控制下能够工作于校准和补偿模式两种模式;Further, in the low-power DDS circuit with amplitude and phase error self-calibration functions, the compensation circuit includes: a delay buffer circuit and a K-bit addition circuit, and the delay of the delay buffer circuit and the K-bit addition circuit must be equal; the compensation circuit can work in two modes of calibration and compensation under the control of the Ctrl signal;
在校准模式下时,Ctrl信号有效,K位加法电路的输出将无效,第三N位校准码经延时缓冲电路后得到N位输出码并输出;When in the calibration mode, the Ctrl signal is valid, the output of the K-bit addition circuit will be invalid, and the third N-bit calibration code will get the N-bit output code after the delay buffer circuit and output it;
在补偿模式下时,Ctrln信号有效,K位加法电路的输出将有效,N-K位转换码经延时缓冲电路后得到N-K位输出码并输出,K位转换码和K位补偿码经过K位加法电路相加得到K位输出码并输出。In the compensation mode, the Ctrln signal is valid, the output of the K-bit addition circuit will be valid, and the N-K-bit conversion code will be output after the delay buffer circuit to obtain the N-K-bit output code, and the K-bit conversion code and the K-bit compensation code will be added after K-bit addition The circuit is added to obtain the K-bit output code and output it.
进一步的,所述具有幅度和相位误差自校准功能的低功耗DDS电路中,所述控制电路包括:核心控制电路、ROM读出电路、第一延迟码产生电路、第二延迟码产生电路、补偿码产生电路、选择码产生电路、运算电路、SRAM读写电路和K位寄存器;Further, in the low-power DDS circuit with amplitude and phase error self-calibration function, the control circuit includes: a core control circuit, a ROM readout circuit, a first delay code generation circuit, a second delay code generation circuit, Compensation code generation circuit, selection code generation circuit, arithmetic circuit, SRAM read and write circuit and K-bit register;
上述电路的连接关系为:核心控制电路的第一输出端连接到ROM读出电路的输入端,核心控制电路的第二输出端连接到第一延迟码产生电路的控制输入端,核心控制电路的第三输出端连接到第二延迟码产生电路的控制输入端,核心控制电路的第四输出端连接到补偿码产生电路的控制输入端,核心控制电路的第五输出端连接到运算电路的控制输入端,核心控制电路的第六输出端连接到选择码产生电路的控制输入端,核心控制电路的第七输出端产生校准控制信号Ctrl,核心控制电路的第八输出端同时连接到K位寄存器和SRAM读写电路的控制输入端,核心控制电路的输入端连接到校准启动控制信号;ROM读出电路根据核心控制电路的控制指令产生ROM地址码;运算电路的数据输入端接收SRAM读写电路输出端发送的数据,并根据核心控制电路的控制指令产生第一K位误差码、第二K位误差码和第三K位误差码;第一延迟码产生电路的数据输入端接收运算电路数据输出端发送的第一K位误差码,并根据核心控制电路的控制指令产生第一K位延迟码;第二延迟码产生电路的数据输入端接收运算电路数据输出端发送的第二K位误差码,并根据核心控制电路的控制指令产生第二K位延迟码;补偿码产生电路的数据输入端接收运算电路数据输出端发送的第三K位误差码,并根据核心控制电路的控制指令产生K位补偿码;选择码产生电路根据核心控制电路的控制指令产生第一K位选择码和第二K位选择码;K位寄存器的数据输入端接收所述K位电荷域模数转换器的输出端发送的K位量化码,并根据核心控制电路的控制指令将存储在其内部的数据发送给SRAM读写电路;SRAM读写电路根据核心控制电路的控制指令产生SRAM地址数据码,对SRAM模块进行数据读取和写入。The connection relation of above-mentioned circuit is: the first output end of core control circuit is connected to the input end of ROM readout circuit, the second output end of core control circuit is connected to the control input end of the first delay code generation circuit, the core control circuit's The third output end is connected to the control input end of the second delay code generation circuit, the fourth output end of the core control circuit is connected to the control input end of the compensation code generation circuit, and the fifth output end of the core control circuit is connected to the control of the arithmetic circuit. The input terminal, the sixth output terminal of the core control circuit is connected to the control input terminal of the selection code generation circuit, the seventh output terminal of the core control circuit generates the calibration control signal Ctrl, and the eighth output terminal of the core control circuit is connected to the K-bit register at the same time And the control input terminal of the SRAM read-write circuit, the input terminal of the core control circuit is connected to the calibration start control signal; the ROM readout circuit generates the ROM address code according to the control instruction of the core control circuit; the data input terminal of the arithmetic circuit receives the SRAM read-write circuit The data sent by the output end, and generate the first K-bit error code, the second K-bit error code and the third K-bit error code according to the control instruction of the core control circuit; the data input end of the first delay code generation circuit receives the operation circuit data The first K-bit error code sent by the output terminal, and generates the first K-bit delay code according to the control instruction of the core control circuit; the data input terminal of the second delay code generation circuit receives the second K-bit error code sent by the data output terminal of the operation circuit code, and generate the second K-bit delay code according to the control instruction of the core control circuit; the data input end of the compensation code generation circuit receives the third K-bit error code sent by the data output end of the operation circuit, and generates it according to the control instruction of the core control circuit K-bit compensation code; the selection code generation circuit generates the first K-bit selection code and the second K-bit selection code according to the control instruction of the core control circuit; the data input end of the K-bit register receives the input of the K-bit charge domain analog-to-digital converter The K-bit quantization code sent by the output terminal sends the data stored in it to the SRAM read-write circuit according to the control instruction of the core control circuit; the SRAM read-write circuit generates the SRAM address data code according to the control instruction of the core control circuit, and the SRAM The module performs data reading and writing.
本发明的优点是:所设计的具有幅度和相位误差自校准功能的低功耗DDS电路可根据系统精度和硬件开销自动折衷选择校准精度,并且具有低功耗特点。通过采用电荷域信号处理技术,在误差检测处理方面不使用运算放大器,具有低功耗特点;采用电荷域ADC对误差信号进行量化,误差补偿方法全部采用数字信号处理技术,进一步实现功耗最小化并且具有低功耗特点。The invention has the advantages that the designed low-power DDS circuit with amplitude and phase error self-calibration function can automatically compromise the calibration precision according to the system precision and hardware cost, and has the characteristics of low power consumption. By adopting the charge domain signal processing technology, no operational amplifier is used in the error detection and processing, which has the characteristics of low power consumption; the charge domain ADC is used to quantify the error signal, and all error compensation methods adopt digital signal processing technology to further minimize power consumption And has the characteristic of low power consumption.
附图说明Description of drawings
图1为本发明具有幅度和相位误差自校准功能的低功耗DDS电路框图。FIG. 1 is a block diagram of a low-power DDS circuit with amplitude and phase error self-calibration functions of the present invention.
图2为本发明所述电荷域相位误差检测放大电路结构框图。FIG. 2 is a structural block diagram of the phase error detection amplifier circuit in the charge domain according to the present invention.
图3为本发明所述电荷域电压放大电路原理图。Fig. 3 is a schematic diagram of the charge domain voltage amplifying circuit of the present invention.
图4为本发明所述电荷域电压放大电路工作波形图。Fig. 4 is a working waveform diagram of the charge domain voltage amplifying circuit of the present invention.
图5为本发明所述鉴相器电路结构框图。Fig. 5 is a structural block diagram of the phase detector circuit of the present invention.
图6为本发明所述参考时钟产生电路结构框图。FIG. 6 is a structural block diagram of the reference clock generating circuit of the present invention.
图7为本发明所述电荷域幅度误差检测放大电路结构框图。FIG. 7 is a structural block diagram of the charge domain amplitude error detection amplifier circuit of the present invention.
图8为本发明所述参考基准产生电路结构框图。FIG. 8 is a structural block diagram of the reference reference generation circuit of the present invention.
图9为本发明所述电荷域模数转换器电路框图。FIG. 9 is a circuit block diagram of the charge domain analog-to-digital converter of the present invention.
图10为本发明所述电荷域流水线子级电路框图。FIG. 10 is a circuit block diagram of a sub-stage of a charge domain pipeline according to the present invention.
图11为本发明所述延时电路结构框图。Fig. 11 is a structural block diagram of the delay circuit of the present invention.
图12为本发明所述补偿电路结构框图。Fig. 12 is a structural block diagram of the compensation circuit of the present invention.
图13为本发明所述控制电路框图。Fig. 13 is a block diagram of the control circuit of the present invention.
具体实施方式detailed description
下面将结合附图对本发明优选实施例进行详细说明。Preferred embodiments of the present invention will be described in detail below with reference to the accompanying drawings.
图1所示为本发明具有幅度和相位误差自校准功能的低功耗DDS电路框图。所述具有幅度和相位误差自校准功能的低功耗DDS电路包括:电荷域幅度误差检测放大电路10、电荷域相位误差检测放大电路11、K位电荷域模数转换器12、控制电路13、ROM模块15、SRAM模块14、相位累加器16、第一延迟电路17、相位幅度转换器18、第二延迟电路19、补偿电路110和N位电流模DAC 111。Fig. 1 shows the block diagram of the low power consumption DDS circuit with amplitude and phase error self-calibration function of the present invention. The low-power DDS circuit with amplitude and phase error self-calibration function includes: charge domain amplitude error detection amplifier circuit 10, charge domain phase error detection amplifier circuit 11, K-bit charge domain analog-to-digital converter 12, control circuit 13, ROM module 15 , SRAM module 14 , phase accumulator 16 , first delay circuit 17 , phase amplitude converter 18 , second delay circuit 19 , compensation circuit 110 and N-bit current modulus DAC 111 .
上述电路的连接关系为:电荷域相位误差检测放大电路11的第一和第二输入端分别连接到N位电流模DAC 111的信号输出差分端口(对应信号Iop和Ion),电荷域相位误差检测放大电路11的控制输入端连接到控制电路13的第一K位选择码输出端口,电荷域相位误差检测放大电路11的差分电压输出端连接到K位电荷域模数转换器12的差分电压输入端;电荷域幅度误差检测放大电路10的第一和第二输入端分别连接到N位电流模DAC 111的信号输出差分端口,电荷域幅度误差检测放大电路10的控制输入端连接到控制电路13的第二K位选择码输出端口,电荷域幅度误差检测放大电路10的差分电压输出端连接到K位电荷域模数转换器12的差分电压输入端;K位电荷域模数转换器12的K位量化码输出到控制电路13的误差输入端口;The connection relationship of the above-mentioned circuit is: the first and second input ends of the charge domain phase error detection amplifying circuit 11 are respectively connected to the signal output differential ports (corresponding signals Iop and Ion) of the N-bit current mode DAC 111, and the charge domain phase error detection The control input terminal of the amplifying circuit 11 is connected to the first K-bit selection code output port of the control circuit 13, and the differential voltage output terminal of the charge domain phase error detection amplifying circuit 11 is connected to the differential voltage input of the K-bit charge domain analog-to-digital converter 12 end; the first and second input ends of the charge domain amplitude error detection amplifier circuit 10 are respectively connected to the signal output differential port of the N-bit current mode DAC 111, and the control input end of the charge domain amplitude error detection amplifier circuit 10 is connected to the control circuit 13 The second K bit selection code output port of the second K bit, the differential voltage output end of the charge domain amplitude error detection amplifying circuit 10 is connected to the differential voltage input end of the K bit charge domain analog-to-digital converter 12; The K-bit quantization code is output to the error input port of the control circuit 13;
控制电路13的ROM控制端口输出控制信号给ROM模块15,控制电路13的SRAM控制端口输出控制信号给SRAM模块14,控制电路13的第一K位延迟码输出端连接到第一延迟电路17的第二输入端口,控制电路13的第二K位延迟码输出端连接到第二延迟电路19的第二输入端口,控制电路13的校准控制信号Ctrl输出端口同时连接到电荷域相位误差检测放大电路11、K位电荷域模数转换器12、补偿电路110、第一延迟电路17以及第二延迟电路19的校准控制信号Ctrl输入端口;The ROM control port output control signal of control circuit 13 is given to ROM module 15, the SRAM control port output control signal of control circuit 13 is given SRAM module 14, and the first K delay code output end of control circuit 13 is connected to the first delay circuit 17 The second input port, the second K-bit delay code output end of the control circuit 13 is connected to the second input port of the second delay circuit 19, and the calibration control signal Ctrl output port of the control circuit 13 is connected to the charge domain phase error detection amplifier circuit at the same time 11. The input port of the calibration control signal Ctrl of the K-bit charge domain analog-to-digital converter 12, the compensation circuit 110, the first delay circuit 17, and the second delay circuit 19;
第一延迟电路17的第一输入端口连接ROM模块15的第一N位校准码输出端,第一延迟电路17的第三输入端口连接相位累加器16的X位相位控制输入码,第一延迟电路17的输出端口将X位转换码输出到相位幅度转换器18;第二延迟电路19的第一输入端口连接ROM模块15的第二N位校准码输出端,第二延迟电路19的第三输入端口连接相位幅度控制器输出的N位幅度控制输入码,第二延迟电路19的输出端口将N位转换码输出到补偿电路110;补偿电路110的第一输入端口连接ROM模块15的第三N位校准码输出端,补偿电路110的第三输入端口连接第二延迟电路19输出的N位转换码,补偿电路110的输出端口将N位输出码输出到N位电流模DAC 111的数据输入端。The first input port of the first delay circuit 17 is connected to the first N-bit calibration code output end of the ROM module 15, the third input port of the first delay circuit 17 is connected to the X-bit phase control input code of the phase accumulator 16, and the first delay The output port of the circuit 17 outputs the X-bit conversion code to the phase amplitude converter 18; the first input port of the second delay circuit 19 is connected to the second N-bit calibration code output end of the ROM module 15, and the third of the second delay circuit 19 The input port is connected to the N-bit amplitude control input code output by the phase-amplitude controller, and the output port of the second delay circuit 19 outputs the N-bit conversion code to the compensation circuit 110; the first input port of the compensation circuit 110 is connected to the third of the ROM module 15. N-bit calibration code output terminal, the third input port of the compensation circuit 110 is connected to the N-bit conversion code output by the second delay circuit 19, and the output port of the compensation circuit 110 outputs the N-bit output code to the data input of the N-bit current modulus DAC 111 end.
本发明所述具有幅度和相位误差自校准功能的低功耗DDS电路,包括校准模式和补偿模式两种工作模式。在电路工作时先进入校准模式,后进入补偿模式;在进入校准模式时,X位相位控制输入码、N位幅度控制输入码、N位输出码、第一K位延迟码、第二K位延迟码和K位补偿码均无效,第一N位校准码输入到第一延迟电路17,第二N位校准码输入到第二延迟电路19,第三N位校准码输入到补偿电路110;所述电荷域幅度误差校准电路先对N位电流模DAC 111进行幅度误差校准,然后所述电荷域相位误差校准电路依次对N位电流模DAC111和相位幅度转换器18进行相位误差校准;在进入补偿模式时,X位相位控制输入码输入到第一延迟电路17,N位幅度控制输入码输入到第二延迟电路19,N位输出码输入到补偿电路110;第一N位校准码、第二N位校准码和第三N位校准码无效,第一K位延迟码、第二K位延迟码和K位补偿码有效;所述电荷域幅度误差校准电路开始对N位电流模DAC 111进行幅度误差补偿,所述电荷域相位误差校准电路同时对N位电流模DAC 111和相位幅度转换器18进行相位补偿。The low-power DDS circuit with amplitude and phase error self-calibration function of the present invention includes two working modes: a calibration mode and a compensation mode. When the circuit is working, enter the calibration mode first, and then enter the compensation mode; when entering the calibration mode, the X-bit phase control input code, the N-bit amplitude control input code, the N-bit output code, the first K-bit delay code, and the second K-bit Both the delay code and the K-bit compensation code are invalid, the first N-bit calibration code is input to the first delay circuit 17, the second N-bit calibration code is input to the second delay circuit 19, and the third N-bit calibration code is input to the compensation circuit 110; The charge domain amplitude error calibration circuit first performs amplitude error calibration on the N-bit current mode DAC 111, and then the charge domain phase error calibration circuit sequentially performs phase error calibration on the N-bit current mode DAC111 and the phase-amplitude converter 18; During the compensation mode, the X-bit phase control input code is input to the first delay circuit 17, the N-bit amplitude control input code is input to the second delay circuit 19, and the N-bit output code is input to the compensation circuit 110; the first N-bit calibration code, the second The two N-bit calibration codes and the third N-bit calibration code are invalid, and the first K-bit delay code, the second K-bit delay code and the K-bit compensation code are valid; the charge domain amplitude error calibration circuit starts to N-bit current modulus DAC 111 To perform amplitude error compensation, the charge domain phase error calibration circuit performs phase compensation on the N-bit current-mode DAC 111 and the phase-to-amplitude converter 18 at the same time.
一、本发明具有幅度和相位误差自校准功能的低功耗DDS电路对N位电流模DAC111进行幅度误差校准的校准原理为:One, the present invention has the low-power consumption DDS circuit of amplitude and phase error self-calibration function to carry out the calibration principle of amplitude error calibration to N bit current mode DAC111:
当校准模式开启时,控制电路13通过Ctrl信号首先控制电荷域幅度误差检测放大电路10、K位电荷域模数转换器12和补偿电路110进入校准模式,同时输出第二K位选择码给电荷域幅度误差检测放大电路10;控制电路13然后产生第一组第二K位选择码,同时控制ROM模块15产生第一组第三N位校准码;第一组第三N位校准码进入补偿电路110并得到N位输出码,N位输出码进入待校准的N位电流模DAC 111电路,经数模转换得到与第三N位校准码对应的第一组幅度误差差分输出电流信号Iop和Ion;电荷域幅度误差检测放大电路10通过检测Iop-Ion量,将其处理并与内部参考基准产生电路的所产生的第一组基准电压Vrefp-Vrefn进行比较,并将其差值进行放大可以得到误差电压Vop-Von;K位电荷域模数转换器12将误差电压Vop-Von进行模数转换,可以得到第一组幅度误差K位量化码并输出到控制电路13;控制电路13将接收得到第一组幅度误差K位量化码存储在SRAM模块14中,完成一种输入条件下的幅度误差量化。When the calibration mode is turned on, the control circuit 13 first controls the charge domain amplitude error detection amplifying circuit 10, the K-bit charge domain analog-to-digital converter 12 and the compensation circuit 110 to enter the calibration mode through the Ctrl signal, and simultaneously outputs the second K-bit selection code to the charge domain. Domain amplitude error detection amplifying circuit 10; Control circuit 13 then produces the first group of second K-bit selection codes, and simultaneously controls ROM module 15 to generate the first group of third N-bit calibration codes; the first group of third N-bit calibration codes enters the compensation The circuit 110 also obtains an N-bit output code, and the N-bit output code enters the N-bit current modulus DAC 111 circuit to be calibrated, and obtains the first group of amplitude error differential output current signals Iop and Iop corresponding to the third N-bit calibration code through digital-to-analog conversion. Ion; the charge domain amplitude error detection amplifier circuit 10 detects the amount of Iop-Ion, processes it and compares it with the first group of reference voltages Vrefp-Vrefn generated by the internal reference generation circuit, and amplifies the difference. The error voltage Vop-Von is obtained; the K-bit charge domain analog-to-digital converter 12 performs analog-to-digital conversion on the error voltage Vop-Von, and the first group of amplitude error K-bit quantization codes can be obtained and output to the control circuit 13; the control circuit 13 will receive The K-bit quantization code of the obtained first group of amplitude errors is stored in the SRAM module 14, and the amplitude error quantization under one input condition is completed.
紧接着,控制电路13会产生第二组第二K位选择码并同时控制ROM模块15产生第二组第三N位校准码,第二组第三N位校准码进入补偿电路110并得到N位输出码,N位输出码进入待校准的N位电流模DAC 111电路,经数模转换得到与第二组第三N位校准码对应的第二组幅度误差差分输出电流;电荷域幅度误差检测放大电路10通过比较第二组差分输出电流和第二组基准电压并将其差值进行放大可以得到第二组误差电压Vop-Von;K位电荷域模数转换器12将第二组误差电压Vop-Von进行模数转换,可以得到第二组幅度误差K位量化码并输出到控制电路13;控制电路13将接收得到第二组幅度误差K位量化码存储在SRAM模块14中,完成第二种输入条件下的幅度误差量化。Next, the control circuit 13 will generate a second group of second K-bit selection codes and simultaneously control the ROM module 15 to generate a second group of third N-bit calibration codes, and the second group of third N-bit calibration codes will enter the compensation circuit 110 and obtain N N-bit output code, the N-bit output code enters the N-bit current mode DAC 111 circuit to be calibrated, and the second group of amplitude error differential output current corresponding to the second group of third N-bit calibration code is obtained through digital-to-analog conversion; the charge domain amplitude error The detection amplifier circuit 10 can obtain the second set of error voltage Vop-Von by comparing the second set of differential output currents with the second set of reference voltages and amplifying the difference; the K-bit charge domain analog-to-digital converter 12 converts the second set of error voltages to The voltage Vop-Von performs analog-to-digital conversion, and the second group of amplitude error K-bit quantization codes can be obtained and output to the control circuit 13; the control circuit 13 stores the received second group of amplitude error K-bit quantization codes in the SRAM module 14 to complete Magnitude error quantization for the second input condition.
依此循环,当控制电路13产生第L组第二K位选择码并同时控制ROM模块15产生第L组第三N位校准码,并得到第L组幅度误差K位量化码,并存储在SRAM模块14中后,控制电路13内部的运算电路将会对存储在SRAM模块14中的L组幅度误差K位量化码进行计算得到K位补偿码。According to this cycle, when the control circuit 13 generates the second K-bit selection code of the L group and simultaneously controls the ROM module 15 to generate the third N-bit calibration code of the L group, and obtains the K-bit quantization code of the L group amplitude error, and stores it in After being stored in the SRAM module 14, the arithmetic circuit inside the control circuit 13 will calculate the K-bit quantization codes of the L groups of amplitude errors stored in the SRAM module 14 to obtain a K-bit compensation code.
控制电路13此时会将K位补偿码输出到补偿电路110中,并将补偿电路110设置成补偿模式,同时保持K位补偿码不变。所述具有幅度和相位误差自校准功能的低功耗DDS电路完成对N位电流模DAC 111幅度误差的校准。At this time, the control circuit 13 will output the K-bit compensation code to the compensation circuit 110, and set the compensation circuit 110 to the compensation mode, while keeping the K-bit compensation code unchanged. The low power consumption DDS circuit with amplitude and phase error self-calibration function completes the calibration of the amplitude error of the N-bit current mode DAC 111 .
上述校准过程中,控制电路13同时产生的每一组输出到补偿电路110的第三N位校准码和输出到电荷域幅度误差检测放大电路10的第二K位选择码必须一一对应,即:第J组第三N位校准码必须和第J组第二K位选择码必须配合使用,其中,L为不大于2K的正整数,J为不大于L的正整数。In the above-mentioned calibration process, each group of the third N-bit calibration code output to the compensation circuit 110 and the second K-bit selection code output to the charge domain amplitude error detection amplifier circuit 10 simultaneously generated by the control circuit 13 must correspond one-to-one, that is, : The third N-bit calibration code of the J-th group must be used in conjunction with the second K-bit selection code of the J-th group, wherein, L is a positive integer not greater than 2K , and J is a positive integer not greater than L.
二、本发明所述的具有幅度和相位误差自校准功能的低功耗DDS电路对N位电流模DAC 111和相位幅度转换器18进行相位误差校准的校准原理为:Two, the low power consumption DDS circuit with amplitude and phase error self-calibration function of the present invention carries out the calibration principle of phase error calibration to N-bit current mode DAC 111 and phase-amplitude converter 18:
所述具有幅度和相位误差自校准功能的低功耗DDS电路完成对N位电流模DAC 111幅度误差的校准后,控制电路13通过Ctrl信号控制电荷域相位误差检测放大电路11和第二延迟电路19进入校准模式,同时输出第一K位选择码给电荷域相位误差检测放大电路11,开始对N位电流模DAC 111进行相位误差校准。After the low-power DDS circuit with amplitude and phase error self-calibration function completes the calibration of the amplitude error of the N-bit current mode DAC 111, the control circuit 13 controls the charge domain phase error detection amplifier circuit 11 and the second delay circuit through the Ctrl signal 19 to enter the calibration mode, and at the same time output the first K-bit selection code to the charge domain phase error detection amplifier circuit 11, and start to perform phase error calibration on the N-bit current mode DAC 111.
然后控制电路13产生第一组第一K位选择码,同时控制ROM模块15产生第一组第二N位校准码;第一组第二N位校准码进入第二延迟电路19并得到N位转换码,N位转换码进入待校准N位电流模DAC 111电路,经数模转换得到与第一组第二N位校准码对应的第一组相位误差差分输出电流Iop和Ion;电荷域相位误差检测放大电路11通过检测Iop-Ion量,将其处理并与内部参考时钟产生电路21的所产生的第一组参考时钟进行相位检测,并将其相位差值进行放大可以得到误差电压Vop-Von;K位电荷域模数转换器12将误差电压Vop-Von进行模数转换,可以得到第一组相位误差K位量化码并输出到控制电路13;控制电路13将接收得到第一组相位误差K位量化码存储在SRAM模块14中,完成一种输入条件下的N位电流模DAC 111电路相位误差量化。Then the control circuit 13 generates the first group of first K bit selection codes, and simultaneously controls the ROM module 15 to generate the first group of second N bit calibration codes; the second N bit calibration codes of the first group enter the second delay circuit 19 and obtain N bits Conversion code, the N-bit conversion code enters the N-bit current mode DAC 111 circuit to be calibrated, and the first group of phase error differential output currents Iop and Ion corresponding to the first group of second N-bit calibration codes are obtained through digital-to-analog conversion; the charge domain phase The error detection amplifier circuit 11 detects the amount of Iop-Ion, processes it and performs phase detection with the first group of reference clocks generated by the internal reference clock generation circuit 21, and amplifies the phase difference to obtain the error voltage Vop- Von; the K-bit charge domain analog-to-digital converter 12 performs analog-to-digital conversion on the error voltage Vop-Von to obtain the first group of phase error K-bit quantization codes and output them to the control circuit 13; the control circuit 13 will receive the first group of phases The K-bit quantization code of the error is stored in the SRAM module 14 to complete the phase error quantization of the N-bit current mode DAC 111 circuit under an input condition.
紧接着,控制电路13产生第二组第一K位选择码,同时控制ROM模块15产生第二组第二N位校准码;第二组第二N位校准码进入第二延迟电路19并得到N位转换码,N位转换码进入待校准的N位电流模DAC 111电路,经数模转换得到与第二组第二N位校准码对应的第二组差分输出电流Iop和Ion;电荷域相位误差检测放大电路11通过检测Iop-Ion量,将其处理并与内部参考时钟产生电路21的所产生的第二组参考时钟进行相位检测,并将其相位差值进行放大可以得到误差电压Vop-Von;K位电荷域模数转换器12将误差电压Vop-Von进行模数转换,可以得到第二组相位误差K位量化码并输出到控制电路13;控制电路13将接收得到第二组相位误差K位量化码存储在SRAM模块14中,完成二种输入条件下的待校准N位电流模DAC 111电路相位误差量化。Next, the control circuit 13 generates the second group of first K-bit selection codes, and simultaneously controls the ROM module 15 to generate a second group of second N-bit calibration codes; the second group of second N-bit calibration codes enters the second delay circuit 19 and obtains N-bit conversion code, the N-bit conversion code enters the N-bit current mode DAC 111 circuit to be calibrated, and the second group of differential output currents Iop and Ion corresponding to the second group of second N-bit calibration codes are obtained through digital-to-analog conversion; the charge domain The phase error detection amplifier circuit 11 detects the amount of Iop-Ion, processes it and performs phase detection with the second group of reference clocks generated by the internal reference clock generation circuit 21, and amplifies the phase difference to obtain the error voltage Vop -Von; the K-bit charge domain analog-to-digital converter 12 performs analog-to-digital conversion on the error voltage Vop-Von to obtain the second group of phase error K-bit quantization codes and output them to the control circuit 13; the control circuit 13 will receive the second group The K-bit quantization code of the phase error is stored in the SRAM module 14 to complete the phase error quantization of the N-bit current mode DAC 111 circuit to be calibrated under two input conditions.
依此循环,当控制器产生第L组第二N位校准码和第L组第一K位选择码,并得到第L组相位误差K位量化码,并存储在SRAM模块14中后,控制电路13内部的运算电路将会对存储在K位寄存器组中的L组相位误差K位量化码进行计算得到第二K位延迟码。控制电路13此时会将第二K位延迟码输出到第二延迟电路19中,并保持第二K位延迟码不变,控制电路13将第二延迟电路19设置成补偿模式,完成对N位电流模DAC 111的相位误差校准。According to this cycle, when the controller generates the second N-bit calibration code of the L group and the first K-bit selection code of the L group, and obtains the K-bit quantization code of the L group phase error, and stores it in the SRAM module 14, the control The arithmetic circuit inside the circuit 13 will calculate the K-bit quantization codes of the L groups of phase errors stored in the K-bit register group to obtain the second K-bit delay code. The control circuit 13 will output the second K-bit delay code to the second delay circuit 19 at this time, and keep the second K-bit delay code unchanged. The control circuit 13 sets the second delay circuit 19 to the compensation mode, and completes the adjustment of the N Phase Error Calibration of Bit Current Mode DAC 111.
之后,控制电路13通过Ctrl信号控制第一延迟电路17进入校准模式,同时输出K位选择码给电荷域相位误差检测放大电路11,开始对相位幅度转换器18进行相位误差校准。控制电路13控制ROM模块15产生第一N位校准码,通过第一延迟电路17、电荷域相位误差检测放大电路11和K位电荷域模数转换器12,采用和对N位电流模DAC 111的相位误差校准相同的步骤和方法,得到第一K位延迟码并输出到第一延迟电路17中,同时保持第一K位延迟码不变,控制电路13将第一延迟电路17设置成补偿模式,完成对相位幅度转换器18的相位误差校准。Afterwards, the control circuit 13 controls the first delay circuit 17 to enter the calibration mode through the Ctrl signal, and at the same time outputs a K-bit selection code to the charge-domain phase error detection amplifier circuit 11 to start phase error calibration of the phase-to-amplitude converter 18 . The control circuit 13 controls the ROM module 15 to generate the first N-bit calibration code. Through the first delay circuit 17, the charge domain phase error detection amplifier circuit 11 and the K-bit charge domain analog-to-digital converter 12, the N-bit current mode DAC 111 is adopted and corrected. The same steps and methods of phase error calibration, obtain the first K-bit delay code and output it to the first delay circuit 17, while keeping the first K-bit delay code unchanged, the control circuit 13 sets the first delay circuit 17 to compensate mode, the phase error calibration of the phase-to-amplitude converter 18 is completed.
此时,所述具有幅度和相位误差自校准功能的低功耗DDS电路的校准模式结束。At this point, the calibration mode of the low-power DDS circuit with amplitude and phase error self-calibration functions ends.
在上述相位误差校准过程中,控制电路13同时产生的每一组第一N位校准码及第二N位校准码和输出到电荷域相位误差检测放大电路11的第一K位选择码必须一一对应,即:第J组第一N位校准码及第二N位校准码均必须和第J组第一K位选择码必须配合使用。During the above-mentioned phase error calibration process, each group of the first N-bit calibration code and the second N-bit calibration code simultaneously generated by the control circuit 13 and the first K-bit selection code output to the charge domain phase error detection amplifier circuit 11 must be identical One-to-one correspondence, namely: the first N-digit calibration code and the second N-digit calibration code of the J-th group must be used in conjunction with the first K-digit selection code of the J-th group.
本发明所述具有幅度和相位误差自校准功能的低功耗DDS电路在实际使用过程中,对DDS幅度和相位误差校准的精度、硬件开销大小和校准时间长短可以根据选择不同的K和L值进行设置,以满足不同精度和速度DDS芯片的校准精度和速度要求。In the actual use of the low-power DDS circuit with amplitude and phase error self-calibration function described in the present invention, the accuracy of DDS amplitude and phase error calibration, the size of hardware overhead and the length of calibration time can be selected according to different K and L values Make settings to meet the calibration accuracy and speed requirements of DDS chips with different accuracy and speed.
图2为本发明电荷域相位误差检测放大电路11的一种实现方式。该电路包括:电流检测电阻Rd、参考时钟产生电路21、鉴相器22、环路滤波器23和第一电荷域电压放大电路24。电流检测电阻Rd的两端分别连接到电荷域相位误差检测放大电路11的第一、第二输入端,并连接到鉴相器22的第一、第二输入端Voutp和Voutn;参考时钟产生电路21在K位选择码的控制下,产生基准时钟Clkref并连接到鉴相器22的第三输入端;鉴相器22对3个输入端的信号进行进一步的相位比较得到相位误差信号Vp,相位误差信号Vp经过环路滤波器23滤波得到电压信号Vi;经过第一电荷域电压放大电路24放大得到误差信号Vop和Von。FIG. 2 is an implementation manner of the charge domain phase error detection amplifier circuit 11 of the present invention. The circuit includes: a current detection resistor Rd, a reference clock generation circuit 21 , a phase detector 22 , a loop filter 23 and a first charge domain voltage amplification circuit 24 . The two ends of the current detection resistor Rd are respectively connected to the first and second input terminals of the charge domain phase error detection amplifier circuit 11, and connected to the first and second input terminals Voutp and Voutn of the phase detector 22; the reference clock generation circuit 21, under the control of the K-bit selection code, the reference clock Clkref is generated and connected to the third input terminal of the phase detector 22; the phase detector 22 performs further phase comparison on the signals of the three input terminals to obtain the phase error signal Vp, the phase error The signal Vp is filtered by the loop filter 23 to obtain the voltage signal V i ; it is amplified by the first charge domain voltage amplifying circuit 24 to obtain the error signals Vop and Von.
图3所示为本发明所述第一电荷域电压放大电路24原理图。第一电荷域电压放大电路24包括:第一正端电荷存储节点Nip、第一负端电荷存储节点Nin、第二正端电荷存储节点Nop和第二负端电荷存储节点Non、一个连接在第一和第二正端电荷存储节点Nip和Nop之间的正端电荷传输控制开关301、一个连接在第一和第二负端电荷存储节点Nin和Non之间的负端电荷传输控制开关302、连接到第一正端电荷存储节点Nip的正端电容303、连接到第二正端电荷存储节点Nop的正端容值可编程电容309、连接到第一负端电荷存储节点Nin的负端电容304、连接到第二负端电荷存储节点Non的负端容值可编程电容310、连接到第一正端电荷存储节点Nip的第一正端电压传输开关305、连接到第一正端电荷存储节点Nip的第二正端电压传输开关307、连接到第二正端电荷存储节点Nop的第三正端电压传输开关313和连接到第二正端电荷存储节点Nop的第四正端电压传输开关311、连接到第一负端电荷存储节点Nin的第一负端电压传输开关306、连接到第一负端电荷存储节点Nin的第二负端电压传输开关308、连接到第二负端电荷存储节点Non的第三负端电压传输开关314和连接到第二负端电荷存储节点Non的第四负端电压传输开关312。对于本发明实施例,第一电荷域电压放大电路24的两个模拟电压输入端中任意一端连接Vi,另外一端接基准信号即可实现。FIG. 3 is a schematic diagram of the first charge domain voltage amplifying circuit 24 of the present invention. The first charge domain voltage amplifying circuit 24 includes: a first positive charge storage node Nip, a first negative charge storage node Nin, a second positive charge storage node Nop and a second negative charge storage node Non, one connected to the A positive-end charge transfer control switch 301 between the first and second positive-end charge storage nodes Nip and Nop, a negative-end charge transfer control switch 302 connected between the first and second negative-end charge storage nodes Nin and Non, The positive terminal capacitor 303 connected to the first positive terminal charge storage node Nip, the positive terminal capacitance programmable capacitor 309 connected to the second positive terminal charge storage node Nop, and the negative terminal capacitor connected to the first negative terminal charge storage node Nin 304, the negative terminal capacity programmable capacitor 310 connected to the second negative terminal charge storage node Non, the first positive terminal voltage transmission switch 305 connected to the first positive terminal charge storage node Nip, connected to the first positive terminal charge storage node The second positive terminal voltage transmission switch 307 of the node Nip, the third positive terminal voltage transmission switch 313 connected to the second positive terminal charge storage node Nop, and the fourth positive terminal voltage transmission switch connected to the second positive terminal charge storage node Nop 311. The first negative terminal voltage transmission switch 306 connected to the first negative terminal charge storage node Nin, the second negative terminal voltage transmission switch 308 connected to the first negative terminal charge storage node Nin, connected to the second negative terminal charge storage node The third negative terminal voltage transmission switch 314 of the node Non and the fourth negative terminal voltage transmission switch 312 connected to the second negative terminal charge storage node Non. For the embodiment of the present invention, any one of the two analog voltage input terminals of the first charge domain voltage amplifying circuit 24 is connected to Vi, and the other terminal is connected to a reference signal.
图4为图3所示电路的工作时序控制波形示意图。控制时钟Clk和Clkn为相位相反时钟,开关控制信号Clkr、Clks和Clkt为相位不交叠时钟。本发明中所述的电荷传输控制开关可以采用专利号为201010291245.6的发明专利中所述的实施方式来实现,所述的电压传输开关可以采用通用MOS管或者BJT开关实现。FIG. 4 is a schematic diagram of working sequence control waveforms of the circuit shown in FIG. 3 . The control clocks Clk and Clkn are clocks with opposite phases, and the switch control signals Clkr, Clks and Clkt are clocks with non-overlapping phases. The charge transmission control switch described in the present invention can be realized by the implementation method described in the invention patent with the patent number of 201010291245.6, and the voltage transmission switch can be realized by a general MOS transistor or a BJT switch.
图5所示为本发明所述鉴相器22电路的一种实现方式。该电路由信号整形模块和一个减法器子模块构成。信号整形模块将输入差分信号Voutp和Voutn进行整形得到输入相位,参考时钟输出的基准时钟作为参考相位,减法器子模块将输入相位和参考相位进行相减,得到相位误差信号Vp。FIG. 5 shows an implementation of the phase detector 22 circuit of the present invention. The circuit consists of a signal shaping block and a subtractor sub-block. The signal shaping module shapes the input differential signals Voutp and Voutn to obtain the input phase, the reference clock output by the reference clock is used as the reference phase, and the subtractor sub-module subtracts the input phase from the reference phase to obtain the phase error signal Vp.
图6所示为本发明所述参考时钟产生电路21结构框图。所述参考时钟产生电路21包括:一个可编程频率调整电路和一个可编程占空比调整电路。所述可编程频率调整电路和所述可编程占空比调整电路均受K位选择码控制。在K位选择码的控制下,频率和占空比固定的输入时钟先后经过所述可编程频率调整电路和所述可编程占空比调整电路之后,即可得到不同频率和占空比的基准时钟Clkref。FIG. 6 is a structural block diagram of the reference clock generating circuit 21 of the present invention. The reference clock generation circuit 21 includes: a programmable frequency adjustment circuit and a programmable duty ratio adjustment circuit. Both the programmable frequency adjustment circuit and the programmable duty cycle adjustment circuit are controlled by a K-bit selection code. Under the control of the K-bit selection code, after the input clock with fixed frequency and duty ratio passes through the programmable frequency adjustment circuit and the programmable duty ratio adjustment circuit successively, the reference clocks with different frequencies and duty ratios can be obtained Clock Clkref.
图7为本发明电荷域幅度误差检测放大电路10的一种实现方式,该电路采用全差分结构实现。该电路包括:电流检测电阻Rd、参考基准产生电路71、共模不敏感高速开关电容差分电压信号采样网络72和第二电荷域电压放大电路73。FIG. 7 is an implementation manner of the charge domain amplitude error detection amplifier circuit 10 of the present invention, which is implemented by a fully differential structure. The circuit includes: a current detection resistor Rd, a reference generation circuit 71 , a common mode insensitive high-speed switched capacitor differential voltage signal sampling network 72 and a second charge domain voltage amplification circuit 73 .
电流检测电阻Rd的两端分别连接到电荷域幅度误差检测放大电路10的第一和第二输入端,并连接到共模不敏感高速开关电容差分电压信号采样网络72的第一、第二输入端Voutp和Voutn;参考基准产生电路71在K位选择码的控制下,产生差分基准电压输出端Vrefp和Vrefn,并连接到共模不敏感高速开关电容差分电压信号采样网络72的第三和第四输入端;开关电容差分电压信号采样网络72对4个输入端的电压信号进行进一步的采样,得到差分电压信号Vi+和Vi-;经过第二电荷域电压放大电路73放大得到误差信号Vop和Von。The two ends of the current detection resistor Rd are respectively connected to the first and second input terminals of the charge domain amplitude error detection amplifier circuit 10, and connected to the first and second inputs of the common-mode insensitive high-speed switched capacitor differential voltage signal sampling network 72 terminals Voutp and Voutn; the reference reference generation circuit 71 generates differential reference voltage output terminals Vrefp and Vrefn under the control of the K-bit selection code, and is connected to the third and the third of the common-mode insensitive high-speed switched capacitor differential voltage signal sampling network 72 Four input terminals; the switched capacitor differential voltage signal sampling network 72 further samples the voltage signals of the four input terminals to obtain differential voltage signals V i + and V i −; amplified by the second charge domain voltage amplifier circuit 73 to obtain an error signal Vop and Von.
图8所示为本发明所述参考基准产生电路结构框图。所述参考基准产生电路包括:一个电阻串、一个开关阵列和一个输出开关选择电路。电阻串由2K-1个大小相等的电阻串联而成,其两端分别连接基准电压3和基准电压4,通过2K-1个大小相等的电阻分压可以得到2K种电压;开关阵列内含2K-1个电压选择开关,其在输出开关选择电路的控制下输出一组差分基准电压Vrefp和Vrefn;输出开关选择电路在K位选择码的控制下选择打开2个开关阵列中的电压传输开关。参考基准产生电路根据任意一组K位选择码产生一组差分基准电压Vrefp和Vrefn。图8中所示的基准电压3和基准电压4分别为图1中所示的Vref3和Vref4。FIG. 8 is a structural block diagram of the reference reference generation circuit of the present invention. The reference generation circuit includes: a resistor string, a switch array and an output switch selection circuit. The resistor string is composed of 2 K -1 resistors of equal size connected in series, and its two ends are respectively connected to the reference voltage 3 and the reference voltage 4, and 2 K voltages can be obtained by dividing the voltage by 2 K -1 resistors of equal size; the switch array It contains 2 K -1 voltage selection switches, which output a set of differential reference voltages Vrefp and Vrefn under the control of the output switch selection circuit; the output switch selection circuit selects to open the two switches in the array under the control of the K-bit selection code. Voltage transfer switch. The reference reference generation circuit generates a set of differential reference voltages Vrefp and Vrefn according to any set of K-bit selection codes. Reference voltage 3 and reference voltage 4 shown in FIG. 8 are Vref3 and Vref4 shown in FIG. 1 , respectively.
如图9所示,本发明设计的K位电荷域模数转换器12包括:P级基于电荷域信号处理技术的流水线子级电路、最后一级(第P+1级)A-bit Flash模数转换器电路、延时同步寄存器和数字校正电路模块。另外工作模式控制模块也是模数转换器工作所必须的辅助工作模块,该模块未在图中标识出来。图9中电荷域模数转换器电路中相邻两级子级电路的工作受两组多相时钟的控制,工作状态完全互补,并且子级电路的级数和每级电路的位数k均可灵活调整。例如对于K=14的14位模数转换器,可以采用12级1.5bit/级+1级2bit Flash共13级的结构,也可以采用4级2.5bit/级+3级1.5bit/级+1级3bit Flash共8级的结构。As shown in Figure 9, the K-bit charge domain analog-to-digital converter 12 designed by the present invention includes: P-level pipeline sub-level circuits based on charge domain signal processing technology, the last level (P+1 level) A-bit Flash module Digital converter circuit, delay synchronous register and digital correction circuit module. In addition, the working mode control module is also an auxiliary working module necessary for the operation of the analog-to-digital converter, which is not marked in the figure. In the charge domain analog-to-digital converter circuit in Figure 9, the work of two adjacent sub-level circuits is controlled by two sets of multi-phase clocks, the working states are completely complementary, and the number of sub-level circuits and the number of bits k of each level circuit are the same Can be adjusted flexibly. For example, for a 14-bit analog-to-digital converter with K=14, a structure of 12 levels of 1.5bit/level + 1 level of 2bit Flash with a total of 13 levels can be used, or 4 levels of 2.5bit/level + 3 levels of 1.5bit/level + 1 A total of 8 levels of 3bit Flash structure.
本发明设计的电荷域模数转换器包括以下内容:P级基于电荷域信号处理技术的电荷域流水线子级电路,其用于对采样得到的电荷包进行各种处理完成模数转换和余量放大,并将每一个子级电路的输出数字码输入到延时同步寄存器,且每一个子级电路输出的电荷包进入下一级重复上述过程;最后一级(第P+1级)A-bit Flash模数转换器电路,其将第P级传输过来的电荷包重新转换成电压信号,并进行最后一级的模数转换工作,并将本级电路的输出数字码输入到延时同步寄存器,该级电路只完成模数转换,不进行余量放大;延时同步寄存器,其用于对每个子流水级输出的数字码进行延时对准,并将对齐的数字码输入到数字校正模块;数字校正电路模块,其用于接收同步寄存器的输出数字码,将接收的数字码进行移位相加,以得到模数转换器的R位数字输出码。上述说明中,R为正整数,A和P均为不大于R的正整数。The charge domain analog-to-digital converter designed by the present invention includes the following contents: P-level charge domain pipeline sub-level circuit based on charge domain signal processing technology, which is used to perform various processes on the sampled charge packets to complete analog-to-digital conversion and margin Amplify, and input the output digital code of each sub-level circuit to the delay synchronous register, and the charge packet output by each sub-level circuit enters the next level to repeat the above process; the last level (P+1 level) A- Bit Flash analog-to-digital converter circuit, which reconverts the charge packet transmitted by the P-level into a voltage signal, and performs the last-level analog-to-digital conversion work, and inputs the output digital code of the current-level circuit to the delay synchronization register , the circuit at this stage only completes the analog-to-digital conversion without margin amplification; the delay synchronization register is used to delay align the digital codes output by each sub-pipeline stage, and input the aligned digital codes to the digital correction module ; A digital correction circuit module, which is used to receive the output digital code of the synchronous register, and shift and add the received digital code to obtain the R-bit digital output code of the analog-to-digital converter. In the above description, R is a positive integer, and both A and P are positive integers not greater than R.
图10所示即为电荷域流水线子级电路原理图。电路由全差分的信号处理通道构成,整个电路包括:2个本级电荷传输控制开关、2个电荷存储节点、6个连接到电荷存储节点的电荷存储电容、C个电荷比较器,C个受比较器输出结果控制的基准信号选择电路,2B+2个电压传输开关,其中B为正整数。电路正常工作时,前级差分电荷包首先通过电荷传输控制开关传输并存储在本级电荷存储节点,比较器对差分电荷包输入所引起的节点之间的电压差变化量与基准电压3和基准电压4进行比较,得到本级C位量化输出数字码D1~DB;数字输出码D1~DB将输出到延时同步寄存器,同时D1~DB还将会分别控制本级的基准信号选择电路,使它们分别产生一对互补的基准信号分别控制本级正负端电荷加减电容底板,对由前级传输到本级的差分电荷包进行相应大小的加减处理,得到本级差分余量电荷包;最后,电路完成本级差分余量电荷包由本级向下一级传输,基准电压2对本级差分电荷存储节点进行复位,完成电荷域流水线子级电路一个完整时钟周期的工作。其中,C为正整数。Figure 10 shows the schematic diagram of the sub-stage circuit of the charge domain pipeline. The circuit is composed of a fully differential signal processing channel. The whole circuit includes: 2 current-stage charge transfer control switches, 2 charge storage nodes, 6 charge storage capacitors connected to the charge storage nodes, C charge comparators, and C receivers The reference signal selection circuit controlled by the output result of the comparator, 2B+2 voltage transmission switches, where B is a positive integer. When the circuit is working normally, the front-stage differential charge packet is first transmitted through the charge transmission control switch and stored in the charge storage node of the current stage. Voltage 4 is compared to obtain the C-bit quantized output digital codes D1~DB of this stage; the digital output codes D1~DB will be output to the delay synchronization register, and at the same time D1~DB will also control the reference signal selection circuit of the stage respectively, so that They respectively generate a pair of complementary reference signals to respectively control the charge addition and subtraction capacitor bottom plate of the positive and negative terminals of the current stage, and perform corresponding addition and subtraction processing on the differential charge packets transmitted from the previous stage to the current stage to obtain the differential residual charge packets of the current stage ; Finally, the circuit completes the transmission of the differential residual charge packet of the current stage from the current stage to the next stage, the reference voltage 2 resets the differential charge storage node of the current stage, and completes the work of a complete clock cycle of the sub-stage circuit of the charge domain pipeline. Among them, C is a positive integer.
对于图9中本发明设计的电荷域流水线模数转换器的最后一级(第P+1级)基于电荷域信号处理技术的流水线子级电路A-bit Flash模数转换器电路,该子级电路将只需对接收到的电荷包进行最后一级的模数转换工作,并将本级电路输出数字码输入到延时同步寄存器,而不进行余量处理。去掉图10中的基准信号选择电路和受基准信号选择电路控制的4个电容即可。For the last stage (P+1 stage) of the charge domain pipeline analog-to-digital converter designed by the present invention in Fig. 9, the pipeline sub-level circuit A-bit Flash analog-to-digital converter circuit based on the charge domain signal processing technology, the sub-level The circuit only needs to perform the final analog-to-digital conversion on the received charge packet, and input the output digital code of this stage circuit to the delay synchronous register without margin processing. Just remove the reference signal selection circuit in Figure 10 and the 4 capacitors controlled by the reference signal selection circuit.
图11所示为本发明所采用的延迟电路结构框图。所述延迟电路内部包括:N个延时缓冲单元和N个K位延迟寄存器,第一延时缓冲单元~第N延时缓冲单元和第一K位延迟寄存器~第N个K位延迟寄存器。第一K位延迟寄存器~第N个K位延迟寄存器的延迟码输入端全部连接到K位延迟码,控制信号输入端全部连接到Ctrl信号;第一延时缓冲单元~第N延时缓冲单元的延迟码输入端分别连接到第一K位延迟寄存器~第N个K位延迟寄存器的延迟码输出端,第一延时缓冲单元~第N延时缓冲单元的数据输出端分别连接到第1位转换码~第N位转换码并输出,第一延时缓冲单元~第N延时缓冲单元的第一控制信号输入端全部连接到Ctrln信号,第一延时缓冲单元~第N延时缓冲单元的第二控制信号输入端全部连接到Ctrl信号。其中,Ctrl和Ctrln为反向时钟。FIG. 11 is a structural block diagram of the delay circuit adopted in the present invention. The delay circuit includes: N delay buffer units and N K-bit delay registers, first to Nth delay buffer units and first K-bit delay registers to Nth K-bit delay registers. The delay code input terminals of the first K-bit delay register to the Nth K-bit delay register are all connected to the K-bit delay code, and the control signal input terminals are all connected to the Ctrl signal; the first delay buffer unit to the Nth delay buffer unit The delay code input terminals of the delay codes are respectively connected to the delay code output terminals of the first K-bit delay register to the N-th K-bit delay register, and the data output terminals of the first delay buffer unit to the N-th delay buffer unit are respectively connected to the first The first control signal input terminals of the first delay buffer unit to the Nth delay buffer unit are all connected to the Ctrln signal, and the first delay buffer unit to the Nth delay buffer unit The second control signal input terminals of the unit are all connected to the Ctrl signal. Among them, Ctrl and Ctrln are reverse clocks.
延迟电路在Ctrl信号的控制下可工作于校准和补偿模式两种模式。在校准模式下时,Ctrl信号有效,第1位转换码~第N位输入码无效,输入码对于N位转换码的输出无任何影响,第1位校准码~第N位校准码分别经延时缓冲电路1~延时缓冲电路N后得到第1位转换码~第N位转换码并输出,K位延迟码被输入到第一K位延迟寄存器~第N个K位延迟寄存器中并被锁存保持不变。在补偿模式下时,Ctrln信号有效,第1位转换码~第N位输入码有效,并经延时缓冲电路后得到第1位转换码~第N位转换码并输出,第1位校准码~第N位校准码无效,第一K位延迟寄存器~第N个K位延迟寄存器中所存储的K位延迟码被输入到延时缓冲电路1~延时缓冲电路N中进行延时补偿。The delay circuit can work in two modes of calibration and compensation under the control of the Ctrl signal. In the calibration mode, the Ctrl signal is valid, the 1st to Nth input code is invalid, and the input code has no effect on the output of the Nth conversion code, and the 1st to Nth calibration codes are respectively delayed. After the time buffer circuit 1 ~ delay buffer circuit N, the first to Nth conversion codes are obtained and output, and the K-bit delay code is input into the first K-bit delay register to the N-th K-bit delay register and is Latch remains unchanged. In the compensation mode, the Ctrln signal is valid, the conversion code of the 1st digit to the input code of the Nth digit is valid, and the conversion code of the 1st digit to the Nth digit is obtained and output after the delay buffer circuit, and the calibration code of the first digit The ~N-th calibration code is invalid, and the K-bit delay codes stored in the first K-bit delay register to the N-th K-bit delay register are input to the delay buffer circuit 1 to the delay buffer circuit N for delay compensation.
本发明所述的第一延迟电路17和第二延迟电路19均采用图11所示的延迟电路。Both the first delay circuit 17 and the second delay circuit 19 described in the present invention adopt the delay circuit shown in FIG. 11 .
图12所示为本发明所述补偿电路110结构框图。所述补偿电路110内部包括延时缓冲电路和K位加法电路,并且延时缓冲电路和K位加法电路的延时必须相等。补偿电路110在Ctrl信号的控制下可工作于校准和补偿模式两种模式。在校准模式下时,Ctrl信号有效,K位加法电路的输出将无效,第三N位校准码经延时缓冲电路后得到N位输出码并输出。在补偿模式下时,Ctrln信号有效,K位加法电路的输出将有效,N-K位转换码经延时缓冲电路后得到N-K位输出码并输出,K位转换码和K位补偿码经过K位加法电路相加得到K位输出码并输出,其中Ctrl和Ctrln为反向时钟。FIG. 12 is a structural block diagram of the compensation circuit 110 of the present invention. The compensation circuit 110 includes a delay buffer circuit and a K-bit addition circuit inside, and the delays of the delay buffer circuit and the K-bit addition circuit must be equal. The compensation circuit 110 can work in two modes of calibration and compensation under the control of the Ctrl signal. When in the calibration mode, the Ctrl signal is valid, the output of the K-bit addition circuit will be invalid, and the third N-bit calibration code is passed through the delay buffer circuit to obtain an N-bit output code and output it. In the compensation mode, the Ctrln signal is valid, the output of the K-bit addition circuit will be valid, and the N-K-bit conversion code will be output after the delay buffer circuit to obtain the N-K-bit output code, and the K-bit conversion code and the K-bit compensation code will be added after K-bit addition The circuit adds K-bit output codes and outputs them, where Ctrl and Ctrln are reverse clocks.
图13所示为本发明所述控制电路13框图。所述控制电路13包括:核心控制电路、ROM读出电路、第一延迟码产生电路、第二延迟码产生电路、补偿码产生电路、选择码产生电路、运算电路、SRAM读写电路和K位寄存器。FIG. 13 is a block diagram of the control circuit 13 of the present invention. Described control circuit 13 comprises: core control circuit, ROM readout circuit, the first delay code generation circuit, the second delay code generation circuit, compensation code generation circuit, selection code generation circuit, operation circuit, SRAM read-write circuit and K bit register.
所述控制电路13的连接关系为:核心控制电路的第一输出端连接到ROM读出电路的输入端,核心控制电路的第二输出端连接到第一延迟码产生电路的控制输入端,核心控制电路的第三输出端连接到第二延迟码产生电路的控制输入端,核心控制电路的第四输出端连接到补偿码产生电路的控制输入端,核心控制电路的第五输出端连接到运算电路的控制输入端,核心控制电路的第六输出端连接到选择码产生电路的控制输入端,核心控制电路的第七输出端产生校准控制信号Ctrl,核心控制电路的第八输出端同时连接到K位寄存器和SRAM读写电路的控制输入端,核心控制电路的输入端连接到校准启动控制信号;ROM读出电路根据核心控制电路的控制指令产生ROM地址码;运算电路的数据输入端接收SRAM读写电路输出端发送的数据,并根据核心控制电路的控制指令产生第一K位误差码、第二K位误差码和第三K位误差码;第一延迟码产生电路的数据输入端接收运算电路数据输出端发送的第一K位误差码,并根据核心控制电路的控制指令产生第一K位延迟码;第二延迟码产生电路的数据输入端接收运算电路数据输出端发送的第二K位误差码,并根据核心控制电路的控制指令产生第二K位延迟码;补偿码产生电路的数据输入端接收运算电路数据输出端发送的第三K位误差码,并根据核心控制电路的控制指令产生K位补偿码;选择码产生电路根据核心控制电路的控制指令产生第一K位选择码和第二K位选择码;K位寄存器的数据输入端接收所述K位电荷域模数转换器12的输出端发送的K位量化码,并根据核心控制电路的控制指令将存储在其内部的数据发送给SRAM读写电路;SRAM读写电路根据核心控制电路的控制指令产生SRAM地址数据码,对SRAM模块14进行数据读取和写入。The connection relationship of the control circuit 13 is: the first output end of the core control circuit is connected to the input end of the ROM readout circuit, the second output end of the core control circuit is connected to the control input end of the first delay code generation circuit, the core The third output end of the control circuit is connected to the control input end of the second delay code generation circuit, the fourth output end of the core control circuit is connected to the control input end of the compensation code generation circuit, and the fifth output end of the core control circuit is connected to the operation The control input end of the circuit, the sixth output end of the core control circuit is connected to the control input end of the selection code generation circuit, the seventh output end of the core control circuit generates a calibration control signal Ctrl, and the eighth output end of the core control circuit is connected to the The K-bit register and the control input terminal of the SRAM read and write circuit, the input terminal of the core control circuit are connected to the calibration start control signal; the ROM readout circuit generates the ROM address code according to the control command of the core control circuit; the data input terminal of the arithmetic circuit receives the SRAM Read and write the data sent by the output of the circuit, and generate the first K-bit error code, the second K-bit error code and the third K-bit error code according to the control instructions of the core control circuit; the data input terminal of the first delay code generation circuit receives The first K-bit error code sent by the data output end of the arithmetic circuit, and generates the first K-bit delay code according to the control instruction of the core control circuit; the data input end of the second delay code generation circuit receives the second error code sent by the data output end of the arithmetic circuit K-bit error code, and generate the second K-bit delay code according to the control instruction of the core control circuit; the data input end of the compensation code generation circuit receives the third K-bit error code sent by the data output end of the operation circuit, and generates the second K-bit error code according to the core control circuit. The control command generates a K-bit compensation code; the selection code generation circuit generates the first K-bit selection code and the second K-bit selection code according to the control command of the core control circuit; the data input terminal of the K-bit register receives the K-bit charge domain modulus The K-bit quantization code sent by the output end of the converter 12, and the data stored in it is sent to the SRAM read-write circuit according to the control instruction of the core control circuit; the SRAM read-write circuit generates the SRAM address data according to the control instruction of the core control circuit code to read and write data to the SRAM module 14.
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The above descriptions are only preferred embodiments of the present invention, and are not intended to limit the present invention. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the present invention shall be included in the protection of the present invention. within range.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710135908.7A CN106933299B (en) | 2017-03-09 | 2017-03-09 | Low-power DDS circuit with amplitude and phase error self-calibration |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710135908.7A CN106933299B (en) | 2017-03-09 | 2017-03-09 | Low-power DDS circuit with amplitude and phase error self-calibration |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106933299A true CN106933299A (en) | 2017-07-07 |
CN106933299B CN106933299B (en) | 2019-07-19 |
Family
ID=59433420
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710135908.7A Active CN106933299B (en) | 2017-03-09 | 2017-03-09 | Low-power DDS circuit with amplitude and phase error self-calibration |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106933299B (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109347504A (en) * | 2018-09-26 | 2019-02-15 | 西安烽火电子科技有限责任公司 | A kind of short-wave radio frequency digital processing system |
CN110823142A (en) * | 2019-11-11 | 2020-02-21 | 华滋奔腾(苏州)安监仪器有限公司 | Demodulator and demodulation method based on gain phase discriminator coaxial cable strain sensor |
CN112946589A (en) * | 2021-02-01 | 2021-06-11 | 上海交通大学 | Phase self-calibration method for motion measurement of asynchronous FMCW radar system |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1774689A (en) * | 2003-04-16 | 2006-05-17 | 索尼爱立信移动通讯股份有限公司 | Direct digital frequency synthesizer for cellular wireless communication systems based on fast frequency-hopped spread spectrum technology |
US20070210955A1 (en) * | 2006-03-10 | 2007-09-13 | Mcewan Thomas E | Error corrector for radar timing systems |
WO2009018199A2 (en) * | 2007-07-31 | 2009-02-05 | Motorola, Inc. | Method and system for managing digital to time conversion |
CN101454981A (en) * | 2006-03-08 | 2009-06-10 | 摩托罗拉公司 | Direct digital synthesizer with variable reference for improved spurious performance |
CN101883469A (en) * | 2010-03-15 | 2010-11-10 | 中国原子能科学研究院 | Method and device for eliminating amplitude-phase control crosstalk in self-excited mode |
-
2017
- 2017-03-09 CN CN201710135908.7A patent/CN106933299B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1774689A (en) * | 2003-04-16 | 2006-05-17 | 索尼爱立信移动通讯股份有限公司 | Direct digital frequency synthesizer for cellular wireless communication systems based on fast frequency-hopped spread spectrum technology |
CN101454981A (en) * | 2006-03-08 | 2009-06-10 | 摩托罗拉公司 | Direct digital synthesizer with variable reference for improved spurious performance |
US20070210955A1 (en) * | 2006-03-10 | 2007-09-13 | Mcewan Thomas E | Error corrector for radar timing systems |
WO2009018199A2 (en) * | 2007-07-31 | 2009-02-05 | Motorola, Inc. | Method and system for managing digital to time conversion |
CN101883469A (en) * | 2010-03-15 | 2010-11-10 | 中国原子能科学研究院 | Method and device for eliminating amplitude-phase control crosstalk in self-excited mode |
Non-Patent Citations (1)
Title |
---|
刘科: ""高速任意波形合成关键技术研究"", 《中国博士学位论文全文数据库 信息科技辑》 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109347504A (en) * | 2018-09-26 | 2019-02-15 | 西安烽火电子科技有限责任公司 | A kind of short-wave radio frequency digital processing system |
CN110823142A (en) * | 2019-11-11 | 2020-02-21 | 华滋奔腾(苏州)安监仪器有限公司 | Demodulator and demodulation method based on gain phase discriminator coaxial cable strain sensor |
CN110823142B (en) * | 2019-11-11 | 2021-04-30 | 华滋奔腾(苏州)安监仪器有限公司 | Demodulator and demodulation method based on gain phase discriminator coaxial cable strain sensor |
CN112946589A (en) * | 2021-02-01 | 2021-06-11 | 上海交通大学 | Phase self-calibration method for motion measurement of asynchronous FMCW radar system |
Also Published As
Publication number | Publication date |
---|---|
CN106933299B (en) | 2019-07-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106953637B (en) | Charge domain amplitude error calibration circuit and DDS circuit adopting same | |
CN106788429B (en) | DAC offset error calibration circuit based on charge domain signal processing | |
US8487803B1 (en) | Pipelined analog-to-digital converter having reduced power consumption | |
CN107070450A (en) | Multichannel DAC phase errors calibration circuit based on charge-domain signal transacting | |
CN105141313B (en) | A kind of SAR ADC and its application method using low resolution DAC capacitor arrays | |
CN102006073A (en) | Fast convergence multichannel time interweaving analog-to-digital (A/D) converter and calibrating system thereof | |
CN110048717A (en) | It is a kind of to realize the time-interleaved self-alignment method and device of analog-digital converter | |
US12224763B2 (en) | Calibration method of capacitor array type successive approximation register analog-to-digital converter | |
EP3567720B1 (en) | Mismatch and reference common-mode offset insensitive single-ended switched capacitor gain stage | |
CN109361390A (en) | Module and method for sampling time error correction between time interleaved ADC channels | |
Harpe et al. | A 0.8-mW 5-bit 250-MS/s time-interleaved asynchronous digital slope ADC | |
CN106933299B (en) | Low-power DDS circuit with amplitude and phase error self-calibration | |
CN107769784A (en) | Oversampling type Pipeline SAR-ADC system | |
CN104124969A (en) | Pipelined analog-to-digital converter | |
Nagaraj | Efficient circuit configurations for algorithmic analog to digital converters | |
CN117097332A (en) | High-precision noise shaping successive approximation type analog-to-digital converter | |
US6166595A (en) | Linearization technique for analog to digital converters | |
CN112838866B (en) | Calibration logic control circuit and method, and successive approximation type analog-to-digital converter | |
CN106936433B (en) | Charge domain phase error calibration circuit and DDS circuit adopting same | |
CN104702282A (en) | Digital calibration method and circuit for multi-stage multi-bit sub circuit in analog-digital converters | |
CN109462402A (en) | Mixed type pipelined ADC architecture | |
CN111181564A (en) | Calibration device and calibration method for gain error of SAR type ADC | |
CN103546153A (en) | Time constant correction circuit and correction method | |
US20090091483A1 (en) | Flash analog to digital converter (adc) | |
Ng et al. | A low-voltage CMOS 5-bit 600 MHz 30 mW SAR ADC for UWB wireless receivers |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |