CN106929915A - 一种曲面结构的蛋白石光子晶体和分子印迹聚合物反蛋白石薄膜的制备方法 - Google Patents

一种曲面结构的蛋白石光子晶体和分子印迹聚合物反蛋白石薄膜的制备方法 Download PDF

Info

Publication number
CN106929915A
CN106929915A CN201710281798.5A CN201710281798A CN106929915A CN 106929915 A CN106929915 A CN 106929915A CN 201710281798 A CN201710281798 A CN 201710281798A CN 106929915 A CN106929915 A CN 106929915A
Authority
CN
China
Prior art keywords
curved
surface structure
photonic crystal
opal
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710281798.5A
Other languages
English (en)
Other versions
CN106929915B (zh
Inventor
陈振贺
姚珏君
郝伟
李国傲
陈雪
石爱军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Municipal Research Institute of Environmental Protection
Original Assignee
Beijing Municipal Research Institute of Environmental Protection
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Municipal Research Institute of Environmental Protection filed Critical Beijing Municipal Research Institute of Environmental Protection
Priority to CN201710281798.5A priority Critical patent/CN106929915B/zh
Publication of CN106929915A publication Critical patent/CN106929915A/zh
Application granted granted Critical
Publication of CN106929915B publication Critical patent/CN106929915B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/04Acids; Metal salts or ammonium salts thereof
    • C08F220/06Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/28Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/10Encapsulated ingredients
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B7/00Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions
    • C30B7/02Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions by evaporation of the solvent
    • C30B7/06Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions by evaporation of the solvent using non-aqueous solvents
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6402Atomic fluorescence; Laser induced fluorescence
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/28Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety
    • C08F220/281Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety and containing only one oxygen, e.g. furfuryl (meth)acrylate or 2-methoxyethyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters
    • C08F222/1006Esters of polyhydric alcohols or polyhydric phenols
    • C08F222/102Esters of polyhydric alcohols or polyhydric phenols of dialcohols, e.g. ethylene glycol di(meth)acrylate or 1,4-butanediol dimethacrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/02Homopolymers or copolymers of acids; Metal or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2333/14Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing halogen, nitrogen, sulfur, or oxygen atoms in addition to the carboxy oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2335/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical, and containing at least one other carboxyl radical in the molecule, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Derivatives of such polymers
    • C08J2335/02Characterised by the use of homopolymers or copolymers of esters

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Metallurgy (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Optics & Photonics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Silicon Compounds (AREA)
  • Optical Measuring Cells (AREA)

Abstract

本发明公开了一种曲面结构的蛋白石光子晶体和分子印迹聚合物反蛋白石薄膜的制备方法,将粒径为170nm~300nm的单分散二氧化硅微球用乙醇稀释其浓度在0.1wt%‑3wt%,超声震荡分散后移到带密封盖的宽口圆柱玻璃瓶中,盖上烧杯,然后在温度40~70℃,相对湿度为40%~85%的条件下,胶体溶液挥发,使得单分散二氧化硅微球以自组装的方式在瓶壁上生长,形成曲面结构的蛋白石光子晶体,再以此为模板制备曲面结构的分子印迹聚合物反蛋白石薄膜。本发明采用圆柱形玻璃瓶作为支撑介质,制备曲面结构的蛋白石光子晶体,制备方法简单、成功率高,单分散纳米硅胶利用率高;裸眼观测光子晶体具有良好的反射色。

Description

一种曲面结构的蛋白石光子晶体和分子印迹聚合物反蛋白石 薄膜的制备方法
技术领域
本发明涉及无机和有机材料领域,具体涉及一种曲面结构的蛋白石光子晶体和曲面结构的分子印迹聚合物反蛋白石薄膜的制备方法以及该薄膜在检测领域的应用。
背景技术
分子印迹技术是集高分子合成、分子设计、分析、分离和测试,生物和医学等众多相关学科的优势,相互渗透而发展起来的一种材料制备新技术,利用该技术制备的分子印迹聚合物具有理化性质稳定、成本低、可重复利用等特点,是检测领域研究的热点。该技术是基于分子识别,即模拟生物体内的生物活性物质抗体和酶的识别机制,利用空间互补、共价和非共价作用力来达到对目标分子的识别。
其中,分子印迹聚合物反蛋白石薄膜作为化学传感器的一种选择性“响应薄膜”,是化学传感技术的热点研究之一。基于反蛋白石薄膜结合目标污染物后,其周期结构发生改变,导致吸收或者反射峰发生红移或者蓝移的原理, 能够实现目标污染物的裸眼或可视化检测。这种方法已用于检测葡萄糖、肌氨酸酐、环丙沙星、铅离子、pH和离子强度等化合物和溶液参数。(Li,M.;Fang,H.;Liao,Q.;Jian,L.;Liang,X.;Lei,J.;Song,Y.;Shu,W.;Zhu,D.Angew. Chem. 2008,47,7258.;Zhang,Y.-X.;Zhao,P.-Y.;Yu,L.-P.Sensors ActuatorsB:Chem.2013,181,850.)由于分子印迹聚合物具有选择性识别能力,是一项实用性强、有应用前景的污染物检测技术。此外,聚合物反蛋白石薄膜还具有慢光效应,能够强化附着于蛋白石薄膜上的污染物的荧光。(Li,H.;Wang,J.;Pan,Z.;Cui,L.;Xu,L.;Wang,R.;Song,Y.;Jiang,L. J. Mater:Chem. 2011, 21,1730;Zhang,Y.;Li,X.; Gao,L.;Qiu, J.;Liping,,H.; Zhong,T. B.;Lei,J. Chemphyschem2014,15,507)。然而,基于这种原理并结合分子印迹技术用于污染物检测的研究尚未见报道。
传统的分子印迹聚合物反蛋白石薄膜的制备方法通常包含两个步骤:第一步,采用垂直蒸发自组装法(非共价印迹法)在平板玻璃上制备硅胶光子晶体,典型的实验条件是:用浓硫酸-过氧化氢混酸(v/v,7/3)浸泡载玻片1h,然后用去离子水充分冲洗除去浓酸。最后用丙酮冲洗,室温干燥。接着,将载玻片按垂直放入100mL的小烧杯中,加入80mL左右的1%硅胶乙醇溶液。转移进恒温恒湿燥箱中,40℃缓慢蒸发,约1周时间。第二步,采用后填充技术制备分子印迹聚合物反蛋白石,典型的实验条件是:将优化得到的预聚合物溶液缓慢渗入平面结构的硅胶光子晶体聚合物膜内,然后在膜上覆盖PMMA薄膜以减少预聚合溶液的蒸发。然后,将上述体系转移到密闭容器中,通氩气除氧后,50℃热聚合1h。聚合反应完成后,在1-5%HF水溶液中浸泡过夜,把硅胶充分刻蚀掉,最终形成分子印迹聚合物反蛋白石薄膜。(Hu, X.;Li,G.;Li,M.;Huang,J.;Li,Y.;Gao,Y.;Zhang,Y.Adv. Funct.Mater.2008,18,575;Wei,L.;Asher,S.A.;Meng,Z.;Yan, Z.;Min,X.;Qiu,L.;Da,Y.J.Hazard.Mater.2016,316,87.)
反蛋白石薄膜的经典制备方式还可以参考授权公告号为CN102173862B所公开的,以二氧化硅作为基片,以聚苯乙烯微球作为正蛋白石模板材料,以五氯化钽作反蛋白石原料,以乙醇为溶剂用垂直沉积法先制备正蛋白石凸形网状结构,用溶胶凝胶法填充制备反蛋白石凹形网状膜层。但是这些方法都存在两个重要问题:问题一,每制备一片光子晶体要消耗大量的单分散纳米微球,组装结束后,通常大多数单分散微球附着于烧杯壁,材料浪费多。问题二,聚合反应的成功率较低,这是因为先在光子晶体模板引入聚合溶液,然后覆盖薄膜的过程不可避免地接触氧气,导致自由基聚合反应发生猝灭。问题三,基于慢光效应强化目标化合物或染料荧光的原理检测污染物的方法,需要高质量的反蛋白石薄膜,而常规的方法无法合成大面积和高质量的反式聚合物,荧光强化效果不明显。因此,如何减少材料浪费,提高聚合反应的成功率和反蛋白石的质量,是研究的重点之一,此前对曲面结构的光子晶体并无任何记载。
发明内容
本发明的目的在于提供一种快速、材料节约、聚合成功率高、成本低廉、操作简单的曲面结构的蛋白石光子晶体和曲面结构的分子印迹聚合物反蛋白石薄膜制备方法。
本发明的一个方面提供一种曲面结构的蛋白石光子晶体的制备方法,采用胶体自组装的方法,将粒径为170nm~300nm的单分散二氧化硅微球用乙醇稀释其浓度在0.1 wt%-3 wt%,超声震荡分散后移到带密封盖的宽口圆柱玻璃瓶中,盖上烧杯,形成相对封闭的环境,转入对流恒温箱中加热,然后在温度40~70℃,相对湿度为40%~85%的条件下,胶体溶液挥发,使得单分散二氧化硅微球以自组装的方式在瓶壁上生长,形成曲面结构的蛋白石光子晶体。
进一步,所述单分散二氧化硅微球自组装时间为1~5天。
进一步,所述超声震荡分散时间为10~30min。
进一步,所述宽口圆柱玻璃瓶使用前,需要进行表层处理,用浓硫酸/过氧化氢混酸,体积比为7:3浸泡至少1h;用去离子水清洗;用丙酮去除残留的水分,室温干燥。
本发明的另一个方面提供一种以上述曲面结构的蛋白石光子晶体为模板制备曲面结构的分子印迹聚合物反蛋白石薄膜的方法,将所述曲面结构的蛋白石光子晶体上覆盖厚度0.01~0.3mm的柔性聚合物薄膜,拧紧密封盖,通过设置在密封盖上的圆孔将纯氮气充入玻璃瓶中;充入的氮气用于置换瓶子中的氧气,避免氧气阻碍聚合反应;
通过进样针将聚合溶液引入所述曲面结构的蛋白石光子晶体模板和柔性聚合物薄膜之间的空隙,在溶液张力作用下光子晶体与柔性薄膜紧密贴合,避免产生气泡,置于0℃冰水混合物中,用紫外固化灯照射,聚合反应时间0.5-5h;
用2wt%的氢氟酸,刻蚀后,用乙醇洗涤,得到曲面结构的分子印迹聚合物反蛋白石薄膜。
进一步,所述聚合溶液依照待检测的目标分子,有针对性的配制,配制好后加入引发剂;所述引发剂是偶氮二异丁腈。
在一些优选的实施方案中,聚合溶液由恩诺沙星、甲基丙烯酸、甲基丙烯酸羟乙酯和二甲基丙烯酸乙二醇酯组成,其体积比为1:4:4:4。
在一些优选的实施方案中,聚合溶液由恩诺沙星、甲基丙烯酸、甲基丙烯酸羟乙酯和二甲基丙烯酸乙二醇酯组成,其体积比为1:4:4:0.2。
进一步,所述纯氮气不间断通充入玻璃瓶,流速45~60ml/min,时间20~30min。
进一步,所述刻蚀需12h后更换1次氢氟酸,继续刻蚀12h。
本发明还提供一种曲面结构的分子印迹聚合物反蛋白石薄膜在污染物检测中的应用。
本发明的有益效果体现在:
(1)本发明采用圆柱形玻璃瓶作为支撑介质,制备曲面结构的光子晶体,制备方法简单、成功率高,单分散纳米硅胶利用率高,同时由于组装面为连续曲面,不易形成薄厚不均的条带,光子晶体质量好;
(2)利用圆柱形的玻璃瓶内表面作为硅胶光子晶体生长的载体,可用的光子晶体面积将是平板玻璃载体的π倍以上,单位可用面积的硅胶光子晶体所消耗的单分散纳米硅胶的用量下降;
(3)裸眼观测光子晶体具有良好的反射色,特别是当垂直于玻璃瓶的中心轴观察,沿着中心轴硅胶光子晶体具有相同的反射色;
(4)圆柱状玻璃瓶作为聚合物反蛋白石薄膜合成的容器,可以密封,聚合物合成的成功率提高,方法简便,通过进样针将聚合溶液引入光子晶体模板和柔性聚合物薄膜之间的空隙,然后密封通入高纯氮气除氧,就能够解决聚合物合成成功率低的问题;
(5)制备成功的曲面结构的分子印迹聚合物反蛋白石薄膜在野外检测污染物时,检测针对性强,荧光反应明显,体积小携带方便,实操性强。
本发明的其它特征和优点将在随后的说明书中阐述,并且部分地从说明书中变得显而易见,或者通过实施本发明而了解。本发明的主要目的和其它优点可通过在说明书、权利要求书中所特别指出的方案来实现和获得。
附图说明
实施例1~4中,单分散二氧化硅微球的四种粒径为170nm、200nm、220nm、240nm。
图1为四种粒径单分散二氧化硅微球在圆柱形玻璃瓶上生长形成的曲面结构的蛋白石光子晶体的示意图;
图2a、2b、2c、2d为四种粒径单分散二氧化硅微球组装成的曲面结构的蛋白石光子晶体的场发射扫描电镜图;
图3为四种粒径单分散二氧化硅微球组装成的曲面结构的蛋白石光子晶体的紫外吸收图谱;
图4为四种粒径的曲面结构的分子印迹聚合物反蛋白石薄膜的照片;
图5以粒径为200nm单分散二氧化硅微球所组装的曲面结构的蛋白石光子晶体做模板,制备的曲面结构的分子印迹聚合物反蛋白石薄膜SEM 图;
图6为四种粒径单分散二氧化硅微球所组装的曲面结构的蛋白石光子晶体做模板,制备的曲面结构的分子印迹聚合物反蛋白石薄膜紫外吸收图谱;
图7为基于慢光效应强化荧光原理检测恩诺沙星(ENR)的工作曲线;
图8为检测恩诺沙星(ENR)的效果图;
图9为制备曲面结构分子印迹聚合物反蛋白石的流程图。
具体实施方式
如本文所用,术语“包含”、“包括”、“含有”、“具有”的含义是非限制性的,即可加入不影响结果的其它步骤和其它成分。以上术语涵盖术语“由……组成”和“基本上由……组成”。如无特殊说明的,材料、设备、试剂均为市售。
实施例1
(1)选取粒径尺寸在170nm单分散二氧化硅微球;
(2)宽口圆柱玻璃瓶使用前,需要进行表层处理。用浓硫酸/过氧化氢混酸(体积比为7:3)浸泡25ml透明样品瓶至少1h,用去离子水清洗3次,最后用丙酮去除残留的水分,室温干燥;.
(3)采用胶体自组装的方法。用乙醇稀释单分散二氧化硅微球浓度至2%,超声震荡分散10min后,取15ml胶体溶液移到带密封盖的宽口圆柱玻璃瓶中;盖上500ml烧杯,形成半封闭的环境,圆柱形玻璃瓶的尺寸和胶体溶液的体积,可以依据要制备的晶体面积进行调节;
(4)转入恒温培养箱中加热,温度50℃,相对湿度为60%的条件下,胶体溶液挥发,使得单分散二氧化硅微球以自组装的方式在瓶壁上生长3天,形成曲面结构的蛋白石光子晶体;将形成的曲面结构的光子晶体在室温下老化24h,提高硅胶光子晶体的结构稳定性;
(5)按照曲面结构的蛋白石光子晶体的尺寸,在表面覆盖一层低密度聚乙烯薄膜(也可以选择其它类型的聚合物薄膜,如聚对苯二甲酸乙二醇酯、聚丙烯膜等,应保证具有质地柔软、反应活性低等特性),厚度约0.05mm,将瓶子用含有乳胶垫的盖子密封(密封盖上设置有圆孔,用于将纯氮充入玻璃瓶),用超纯氮气置换瓶子中的氧气,不间断充入氮气,以除去溶解氧,流速50ml/min,时间20min;
(6)通过进样针将聚合溶液引入曲面结构的蛋白石光子晶体和聚乙烯薄膜之间的空隙,避免产生气泡,在溶液张力作用下光子晶体与柔性薄膜紧密贴合;然后加入单体和交联剂质量含量1%的偶氮二异丁腈作为引发剂;其中,聚合溶液可依照待检测的目标分子,有针对性的配制;
(7)反应体系置于0℃冰水混合物中用主波长365nm的紫外固化灯照射上述体系,聚合反应时间2h;
(8)2%的氢氟酸(v/v,50/50)刻蚀硅胶,12h后更换氢氟酸1次,再刻蚀12h;
(9)用乙醇洗涤除去氢氟酸并保存在乙醇中,得到具有曲面结构的分子印迹聚合物反蛋白石;利用多孔的硅胶晶体做模板,单体和模板在其表面聚合,聚合后利用氢氟酸除去硅胶模板,形成与多孔硅胶互补的聚合薄膜。
实施例2
(1)选取粒径尺寸为200 nm的单分散二氧化硅微球;
(2)宽口圆柱玻璃瓶使用前,需要进行表层处理。用浓硫酸/过氧化氢混酸(体积比为7:3)浸泡25ml透明样品瓶至少1.5h,用去离子水清洗3次,最后用丙酮去除残留的水分,室温干燥;
(3)采用胶体自组装的方法。用乙醇稀释单分散二氧化硅微球浓度至2%,超声震荡分散15min后,取15ml胶体溶液移到带密封盖的宽口圆柱玻璃瓶中;盖上500ml烧杯,形成半封闭的环境,圆柱形玻璃瓶的尺寸和胶体溶液的体积,可以依据要制备的晶体面积进行调节;
(4)转入恒温培养箱中加热,温度40℃,相对湿度为45%的条件下,胶体溶液挥发,使得单分散二氧化硅微球以自组装的方式在瓶壁上生长4天,形成曲面结构的蛋白石光子晶体;将形成的曲面结构的光子晶体在室温下老化24h,提高硅胶光子晶体的结构稳定性;
(5)按照曲面结构的蛋白石光子晶体的尺寸,在表面覆盖一层低密度聚乙烯薄膜(也可以选择其它类型的聚合物薄膜,如聚对苯二甲酸乙二醇酯、聚丙烯膜等,应保证具有质地柔软、反应活性低等特性),厚度约0.1mm,将瓶子用含有乳胶垫的盖子密封,用超纯氮气置换瓶子中的氧气,不间断充入氮气,以除去溶解氧,流速50ml/min,时间20min;
(6)通过进样针将聚合溶液引入曲面结构的蛋白石光子晶体模板和聚乙烯薄膜之间的空隙,避免产生气泡,在溶液张力作用下光子晶体与柔性薄膜紧密贴合;然后加入单体和交联剂质量含量1%的偶氮二异丁腈作为引发剂;其中,聚合溶液可依照待检测的目标分子,有针对性的配制;
(7)反应体系置于0℃冰水混合物中用主波长365nm的紫外固化灯照射上述体系,聚合反应时间2h;
(8)2%的氢氟酸(v/v,50/50)刻蚀硅胶,12h后更换氢氟酸1次,再刻蚀12h;
(9)用乙醇洗涤除去氢氟酸并保存在乙醇中,得到具有曲面结构的分子印迹聚合物反蛋白石;利用多孔的硅胶做模板,单体和模板在其表面聚合,聚合后利用氢氟酸除去硅胶模板,形成与多孔硅胶互补的聚合薄膜。
实施例3
(1)选取粒径尺寸为240 nm的单分散二氧化硅微球;
(2)宽口圆柱玻璃瓶使用前,需要进行表层处理。用浓硫酸/过氧化氢混酸(体积比为7:3)浸泡25ml透明样品瓶至少1.5h,用去离子水清洗3次,最后用丙酮去除残留的水分,室温干燥;
(3)采用胶体自组装的方法。用乙醇稀释单分散二氧化硅微球浓度至2%,超声震荡分散30min后,取15ml胶体溶液移到带密封盖的宽口圆柱玻璃瓶中;盖上500ml烧杯,形成半封闭的环境,圆柱形玻璃瓶的尺寸和胶体溶液的体积,可以依据要制备的晶体面积进行调节;
(4)转入恒温培养箱中加热,温度70℃,相对湿度为75%的条件下,胶体溶液挥发,使得单分散二氧化硅微球以自组装的方式在瓶壁上生长23天,形成曲面结构的蛋白石光子晶体;将形成的曲面结构的光子晶体在室温下老化24h,提高硅胶光子晶体的结构稳定性;
(5)按照曲面结构的蛋白石光子晶体的尺寸,在表面覆盖一层低密度聚乙烯薄膜(也可以选择其它类型的聚合物薄膜,应保证质地柔软、反应活性低等特性),厚度约0.3mm,将瓶子用含有乳胶垫的盖子密封,用超纯氮气置换瓶子中的氧气,不间断充入氮气,以除去溶解氧,流速55ml/min,时间20min;
(6)通过进样针将聚合溶液引入曲面结构的蛋白石光子晶体模板和聚乙烯薄膜之间的空隙,避免产生气泡,在溶液张力作用下光子晶体与柔性薄膜紧密贴合;然后加入单体和交联剂质量含量1%的偶氮二异丁腈作为引发剂;其中,聚合溶液可依照待检测的目标分子,有针对性的配制;
(7)反应体系置于0℃冰水混合物中用主波长365nm的紫外固化灯照射上述体系,聚合反应时间2h;
(8)2%的氢氟酸(v/v,50/50)刻蚀硅胶,12h后更换氢氟酸1次,再刻蚀12h;
(9)用乙醇洗涤除去氢氟酸并保存在乙醇中,得到具有曲面结构的分子印迹聚合物反蛋白石;利用多孔的硅胶做模板,单体和模板在其表面聚合,聚合后利用氢氟酸除去硅胶模板,形成与多孔硅胶互补的聚合薄膜。
利用圆柱形的玻璃瓶内表面作为硅胶光子晶体生长的载体,可用的光子晶体面积将是平板玻璃载体的π倍以上,单位可用面积的硅胶光子晶体所消耗的单分散纳米硅胶的用量下降。
聚合溶液按照实际测试需求配制,其它类型的分子印迹聚合物也可以按照该方法进行,从而识别不同的目标分子。详见实施例4。
实施例4
(1)选取粒径尺寸为220 nm的单分散二氧化硅微球;
(2)宽口圆柱玻璃瓶使用前,需要进行表层处理。用浓硫酸/过氧化氢混酸(体积比为7:3)浸泡25ml透明样品瓶至少1.5h,用去离子水清洗3次,最后用丙酮去除残留的水分,室温干燥;
(3)采用胶体自组装的方法。用乙醇稀释单分散二氧化硅微球浓度至2%,超声震荡分散25min后,取15ml胶体溶液移到带密封盖的宽口圆柱玻璃瓶中;盖上500ml烧杯,形成半封闭的环境,圆柱形玻璃瓶的尺寸和胶体溶液的体积,可以依据要制备的晶体面积进行调节;
(4)转入恒温培养箱中加热,温度50℃,相对湿度为55%的条件下,胶体溶液挥发,使得单分散二氧化硅微球以自组装的方式在瓶壁上生长3天,形成曲面结构的蛋白石光子晶体;将形成的曲面结构的光子晶体在室温下老化24h,提高硅胶光子晶体的结构稳定性;
(5)按照曲面结构的蛋白石光子晶体的尺寸,在表面覆盖一层低密度聚乙烯薄膜(也可以选择其它类型的聚合物薄膜,应保证质地柔软、反应活性低等特性),厚度约0.2mm,将瓶子用含有乳胶垫的盖子密封,用超纯氮气置换瓶子中的氧气,不间断充入氮气,以除去溶解氧,流速55ml/min,时间20min;
(6)按体积1:4:4:4的比例制备分子印迹聚合物聚合溶液(恩诺沙星、甲基丙烯酸、甲基丙烯酸羟乙酯和二甲基丙烯酸乙二醇酯组成),然后加入单体和交联剂质量含量1%的偶氮二异丁腈作为引发剂;
(7)通过进样针将聚合溶液引入曲面结构的蛋白石光子晶体模板和聚乙烯薄膜之间的空隙,避免产生气泡,在溶液张力作用下光子晶体与柔性薄膜紧密贴合;
(8)反应体系置于0℃冰水混合物中用主波长365nm的紫外固化灯照射上述体系,聚合反应时间4h;
(9)2%的氢氟酸(v/v,50/50)刻蚀硅胶,12h后更换氢氟酸1次,再刻蚀12h;
(10)用乙醇洗涤除去氢氟酸并保存在乙醇中,得到具有曲面结构的分子印迹聚合物反蛋白石;利用多孔的硅胶做模板,单体和模板在其表面聚合,聚合后利用氢氟酸除去硅胶模板,形成与多孔硅胶互补的聚合薄膜。
实施例5
(1)选取粒径尺寸为220 nm的单分散二氧化硅微球;
(2)宽口圆柱玻璃瓶使用前,需要进行表层处理。用浓硫酸/过氧化氢混酸(体积比为7:3)浸泡25ml透明样品瓶至少1.5h,用去离子水清洗3次,最后用丙酮去除残留的水分,室温干燥;
(3)采用胶体自组装的方法。用乙醇稀释单分散二氧化硅微球浓度至2%,超声震荡分散25min后,取15ml胶体溶液移到带密封盖的宽口圆柱玻璃瓶中;盖上500ml烧杯,形成半封闭的环境,圆柱形玻璃瓶的尺寸和胶体溶液的体积,可以依据要制备的晶体面积进行调节;
(4)转入恒温培养箱中加热,温度50℃,相对湿度为55%的条件下,胶体溶液挥发,使得单分散二氧化硅微球以自组装的方式在瓶壁上生长3天,形成曲面结构的蛋白石光子晶体;将形成的曲面结构的光子晶体在室温下老化24h,提高硅胶光子晶体的结构稳定性;
(5)按照曲面结构的蛋白石光子晶体的尺寸,在表面覆盖一层低密度聚乙烯薄膜(也可以选择其它类型的聚合物薄膜,应保证质地柔软、反应活性低等特性),厚度约0.2mm,将瓶子用含有乳胶垫的盖子密封,用超纯氮气置换瓶子中的氧气,不间断充入氮气,以除去溶解氧,流速55ml/min,时间20min;
(6)按体积1:4:4:0.2的比例制备分子印迹聚合物聚合溶液(恩诺沙星、甲基丙烯酸、甲基丙烯酸羟乙酯和二甲基丙烯酸乙二醇酯组成),然后加入单体和交联剂质量含量1%的偶氮二异丁腈作为引发剂;减少二甲基丙烯酸乙二醇酯目的在于:使其具有良好的溶胀效果,检测污染物时,吸收峰位移变化显著,提高检测灵敏性;
(7)通过进样针将聚合溶液引入曲面结构的蛋白石光子晶体模板和聚乙烯薄膜之间的空隙,避免产生气泡,在溶液张力作用下光子晶体与柔性薄膜紧密贴合;
(8)反应体系置于0℃冰水混合物中用主波长365nm的紫外固化灯照射上述体系,聚合反应时间4h;
(9)2%的氢氟酸(v/v,50/50)刻蚀硅胶,12h后更换氢氟酸1次,再刻蚀12h;
(10)用乙醇洗涤除去氢氟酸并保存在乙醇中,得到具有曲面结构的分子印迹聚合物反蛋白石;利用多孔的硅胶做模板,单体和模板在其表面聚合,聚合后利用氢氟酸除去硅胶模板,形成与多孔硅胶互补的聚合薄膜。
分析、表征:
1),实施例1~4中所使用的四种粒径170nm、200nm、240nm、220nm,单分散二氧化硅微球在圆柱形玻璃瓶上生长形成的曲面结构的蛋白石光子晶体,裸眼观测光子晶体具有良好的反射色,特别是当垂直于玻璃瓶的中心轴观察,沿着中心轴硅胶光子晶体具有相同的反射色(详见图1),其中,粒径为220nm曲面结构的蛋白石光子晶体做模板,制备的反式结构的分子印迹聚合物反蛋白石薄膜,其SEM下的结构详见图5,结果表明该薄膜为具有周期性结构的聚合物反蛋白石;
2),图2a、2b、2c、2d依次粒径为170nm、200nm、220nm、240nm,单分散二氧化硅微球形成的曲面结构蛋白石光子晶体的场发射扫描电镜图,在4万倍的SEM图下可以看出,通过1~5天的自组装,单分散二氧化硅微球排列紧密、有序,进而形成蛋白石结构,可以看出这些曲面结构的蛋白石光子晶体,为面心立方堆积构型,与在平面结构支持介质上的微观结构一致;
3),实施例1~4中所使用的四种粒径,所组装出的曲面结构的蛋白石光子晶体的紫外吸收图谱,具有特征紫外吸收峰,如图3所示;
4),图4为四种粒径的曲面结构的分子印迹聚合物反蛋白石薄膜的照片,裸眼观测具有不同特征的反射色(由左向右粒径依次为240nm、220nm、200nm、170nm,黑白照片条件下,瓶身上的记号笔字体不明显);
5),图6为四种尺寸的曲面结构的分子印迹聚合物反蛋白石薄膜的紫外吸收图谱,可以证明成功合成了曲面结构的分子印迹聚合物反蛋白石薄膜;
6),图7为基于慢光效应强化荧光原理检测恩诺沙星的工作曲线对比图,高斜率的为强化后的工作曲线,低斜率的为强化前的曲线,从图7可以看出恩诺沙星的荧光强化效应明显;
7),图8为曲面结构的分子印迹反蛋白石薄膜(以粒径为220nm为的硅胶光子晶体制备的膜),基于慢光效应强化荧光机理选择性检测恩诺沙星(ENR)的效果图。
选取粒径尺寸为220 nm的单分散二氧化硅微球组装曲面蛋白石晶体,以此为模板制备曲面结构的反蛋白石薄膜,基于反蛋白石能够强化恩诺沙星荧光的原理,此薄膜为选择性识别恩诺沙星的光化学传感器薄膜。其中氟甲奎(FLU)和羟丙哌嗪(DPP)作为恩诺沙星的结构类似物,不能产生荧光信号,证明该薄膜能够选择性识别恩诺沙星;非印迹的曲面结构的聚合物反蛋白石薄膜和恩诺沙星溶液具有相似的荧光强度,说明非印迹薄膜对恩诺沙星的识别能力较弱并且不能强化的荧光发射,证明分子印迹聚合物具有良好的印迹效果。
本发明制备曲面结构的硅胶光子晶体和曲面结构的分子印迹聚合物反蛋白石薄膜的流程图可以参见图9,各个步骤的详细内容可以参考实施例1~4。
基于上述实施例,本发明一种曲面结构的反蛋白石薄膜的制备方法,利用圆柱形的玻璃瓶内表面作为硅胶光子晶体生长的载体,可用的光子晶体面积将是平板玻璃载体的π倍以上,可以减少单位面积的硅胶光子晶体消耗的单分散硅胶的量;圆柱形玻璃瓶具有可密封性,先在硅胶晶体上覆盖柔性聚合物膜,然后预先通氮除氧,通过进样针将聚合溶液引入光子晶体模板和柔性聚合物薄膜之间的空隙,就能够有效提高聚合反应的成功率。检测目标污染物,通过慢光效应强化荧光的原理,用荧光光谱仪检测荧光化合物,还可以在识别目标污染物后引发吸收峰位移,用紫外光谱仪或者反射光谱仪检测目标化合物,应用前景广阔。
以上所述仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内所想到的变化或替换,都应涵盖在本发明的保护范围之内。

Claims (9)

1.一种曲面结构的蛋白石光子晶体的制备方法,其特征在于,将粒径为170nm~300nm的单分散二氧化硅微球用乙醇稀释其浓度在0.1wt%-3wt%,超声震荡分散后移到带密封盖的宽口圆柱玻璃瓶中,盖上烧杯,然后在温度40~70℃,相对湿度为40%~85%的条件下,胶体溶液挥发,使得单分散二氧化硅微球以自组装的方式在瓶壁上生长,形成曲面结构的蛋白石光子晶体。
2.如权利要求1所述的制备方法,其特征在于,所述单分散二氧化硅微球自组装时间为1~5天。
3.如权利要求1所述的制备方法,其特征在于,所述超声震荡分散时间为10~30min。
4.如权利要求1所述的制备方法,其特征在于,所述宽口圆柱玻璃瓶使用前,需要进行表层处理,用浓硫酸/过氧化氢混酸,体积比为7:3浸泡至少1h;用去离子水清洗;用丙酮去除残留的水分,室温干燥。
5.一种以权利要求1~4任一项所述的方法制备的曲面结构的蛋白石光子晶体为模板制备曲面结构的分子印迹聚合物反蛋白石薄膜的方法,其特征在于,将所述曲面结构的蛋白石光子晶体上覆盖厚度0.01~0.3mm的柔性聚合物薄膜,拧紧密封盖,通过设置在密封盖上的圆孔将纯氮气充入玻璃瓶中;
通过进样针将聚合溶液引入所述曲面结构的蛋白石光子晶体模板和柔性聚合物薄膜之间的空隙,置于0℃冰水混合物中,用紫外固化灯照射,聚合反应时间0.5-5h;
用2wt%的氢氟酸,刻蚀后,用乙醇洗涤,得到曲面结构的分子印迹聚合物反蛋白石薄膜。
6.如权利要求5所述的方法,其特征在于,所述聚合溶液依照待检测的目标分子,有针对性的配制,配制好后加入引发剂;所述引发剂是偶氮二异丁腈。
7.如权利要求5所述的方法,其特征在于,所述纯氮气不间断通充入玻璃瓶,流速45~60ml/min,时间20~30min。
8.如权利要求5所述的方法,其特征在于,所述刻蚀需12h后更换1次氢氟酸,继续刻蚀12h。
9.一种如权利要求5~8任一项所述的方法制备的曲面结构的分子印迹聚合物反蛋白石薄膜在污染物检测中的应用。
CN201710281798.5A 2017-04-26 2017-04-26 一种曲面结构的蛋白石光子晶体和分子印迹聚合物反蛋白石薄膜的制备方法 Active CN106929915B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710281798.5A CN106929915B (zh) 2017-04-26 2017-04-26 一种曲面结构的蛋白石光子晶体和分子印迹聚合物反蛋白石薄膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710281798.5A CN106929915B (zh) 2017-04-26 2017-04-26 一种曲面结构的蛋白石光子晶体和分子印迹聚合物反蛋白石薄膜的制备方法

Publications (2)

Publication Number Publication Date
CN106929915A true CN106929915A (zh) 2017-07-07
CN106929915B CN106929915B (zh) 2019-01-11

Family

ID=59438314

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710281798.5A Active CN106929915B (zh) 2017-04-26 2017-04-26 一种曲面结构的蛋白石光子晶体和分子印迹聚合物反蛋白石薄膜的制备方法

Country Status (1)

Country Link
CN (1) CN106929915B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107353369A (zh) * 2017-07-10 2017-11-17 中国人民解放军军事医学科学院卫生学环境医学研究所 一种光子晶体传感材料及其制备方法和应用
CN110639482A (zh) * 2019-10-24 2020-01-03 南京工程学院 一种反蛋白石结构铀酰离子印迹复合膜的制备方法
CN112915934A (zh) * 2019-12-05 2021-06-08 天津大学 蜂窝状结构组装体及其制备方法和应用
CN113607692A (zh) * 2021-04-23 2021-11-05 北京理工大学 一种基于水相的光子晶体分子印迹水凝胶传感器及其制备方法和检测方法
CN115219441A (zh) * 2022-07-26 2022-10-21 陕西科技大学 一种Cu2+传感器及其制备方法和应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004145145A (ja) * 2002-10-25 2004-05-20 Osaka Industrial Promotion Organization 曲面上における三次元フォトニック結晶の製造方法およびその方法で得られた三次元フォトニクス結晶
JP2006291303A (ja) * 2005-04-12 2006-10-26 Kyoto Univ 微粒子アセンブル構造体とそのアセンブル方法
CN101187728A (zh) * 2007-12-21 2008-05-28 中国科学院化学研究所 包含曲面光子晶体膜结构的全可见光聚光器的制备方法
CN101338447A (zh) * 2008-08-29 2009-01-07 哈尔滨工业大学 自组装光子晶体的方法
CN101793996A (zh) * 2009-12-25 2010-08-04 北京理工大学 葡萄糖检测用分子印迹光子晶体
CN102350315A (zh) * 2011-06-24 2012-02-15 北京理工大学 一种分子印迹胶体阵列的制备方法和应用
CN102558410A (zh) * 2012-01-20 2012-07-11 齐齐哈尔大学 自组装三维有序聚苯乙烯胶晶的制备方法
CN103499548A (zh) * 2013-09-17 2014-01-08 南昌大学 基于光子晶体分子印迹水凝胶对香兰素的测定方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004145145A (ja) * 2002-10-25 2004-05-20 Osaka Industrial Promotion Organization 曲面上における三次元フォトニック結晶の製造方法およびその方法で得られた三次元フォトニクス結晶
JP2006291303A (ja) * 2005-04-12 2006-10-26 Kyoto Univ 微粒子アセンブル構造体とそのアセンブル方法
CN101187728A (zh) * 2007-12-21 2008-05-28 中国科学院化学研究所 包含曲面光子晶体膜结构的全可见光聚光器的制备方法
CN101338447A (zh) * 2008-08-29 2009-01-07 哈尔滨工业大学 自组装光子晶体的方法
CN101793996A (zh) * 2009-12-25 2010-08-04 北京理工大学 葡萄糖检测用分子印迹光子晶体
CN102350315A (zh) * 2011-06-24 2012-02-15 北京理工大学 一种分子印迹胶体阵列的制备方法和应用
CN102558410A (zh) * 2012-01-20 2012-07-11 齐齐哈尔大学 自组装三维有序聚苯乙烯胶晶的制备方法
CN103499548A (zh) * 2013-09-17 2014-01-08 南昌大学 基于光子晶体分子印迹水凝胶对香兰素的测定方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
WEI LU,ET AL.: "Visual detection of 2,4,6-trinitrotolune by molecularly imprinted colloidal array photonic crystal", 《JOURNAL OF HAZARDOUS MATERIALS》 *
XIAOBIN HU,ET AL.: "Ultrasensitive Specific Stimulant Assay Based on Molecularly Imprinted Photonic Hydrogels", 《ADV. FUNCT. MATER.》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107353369A (zh) * 2017-07-10 2017-11-17 中国人民解放军军事医学科学院卫生学环境医学研究所 一种光子晶体传感材料及其制备方法和应用
CN110639482A (zh) * 2019-10-24 2020-01-03 南京工程学院 一种反蛋白石结构铀酰离子印迹复合膜的制备方法
CN110639482B (zh) * 2019-10-24 2022-07-22 南京工程学院 一种反蛋白石结构铀酰离子印迹复合膜的制备方法
CN112915934A (zh) * 2019-12-05 2021-06-08 天津大学 蜂窝状结构组装体及其制备方法和应用
CN113607692A (zh) * 2021-04-23 2021-11-05 北京理工大学 一种基于水相的光子晶体分子印迹水凝胶传感器及其制备方法和检测方法
CN115219441A (zh) * 2022-07-26 2022-10-21 陕西科技大学 一种Cu2+传感器及其制备方法和应用

Also Published As

Publication number Publication date
CN106929915B (zh) 2019-01-11

Similar Documents

Publication Publication Date Title
CN106929915A (zh) 一种曲面结构的蛋白石光子晶体和分子印迹聚合物反蛋白石薄膜的制备方法
Gallei Functional Polymer Opals and Porous Materials by Shear‐Induced Assembly of Tailor‐Made Particles
Zhang et al. Quantum dots-based hydrogels for sensing applications
Lamaoui et al. Synthesis techniques of molecularly imprinted polymer composites
CN104672485A (zh) 一种光子晶体薄膜、其制备方法及应用
Liu et al. Volatile alcohol-responsive visual sensors based on P (HEMA-co-MA)-infiltrated SiO 2 inverse opal photonic crystals
Zhang et al. Inverse opal hydrogel sensor for the detection of pH and mercury ions
CN104961906A (zh) 一种兼具pH值和离子强度响应的光子晶体水凝胶薄膜、其制备方法及应用
CN108358199A (zh) 一种蒙脱土/氧化石墨烯纳米气凝胶的制备方法
KR20110092852A (ko) 형광스위치용 나노 구조체, 이의 제조방법, 이를 포함하는 형광표시센서
Xue et al. Preparation of noniridescent structurally colored PS@ TiO2 and Air@ C@ TiO2 core–shell nanoparticles with enhanced color stability
Gong et al. Three-dimensionally conformal porous microstructured fabrics via breath figures: a nature-inspired approach for novel surface modification of textiles
JP2004109178A (ja) コロイド結晶体及びその製造方法
Wang et al. Circularly polarized light source from self‐assembled hybrid nanoarchitecture
EP2209846B1 (en) Method for manufacturing a composite sorber for the removal of h2o consisting of hygroscopic inorganic salts dissolved in a polymeric matrix
Zhu et al. Carbon dot-based inverse opal hydrogels with photoluminescence: dual-mode sensing of solvents and metal ions
Chen et al. Ag nanoparticles-coated silica–PMMA core-shell microspheres and hollow PMMA microspheres with Ag nanoparticles in the interior surfaces
CN107298768A (zh) 一种温度响应型复合开关膜的制备方法
CN105199282B (zh) 紫外光驱动分子晶体-聚合物复合薄膜材料及其制备方法
CN109173947B (zh) 一种磁响应电致变色液晶微球材料及其制备方法
Lai et al. Active visualized solvent sensor based on copolymer hydrogel photonic crystals containing white LEDs
US5841493A (en) Method for the making of a film of polymer-based material
CN114752168B (zh) 一种无角度依赖性结构色水凝胶膜、制备方法及其应用
Xiang et al. Three-layer structured soft particles to construct photonic paper exhibiting responsive spatio-temporal color patterns
CN115216034B (zh) 丝蛋白/溶菌酶可转移蛋白质纳米薄膜或涂层及其制备

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant