CN106929838A - 制备适于细胞表面生物正交拉曼成像的增强基底的方法 - Google Patents

制备适于细胞表面生物正交拉曼成像的增强基底的方法 Download PDF

Info

Publication number
CN106929838A
CN106929838A CN201511009814.2A CN201511009814A CN106929838A CN 106929838 A CN106929838 A CN 106929838A CN 201511009814 A CN201511009814 A CN 201511009814A CN 106929838 A CN106929838 A CN 106929838A
Authority
CN
China
Prior art keywords
substrate
orthogonal
silicon chip
raman
gold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201511009814.2A
Other languages
English (en)
Inventor
陈兴
李娅娅
肖明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Peking University
Original Assignee
Peking University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peking University filed Critical Peking University
Priority to CN201511009814.2A priority Critical patent/CN106929838A/zh
Publication of CN106929838A publication Critical patent/CN106929838A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C20/00Chemical coating by decomposition of either solid compounds or suspensions of the coating forming compounds, without leaving reaction products of surface material in the coating
    • C23C20/02Coating with metallic material
    • C23C20/04Coating with metallic material with metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5846Reactive treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

本发明涉及一种制备适于细胞表面生物正交拉曼成像的增强基底的方法,所述基底是金纳米阵列基底和银纳米岛基底,金纳米阵列基底的所述方法包括以下步骤:a)将硅片表面进行化学处理从而引入巯基;b)将步骤a)得到的硅片浸于金纳米颗粒AuNPs溶胶中;c)将步骤b)得到的产物浸于十二烷基硫醇的乙醇溶液中处理;d)将步骤c)得到的产物用乙醇洗涤后,在硅片表面滴水;e)待水蒸发后得到自组装的单层AuNPs阵列基底。本发明的方法,其样品制备可做到与荧光成像一样便捷,能获得连续的多维度成像,且使得拉曼检测效率更高,适于细胞表面生物正交拉曼成像。

Description

制备适于细胞表面生物正交拉曼成像的增强基底的方法
技术领域
本发明涉及纳米生物学领域,尤其涉及细胞表面生物正交拉曼成像的增强基底的制备。
背景技术
对细胞尤其是活细胞中特定分子进行成像,是研究生命过程的重要方法。其中荧光成像应用广泛。除了基于蛋白的荧光成像(如荧光蛋白和免疫荧光),近年来,一种生物正交化学报告基团的策略发展起来。其将带有生物正交化学基团(如炔基、叠氮等)的前体通过代谢途径引入生物分子中,如核酸、蛋白、糖和脂;再经过正交反应连接上荧光基团进行成像。这些新的标记方法和先进的荧光显微镜技术结合起来,在细胞生物分子的动态和功能研究中发挥了重要作用。但是荧光成像仍然存在一系列的问题:后续的化学反应检测体系生物相容性不佳;荧光基团可能会影响生物分子的结构和功能;活体动态标记很受限制。目前在解决正交反应的生物相容性问题方面,研究者们发展了活性炔基团,但活化炔的活化很复杂、合成成本高、吸附背景高、相对于催化反应速率慢,而且生物相溶性问题也未得到很好的解决。
拉曼(Raman)是一种非化学标记的成像和检测方法,可以对特定的具有Raman信号的基团进行检测和成像。在细胞的Raman成像中,存在一段Raman信号沉默的区域(1800-2800cm-1),所以,可以使用Raman信号在此沉默区域的基团(例如,炔基的Raman信号在2100cm-1左右)进行细胞甚至活体切片的Raman检测和成像。然而,Raman信号相对于荧光信号来说非常弱,需要采用表面增强拉曼(SERS)、CARS、SRS等技术来提高信号强度。SERS是Au、Ag等金属表面对于Raman信号的一种增强现象,一般可以实现106-1012的增强效果。这一增强使得细胞膜表面的少量的含Raman信号基团的生物分子的检测和成像成为可能。
已经有研究者通过修饰了巯基苯硼酸的金纳米颗粒,检测到细胞表面非天然糖的信号,但是这种增强方法无法对细胞进行二维以及三维的连续大范围成像。
发明内容
本发明的目的是针对现有技术中存在的难题,提供一种制备适于细胞表面生物正交拉曼成像的增强基底的方法,该基底是金纳米阵列基底,该方法包括以下步骤:
a)将硅片表面进行化学处理从而引入巯基;
b)将步骤a)得到的硅片浸于金纳米颗粒AuNPs溶胶中;
c)将步骤b)得到的产物浸于十二烷基硫醇的乙醇溶液中处理;
d)将步骤c)得到的产物用乙醇洗涤后,在硅片表面滴水;
e)待水蒸发后得到自组装的单层AuNPs阵列基底。
优选地,上述步骤a)包括如下:将硅片浸入piranha溶液中处理,洗涤后浸入3-氨基丙基三乙氧基硅烷的乙醇溶液,洗涤后聚合,然后硅片浸于巯基丁二酸活性酯溶液中处理。
优选地,上述步骤a)包括如下:将硅片浸入piranha溶液中,90℃处理30min,洗涤后浸入3-氨基丙基三乙氧基硅烷的乙醇溶液(1μL/5μL)30min,洗涤后120℃聚合1h,然后硅片浸于巯基丁二酸活性酯溶液中处理6h。
优选地,上述AuNPs溶胶通过采用柠檬酸钠还原法制备。
优选地,上述柠檬酸钠还原法中所用的HAuCl4的终浓度为0.25mM,柠檬酸钠的终浓度为0.01%(w/w)。
优选地,上述步骤c)中,十二烷基硫醇的乙醇溶液的体积比为1∶1,且处理时间为24h。
本发明的另一目的是提供一种制备适于细胞表面生物正交拉曼成像的增强基底的方法,所述基底是银纳米岛基底,该方法包括以下步骤:
a)采用真空蒸镀的方法在玻璃片上形成银纳米岛基底;
b)用十二烷基硫醇的乙醇溶液中处理步骤a)得到的银纳米岛基底。
优选地,上述真空蒸镀的压强可为约2.9×10-7Pa-3.1×10-7Pa,优选可为3×10-7Pa,银纳米岛基底的厚度可约为7.5nm-8.2nm,优选约为8nm。
优选地,上述十二烷基硫醇的乙醇溶液的体积比为1∶1,且处理时间为24h。
本发明的又一目的是提供一种上述方法制备得到的金纳米阵列基底或银纳米岛基底用于细胞的大面积二维或三维生物正交拉曼成像的应用。
本发明在硅片上修饰巯基对金纳米颗粒进行固定,增加基底在细胞生物正交拉曼检测中的稳定性。在银纳米岛增强基底上修饰十二烷基硫醇,增加银基底的生物相容性,使其能够用于生物正交拉曼检测。本发明可制备大尺寸均匀、规则排列的金基底和银基底,用于细胞的大面积二维或三维生物正交拉曼成像。
本发明使用适于细胞的二维有序排列的纳米增强基底,可以实现细胞表面的生物正交拉曼成像。
本发明提供的制备适于细胞表面生物正交拉曼成像的增强基底的方法,通过制备均匀的纳米阵列、固定纳米结构和修饰生物相容分子,使代谢上正交拉曼基团的细胞能够在基底上附着生长,继而获得特定生物分子的连续且大范围的细胞正交拉曼成像。
本发明适用于细胞表面特定生物分子的正交拉曼成像的增强基底的方法,其样品制备可做到与荧光成像一样便捷,能获得连续的多维度成像,且使得拉曼检测效率更高。
附图说明
图1是本发明自组装AuNPs阵列基底制备过程的流程图;
图2(a)是本发明制备的AuNPs阵列基底(a)在电镜下的微观结构;
图2(b)是本发明制备的银纳米岛基底(b)在电镜下的微观结构;
图3是图4和5中的探针的名称对应的化学结构式;
图4是含一定浓度的非天然探针的DMEM培养基培养的HeLa细胞在本发明制备的AuNPs阵列基底上用nanophoton仪器进行拉曼成像的结果;
图5是含一定浓度的非天然探针的DMEM培养基培养的HeLa细胞在本发明制备的银纳米岛基底上用nanophoton仪器进行拉曼成像的结果。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,下面结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
实施例1 金纳米阵列基底和银纳米岛基底的制备
本发明分别制备了两种增强基底:组装在硅片上的金纳米阵列基底和真空蒸镀在玻璃片上的银纳米岛基底。
自组装AuNPs阵列基底制备过程如图1所示,具体步骤:采用柠檬酸钠还原法制备金纳米颗粒(AuNPs)溶胶,其中HAuCl4的终浓度为0.25mM,柠檬酸钠的终浓度为0.01%(w/w)。硅片浸入piranha溶液中,90℃处理30min,洗涤后浸入3-氨基丙基三乙氧基硅烷的乙醇溶液(1μL/5μL)30min,洗涤后120℃聚合1h,然后硅片浸于巯基丁二酸活性酯溶液中处理6h,洗涤后浸于AuNPs溶胶中,24h后洗涤晾干,浸于十二烷基硫醇的乙醇溶液(1∶1)中处理24h,乙醇洗涤后,在硅片表面滴一滴水,自然晾干。得到自组装的单层AuNPs阵列基底。
银纳米岛基底的制备:用真空蒸镀的方法,压强~3×10-7Pa,在玻璃片上形成8nm的厚度。用十二烷基硫醇修饰基底表面。
最终得到的AuNPs阵列基底(a)和银纳米岛基底(b)在电镜下的微观结构如下图2(a)和图2(b)所示(标尺:大图为5μm,插图为500nm):可以看到,AuNPs基底上纳米颗粒排列紧密均匀,形成平整的单粒子层;银纳米岛基底上,纳米岛也是均匀分布,间隔为几个纳米。
实施例2 含拉曼正交基团(炔基、叠氮和C-D)的细胞在AuNPs阵列基底上的成像(细胞系:HeLa)
研究者们已开发出能分别代谢标记蛋白、糖和脂的非天然探针,如Aha(含叠氮)、9AzSia(含叠氮Az)和[D3]Sia、propargylcholine(含炔基)可分别代谢进入蛋白、糖和脂分子中(非天然探针的结构式见图3)。而它们的Raman信号正好处于细胞沉默区域,都在2100cm-1左右。将非天然探针处理过的细胞直接转移到AuNPs增强基底上,就可以进行相应生物分子的正交拉曼成像。本发明将硅片表面进行化学处理,引入巯基,利用Au-S的较强作用力来固定组装在表面的AuNPs,可防止细胞在基底表面生长迁移过程中吞入或移动AuNPs,使阵列结构遭到破坏;同时,金纳米粒子的生物相容性较好,不会影响细胞生长,另外本发明在表面修饰的十二烷基硫醇可能能够插入磷脂双分子层,增加基底的生物相容性,有利于细胞在基底表面的充分附着和铺展,使得正交基团进入基底的短程增强范围。
本发明用HeLa细胞来进行拉曼成像。用含不同浓度的非天然探针的DMEM培养基培养HeLa一定时间后,将细胞消化下来转移到AuNPs基底上,用不含非天然探针的DMEM培养基培养6~12h后,用nanophoton仪器进行拉曼成像,其结果如下图4所示(标尺为20μm),图4和图5中的探针的名称对应的化学结构式由图3所示。
通过图4的拉曼成像结果可知,HeLa细胞在基底上的形态良好,同时叠氮、炔基和C-D的信号在HeLa的表面能很好地检测到,能够得到细胞连续的二维成像。这说明基底的生物相容性良好,且在细胞生长其上后基底结构没有产生明显缺陷,至少每两个增强热点(hotspot)的距离在仪器的空间分辨率范围内。这种基底适于细胞正交拉曼成像。
实施例3 含拉曼正交基团(炔基、叠氮和C-D)的细胞在银纳米岛基底上的成像(细胞系:HeLa)
很多研究结果表明Ag纳米材料的生物相容性较差。本发明在银纳米岛基底上修饰十二烷基硫醇,使得HeLa生长其上仍能保持良好的形态,且真空蒸镀方法可使银纳米岛在原子水平上与玻璃片结合,获得稳定性良好的基底,细胞生长迁移过程中不会破坏基底的纳米结构。
本实施例中银纳米岛基底的细胞成像方法与上述实施例2中的AuNPs基底相同,其结果如下图5所示(标尺为20μm),图4和图5中的探针的名称对应的化学结构式由图3所示。
通过图5的拉曼成像结果可知,HeLa细胞在银纳米岛基底上的形态良好,同时叠氮、炔基和C-D的信号在HeLa的表面能很好地检测到,得到了细胞连续大范围的二维成像。
虽然本发明已以较佳实施例披露如上,然其并非用以限定本发明,任何所属技术领域的技术人员,在不脱离本发明的精神和范围内,当可作些许的更动与改进,因此本发明的保护范围当视权利要求所界定者为准。

Claims (10)

1.一种制备适于细胞表面生物正交拉曼成像的增强基底的方法,所述基底是金纳米阵列基底,其特征在于,所述方法包括以下步骤:
a)将硅片表面进行化学处理从而引入巯基;
b)将步骤a)得到的硅片浸于金纳米颗粒AuNPs溶胶中;
c)将步骤b)得到的产物浸于十二烷基硫醇的乙醇溶液中处理;
d)将步骤c)得到的产物用乙醇洗涤后,在硅片表面滴水;
e)待水蒸发后得到自组装的单层AuNPs阵列基底。
2.如权利要求1所述的方法,其特征在于,步骤a)包括如下:将硅片浸入piranha溶液中处理,洗涤后浸入3-氨基丙基三乙氧基硅烷的乙醇溶液,洗涤后聚合,然后硅片浸于巯基丁二酸活性酯溶液中处理。
3.如权利要求2所述的方法,其特征在于,步骤a)包括如下:将硅片浸入piranha溶液中,90℃处理30min,洗涤后浸入3-氨基丙基三乙氧基硅烷的乙醇溶液(1μL/5μL)30min,洗涤后120℃聚合1h,然后硅片浸于巯基丁二酸活性酯溶液中处理6h。
4.如权利要求1所述的方法,其特征在于,AuNPs溶胶通过采用柠檬酸钠还原法制备。
5.如权利要求1所述的方法,其特征在于,柠檬酸钠还原法中所用的HAuCl4的终浓度为0.25mM,柠檬酸钠的终浓度为0.01%(w/w)。
6.如权利要求1所述的方法,其特征在于,步骤c)中,十二烷基硫醇的乙醇溶液的体积比为1∶1,且处理时间为24h。
7.一种制备适于细胞表面生物正交拉曼成像的增强基底的方法,所述基底是银纳米岛基底,其特征在于,所述方法包括以下步骤:
a)采用真空蒸镀的方法在玻璃片上形成银纳米岛基底;
b)用十二烷基硫醇的乙醇溶液中处理步骤a)得到的银纳米岛基底。
8.如权利要求7所述的方法,其特征在于,所述真空蒸镀的压强为约3×10-7Pa,银纳米岛基底的厚度约为8nm。
9.如权利要求7所述的方法,其特征在于,所述十二烷基硫醇的乙醇溶液的体积比为1∶1,且处理时间为24h。
10.权利要求1-9中任一项所述方法制备得到的金纳米阵列基底或银纳米岛基底用于细胞的大面积二维或三维生物正交拉曼成像的应用。
CN201511009814.2A 2015-12-31 2015-12-31 制备适于细胞表面生物正交拉曼成像的增强基底的方法 Pending CN106929838A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201511009814.2A CN106929838A (zh) 2015-12-31 2015-12-31 制备适于细胞表面生物正交拉曼成像的增强基底的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201511009814.2A CN106929838A (zh) 2015-12-31 2015-12-31 制备适于细胞表面生物正交拉曼成像的增强基底的方法

Publications (1)

Publication Number Publication Date
CN106929838A true CN106929838A (zh) 2017-07-07

Family

ID=59458503

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201511009814.2A Pending CN106929838A (zh) 2015-12-31 2015-12-31 制备适于细胞表面生物正交拉曼成像的增强基底的方法

Country Status (1)

Country Link
CN (1) CN106929838A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115141752A (zh) * 2022-06-28 2022-10-04 上海划创科技发展有限公司 细胞培养与原位检测容器及制备方法、细胞原位检测方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5693152A (en) * 1995-08-14 1997-12-02 University Of Wyoming Molecular specific detector for separation science using surface enhanced raman spectroscopy
US6406777B1 (en) * 2000-06-14 2002-06-18 The United States Of America As Represented By The Secretary Of The Navy Metal and glass structure for use in surface enhanced Raman spectroscopy and method for fabricating same
KR20100106847A (ko) * 2009-03-24 2010-10-04 서울대학교산학협력단 단일 금 나노입자를 이용한 중금속 이온의 고감도 검출 센서
US20100265500A1 (en) * 2009-04-16 2010-10-21 Qiangfei Xia Structure for surface enhanced raman spectroscopy
US20130213265A1 (en) * 2012-02-21 2013-08-22 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Self-Assembly of Metallic Nanoparticles Into Macroscopic, High-Density, Monolayer Films
CN103674925A (zh) * 2012-09-14 2014-03-26 北京大学 4-巯基苯硼酸修饰的金纳米粒子及用其检测细胞表面糖标记的方法
CN104152897A (zh) * 2014-08-15 2014-11-19 国家纳米科学中心 一种sers基底单层膜的制备方法及该sers基底单层膜
CN104849259A (zh) * 2015-06-05 2015-08-19 中物院成都科学技术发展中心 一种柔性表面增强拉曼基底的制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5693152A (en) * 1995-08-14 1997-12-02 University Of Wyoming Molecular specific detector for separation science using surface enhanced raman spectroscopy
US6406777B1 (en) * 2000-06-14 2002-06-18 The United States Of America As Represented By The Secretary Of The Navy Metal and glass structure for use in surface enhanced Raman spectroscopy and method for fabricating same
KR20100106847A (ko) * 2009-03-24 2010-10-04 서울대학교산학협력단 단일 금 나노입자를 이용한 중금속 이온의 고감도 검출 센서
US20100265500A1 (en) * 2009-04-16 2010-10-21 Qiangfei Xia Structure for surface enhanced raman spectroscopy
US20130213265A1 (en) * 2012-02-21 2013-08-22 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Self-Assembly of Metallic Nanoparticles Into Macroscopic, High-Density, Monolayer Films
CN103674925A (zh) * 2012-09-14 2014-03-26 北京大学 4-巯基苯硼酸修饰的金纳米粒子及用其检测细胞表面糖标记的方法
CN104152897A (zh) * 2014-08-15 2014-11-19 国家纳米科学中心 一种sers基底单层膜的制备方法及该sers基底单层膜
CN104849259A (zh) * 2015-06-05 2015-08-19 中物院成都科学技术发展中心 一种柔性表面增强拉曼基底的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HERVE BERCEGOL等: "Enhanced Raman Spectroscopy at a Nonmetallic Surface.1. Spacer Layers of Alkyl Mercaptans on Silver Island films", 《LANGMUIR》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115141752A (zh) * 2022-06-28 2022-10-04 上海划创科技发展有限公司 细胞培养与原位检测容器及制备方法、细胞原位检测方法

Similar Documents

Publication Publication Date Title
Du et al. Electrospun nanofiber-based glucose sensors for glucose detection
Zhai et al. Highly efficient capture and electrochemical release of circulating tumor cells by using aptamers modified gold nanowire arrays
Yang et al. A method for determination of glucose by an amperometric bienzyme biosensor based on silver nanocubes modified Au electrode
Leonardo et al. Past, present and future of diatoms in biosensing
Bollella Porous gold: A new frontier for enzyme-based electrodes
CN103421691B (zh) 一种基于微流体构图技术的单细胞阵列培养玻璃芯片及其制备方法
Volodkin et al. Polyelectrolyte multilayers: towards single cell studies
Burnham et al. Biological functionalization and surface micropatterning of polyacrylamide hydrogels
Zhao et al. Systematic analysis of different cell spheroids with a microfluidic device using scanning electrochemical microscopy and gene expression profiling
Pal et al. Microfluidic nanodevices for drug sensing and screening applications
Zhao et al. Substrate-induced growth of micro/nanostructured Zn (OH) F arrays for highly sensitive microfluidic fluorescence assays
US11892406B2 (en) Method and device for assaying the interaction and dynamics of permeation of a molecule and a lipid bilayer
CN106929838A (zh) 制备适于细胞表面生物正交拉曼成像的增强基底的方法
CN114235924A (zh) 一种卷心菜结构的Pt/Au纳米合金修饰针灸针的无酶血糖传感器微电极及其制备
TWI377345B (en) A cell-activity estimation chip used for detecting multi-physiological parameters
Utagawa et al. In vitro electrochemical assays for vascular cells and organs
Liu et al. Enhanced Stability of Lipid Structures by Dip-Pen Nanolithography on Block-Type MPC Copolymer
US20190300831A1 (en) Biomaterial having decreased surface area, degradable scaffolds of same, and methods of making
Singh et al. Highly ordered anodic porous alumina membrane and its surface modification approaches for biomedical application
Niyitanga et al. Carbon dots as efficient electrode material for hydrogen peroxide sensing applications: A mini review
Liu et al. Electrochemical monitoring the effect of drug intervention on PC12 cell damage model cultured on paper-PLA 3D printed device
CN101941672A (zh) 基于光催化技术的半导体纳米及金属纳米微电极阵列的制备方法
Zhang et al. Recent progress on nanomaterial-based electrochemical dissolved oxygen sensors
TW201540840A (zh) 膜電化學訊號之檢測系統
CN113237929A (zh) 一种纳米颗粒修饰的柔性传感电极的构建方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20170707