CN106925330B - 一种石墨相碳化氮纳米片/ZiF-67片层结构复合材料 - Google Patents
一种石墨相碳化氮纳米片/ZiF-67片层结构复合材料 Download PDFInfo
- Publication number
- CN106925330B CN106925330B CN201710148065.4A CN201710148065A CN106925330B CN 106925330 B CN106925330 B CN 106925330B CN 201710148065 A CN201710148065 A CN 201710148065A CN 106925330 B CN106925330 B CN 106925330B
- Authority
- CN
- China
- Prior art keywords
- nanometer sheet
- zif
- composite material
- graphite
- lamellar structure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 title claims abstract description 44
- 239000002131 composite material Substances 0.000 title claims abstract description 32
- 229910052757 nitrogen Inorganic materials 0.000 title claims abstract description 22
- 239000000463 material Substances 0.000 claims abstract description 19
- 238000002360 preparation method Methods 0.000 claims abstract description 13
- 238000006243 chemical reaction Methods 0.000 claims abstract description 10
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 27
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 24
- 235000019441 ethanol Nutrition 0.000 claims description 9
- 239000007787 solid Substances 0.000 claims description 9
- 239000012621 metal-organic framework Substances 0.000 claims description 8
- 239000000843 powder Substances 0.000 claims description 8
- 239000007788 liquid Substances 0.000 claims description 7
- 239000006185 dispersion Substances 0.000 claims description 6
- 239000012046 mixed solvent Substances 0.000 claims description 6
- 238000002604 ultrasonography Methods 0.000 claims description 5
- 239000003643 water by type Substances 0.000 claims description 4
- 150000008614 2-methylimidazoles Chemical class 0.000 claims description 3
- 150000001875 compounds Chemical class 0.000 claims description 3
- JDSHMPZPIAZGSV-UHFFFAOYSA-N melamine powder Natural products NC1=NC(N)=NC(N)=N1 JDSHMPZPIAZGSV-UHFFFAOYSA-N 0.000 claims description 3
- 239000000047 product Substances 0.000 claims description 3
- 239000006228 supernatant Substances 0.000 claims description 3
- 238000010792 warming Methods 0.000 claims description 3
- 229910017052 cobalt Inorganic materials 0.000 claims description 2
- 239000010941 cobalt Substances 0.000 claims description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 2
- 240000007594 Oryza sativa Species 0.000 claims 1
- 235000007164 Oryza sativa Nutrition 0.000 claims 1
- 235000009566 rice Nutrition 0.000 claims 1
- 230000001699 photocatalysis Effects 0.000 abstract description 13
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 abstract description 8
- 238000007146 photocatalysis Methods 0.000 abstract description 8
- 229910002090 carbon oxide Inorganic materials 0.000 abstract description 4
- 238000000034 method Methods 0.000 abstract description 4
- 239000002086 nanomaterial Substances 0.000 abstract description 4
- 230000009467 reduction Effects 0.000 abstract description 4
- 238000006555 catalytic reaction Methods 0.000 abstract description 3
- 230000008569 process Effects 0.000 abstract description 3
- 238000003763 carbonization Methods 0.000 abstract description 2
- 239000002994 raw material Substances 0.000 abstract description 2
- 239000002184 metal Substances 0.000 abstract 1
- 239000013110 organic ligand Substances 0.000 abstract 1
- 238000007873 sieving Methods 0.000 abstract 1
- 239000000758 substrate Substances 0.000 abstract 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 3
- 239000003054 catalyst Substances 0.000 description 3
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 239000013207 UiO-66 Substances 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000002513 implantation Methods 0.000 description 2
- 229910021645 metal ion Inorganic materials 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 238000001354 calcination Methods 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 238000009396 hybridization Methods 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 230000008863 intramolecular interaction Effects 0.000 description 1
- 238000003760 magnetic stirring Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000011941 photocatalyst Substances 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000002096 quantum dot Substances 0.000 description 1
- 238000001338 self-assembly Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J27/00—Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
- B01J27/24—Nitrogen compounds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/30—Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
- B01J35/39—Photocatalytic properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Catalysts (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
本发明公开了一种石墨相碳化氮纳米片/ZiF‑67片层结构复合材料及其制备方法和应用,其是以剥离的石墨相碳化氮纳米片和金属及有机配体为原料,在常温下直接反应制得所述具有片层结构的石墨相碳化氮/ZiF‑67复合材料。本发明工艺简单、成本低廉,且与单纯二维碳化氮纳米材料相比,本发明所得复合材料中ZiF‑67片均匀附着在碳化氮纳米片上,可有效提高材料的比表面积和对催化底物的筛分能力,使其具有更加高效的光催化性能,而可用于光催化还原二氧化碳。
Description
技术领域
本发明属于催化材料制备领域,具体涉及到一种石墨相碳化氮纳米片/ZiF-67片层结构复合材料及其制备方法和应用。
背景技术
利用太阳能解决全球性的能源和环境问题是当今科研领域的一个重要研究方向,半导体光催化纳米材料可在室温下充分利用太阳能,兼具了成本低廉、无污染等众多优点,对于从根本上解决能源短缺问题具有重要的意义。多年来,科研人员一直致力于开发具有稳定性和高效率的可见光催化剂。近年来,石墨相碳化氮半导体材料作为一种不含金属的可见光光催化剂,受到了科学家和研究者们的广泛关注,但其依然存在着不可忽视的缺陷,如比表面积小、活性位点少,导致其量子点效率不高。研究人员希望通过加入其他的纳米材料与碳化氮纳米材料进行杂化复合来提高其光催化活性。
金属有机骨架(Metal-Organic Frameworks,MOFs)材料,是由金属离子与有机配体通过共价键或其它分子内相互作用自组装形成的多孔材料。这类材料具有高比表面积、尺寸可控、孔道规则均一、可进行后修饰、优异的热稳定和化学稳定性等优点,被广泛应用在催化领域上。目前,Yupeng Yuan等(Advanced Materials Interfaces, 2015, 2(10))以UiO-66(Zr)作为内核,g-C3N4为外壳,经过简单的煅烧后将所得产物应用于催化水解氢气中,并取得了非常好的效果,这足以说明引入MOFs与石墨相碳化氮制备复合材料在光催化上具有很好的应用前景
通过g-C3N4纳米片表面的缺陷氨基与金属离子的配位作用,制备MOF纳米片包埋g-C3N4纳米片的片层结构复合材料,不仅增大了材料的比表面积,增加了活性位点,而且可极大地增强催化剂表面的传质过程,促进光生电子-空穴的分离,提高太阳能的利用效率,在光催化领域有很广泛的应用前景。而目前尚未有与此类似的相关报道。
发明内容
本发明的目的在于提供一种石墨相碳化氮纳米片/ZiF-67片层结构复合材料及其制备方法和应用,该复合材料不仅具有高比表面积、位点多的特点,还能够高效快速分离光生电子-空穴,在光催化领域具有广发的应用前景。
为实现上述目的,本发明采用如下技术方案:
一种石墨相碳化氮纳米片/ZiF-67片层结构复合材料,其是由g-C3N4纳米片和含钴的金属有机骨架化合物ZiF-67复合而成的具有片层结构的纳米材料,其中,g-C3N4纳米片的质量分数为20%。
所述石墨相碳化氮纳米片/ZiF-67片层结构复合材料的制备方法包括如下步骤:
1)g-C3N4纳米片的制备
a. 将三聚氰胺粉末平铺在50 mL的坩埚底部,盖紧盖子,转移到马弗炉中,以2.3℃/min的速度升温至550℃并保持4 h,再以2.3℃/min的速度降至室温,得淡黄色g-C3N4粉末;
b. 取0.3 g上述制备好的g-C3N4粉末,加入200 mL去离子水,150 W超声剥离6-24h后将溶液在3000 rpm的转速下离心5 min,去除下层未剥离固体,所得上清液经冷冻干燥得到g-C3N4纳米片固体;
c. 将所得g-C3N4纳米片固体用体积比1:1的甲醇-乙醇混合溶剂溶解,经超声分散得浓度为1mg/mL的g-C3N4纳米片分散液,备用;
2)石墨相碳化氮纳米片/ZiF-67片层结构复合材料的制备
a. 将150 mg Co(NO3)2·6H2O溶解于20 mL g-C3N4纳米片分散液中,得溶液A;取一个100 mL锥形瓶,将溶液A注入玻璃瓶底部;
b. 将160 mg 2-甲基咪唑溶解于20 mL体积比1:1的甲醇-乙醇混合溶剂中,得溶液B;
c. 将溶液B迅速注入溶液A中并剧烈搅拌30 s,然后静置反应24 h;
d. 反应完成后,所得紫色粉末用甲醇和乙醇反复洗3-4次,8000 rpm的转速下离心5 min后,于100℃下真空干燥过夜,即得所述石墨相碳化氮纳米片/ZiF-67片层结构复合材料。
所述石墨相碳化氮纳米片/ZiF-67片层结构复合材料具有良好光催化性能,可用于光催化还原二氧化碳。
本发明的显著优点在于:
1)本发明可在常温条件下静置制备具有片层结构的复合材料,其操作简单,制备的材料均匀,为该材料的商品化生产提供了可能,具有很好的推广意义。
2)本发明充分利用MOFs材料的结构、吸附特性及有缺陷的g-C3N4纳米片表面含大量氨基功能团的特点,直接使用三相扩散法制备出具有片层结构的石墨相碳化氮纳米片/ZiF-67复合材料,所得材料比表面积大、位点多,具有优异的光催化性能,不仅极大的拓展了复合催化材料的种类。
附图说明
图1为实施例1所制备g-C3N4纳米片的SEM图。
图2为实施例2所制备g-C3N4纳米片/ZiF-67复合材料的SEM图;
图3为不同材料光催化还原二氧化碳的实验结果图。
具体实施方式
为了使本发明所述的内容更加便于理解,下面结合具体实施方式对本发明所述的技术方案做进一步的说明,但是本发明不仅限于此。
实施例1
1)取2g三聚氰胺粉末平铺在50 mL的坩埚底部,盖紧盖子,转移到马弗炉中,以2.3℃/min的速度升温至550℃并保持4 h,再以2.3℃/min的速度降至室温,得淡黄色g-C3N4粉末;
2)取0.3 g上述制备好的g-C3N4粉末,加入200 mL去离子水,150 W超声剥离6 h后将溶液在3000 rpm的转速下离心5 min,去除下层未剥离固体,所得上清液经冷冻干燥得到g-C3N4纳米片固体。
实施例2
1)将实施例1所得g-C3N4纳米片固体用甲醇-乙醇混合溶剂(v:v=1:1)溶解,经超声分散得浓度为1mg/mL的g-C3N4纳米片分散液;
2)将150 mg Co(NO3)2·6H2O溶解于20 mL g-C3N4纳米片分散液中,得溶液A;取一个100 mL锥形瓶,将溶液A注入玻璃瓶底部;
3)将160 mg 2-甲基咪唑溶解于20 mL体积比1:1的甲醇-乙醇混合溶剂中,得溶液B;
4)将溶液B迅速注入溶液A中并剧烈搅拌30 s,然后静置反应24 h;
5)反应完成后,所得紫色粉末用甲醇和乙醇反复洗3-4次,8000 rpm的转速下离心5 min后,于100℃下真空干燥过夜,即得g-C3N4纳米片/ZiF-67复合材料。
图1、2分别为所得g-C3N4纳米片与g-C3N4纳米片/ZiF-67复合材料的SEM图。从图中可以看出,片层状的ZiF-67贴覆着g-C3N4纳米片生长,两者形成了均匀掺杂的复合材料。
实施例3 光催化还原二氧化碳实验
在室温、1 atm CO2的条件下,在80 mL的反应釜中加入150 mg g-C3N4纳米片/ZiF-67复合材料作为催化剂,再加入10 mL去离子水作为反应原料,在磁力搅拌下反应1 h。反应过程中使用500 w Xe灯光源作为光源,并使用滤光片滤除420 nm以下的光。最终气态产物使用Agilent 7820A气相色谱进行检测。同时与g-C3N4纳米片、市售ZiF-67及TiO2/ZiF-67复合材料、g-C3N4/UiO-66(Zr)复合材料、g-C3N4/CuBTC复合材料进行对比。结果见图3。
由图3可见,与g-C3N4纳米片、市售ZiF-67及其他复合材料相比,本发明制备的g-C3N4纳米片/ZiF-67复合材料具有最高的二氧化碳催化转化效率,说明其具有优异的光催化还原二氧化碳的性能。
以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。
Claims (2)
1.一种石墨相碳化氮纳米片/ZiF-67片层结构复合材料,其特征在于:所述复合材料是由g-C3N4纳米片和含钴的金属有机骨架化合物ZiF-67复合而成的具有片层结构的纳米材料,其中,g-C3N4纳米片的质量分数为20%;
所述石墨相碳化氮纳米片/ZiF-67片层结构复合材料的制备方法包括如下步骤:
1)g-C3N4纳米片的制备
a.将三聚氰胺粉末平铺在坩埚底部,盖紧盖子,转移到马弗炉中,以2.3℃/min的速度升温至550℃并保持4 h,再以2.3℃/min的速度降至室温,得淡黄色g-C3N4粉末;
b. 取0.3 g上述制备好的g-C3N4粉末,加入200 mL去离子水,经超声剥离后将溶液在3000 rpm的转速下离心5 min,去除下层未剥离固体,所得上清液经冷冻干燥得到g-C3N4纳米片固体;
c. 将所得g-C3N4纳米片固体用体积比1:1的甲醇-乙醇混合溶剂溶解,经超声分散得浓度为1mg/mL的g-C3N4纳米片分散液,备用;
2)石墨相碳化氮纳米片/ZiF-67片层结构复合材料的制备
a. 将150 mg Co(NO3)2·6H2O溶解于20 mL g-C3N4纳米片分散液中,得溶液A;
b. 将160 mg 2-甲基咪唑溶解于20 mL体积比1:1的甲醇-乙醇混合溶剂中,得溶液B;
c. 将溶液B迅速注入溶液A中并剧烈搅拌30 s,然后静置反应24 h;
d. 反应完成后,所得产物用甲醇和乙醇反复洗3-4次,8000 rpm的转速下离心5 min后,于100℃下真空干燥过夜,即得所述石墨相碳化氮纳米片/ZiF-67片层结构复合材料。
2. 根据权利要求1所述的复合材料,其特征在于:步骤1)中超声剥离的功率为150 W,时间为6-24 h。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710148065.4A CN106925330B (zh) | 2017-03-14 | 2017-03-14 | 一种石墨相碳化氮纳米片/ZiF-67片层结构复合材料 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710148065.4A CN106925330B (zh) | 2017-03-14 | 2017-03-14 | 一种石墨相碳化氮纳米片/ZiF-67片层结构复合材料 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106925330A CN106925330A (zh) | 2017-07-07 |
CN106925330B true CN106925330B (zh) | 2019-06-18 |
Family
ID=59431906
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710148065.4A Expired - Fee Related CN106925330B (zh) | 2017-03-14 | 2017-03-14 | 一种石墨相碳化氮纳米片/ZiF-67片层结构复合材料 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106925330B (zh) |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108686639B (zh) * | 2018-03-30 | 2021-04-27 | 南方科技大学 | 金属有机骨架衍生材料-三维网状碳基复合光催化剂及其制备方法、用途 |
CN108816286B (zh) * | 2018-04-11 | 2020-12-29 | 湖北大学 | 一种Cu-Ag/g-C3N4/ZIF三元复合模拟酶的制备方法 |
CN108772091A (zh) * | 2018-06-06 | 2018-11-09 | 上海电力学院 | 一种用于co2催化还原的异质结光催化剂及其制备 |
CN108745004B (zh) * | 2018-06-08 | 2020-07-03 | 太原理工大学 | 一种具有片层和笼状协同筛分作用的混合基质膜的制备方法及应用 |
CN109261217B (zh) * | 2018-09-25 | 2021-07-02 | 河南师范大学 | 具有核壳结构的Co-ZIF-67@α-TiO2复合光催化材料的制备方法 |
CN109261134B (zh) * | 2018-11-21 | 2021-05-28 | 哈尔滨工程大学 | 物理与化学协同抗污损型海水提铀吸附剂及其制备方法 |
CN109569726B (zh) * | 2018-11-30 | 2021-09-07 | 华纺股份有限公司 | 一种MOFs/CNT光催化剂及制备方法 |
CN110180570B (zh) * | 2019-04-28 | 2021-03-19 | 苏州大学 | 四氧化三钴十二面体/氮化碳纳米片复合物及其在废气处理中的应用 |
CN110280285B (zh) * | 2019-06-21 | 2022-03-08 | 华南理工大学 | 一种铟基金属有机框架/类石墨相碳化氮纳米片复合材料及其制备方法与应用 |
CN110591388A (zh) * | 2019-08-22 | 2019-12-20 | 安徽建筑大学 | 含钴、氮、硅的阻燃抑烟剂及其制备方法 |
CN110586041B (zh) * | 2019-09-19 | 2020-05-12 | 山东省分析测试中心 | 一种基于MOFs剥离石墨相碳化氮吸附剂的全氟烷基化合物萃取与分析方法 |
CN110697794B (zh) * | 2019-11-01 | 2022-04-01 | 宁波大学 | 一种二维中空纳米片结构的硫化钴/g-C3N4复合电极材料及其制备方法 |
CN111354906A (zh) * | 2020-03-18 | 2020-06-30 | 肇庆市华师大光电产业研究院 | 一种用于锂硫电池的改性隔膜及其制备方法 |
CN111944482A (zh) * | 2020-08-17 | 2020-11-17 | 大连理工大学 | 海胆状碳纳米管包覆Co粒子复合吸波材料的制备方法 |
CN112354549A (zh) * | 2020-10-23 | 2021-02-12 | 福建师范大学 | 一种金属复合物多孔纳米片制备方法 |
CN115591582B (zh) * | 2022-09-14 | 2023-06-06 | 南京大学 | 一种MOF-303/g-C3N4异质结材料及其制备方法与应用 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104722335A (zh) * | 2015-01-30 | 2015-06-24 | 湖南大学 | 石墨型氮化碳-金属有机框架复合光催化剂及其制备方法和应用 |
CN105903439A (zh) * | 2016-04-26 | 2016-08-31 | 福州大学 | 三维层状石墨相碳化氮/mof复合材料及其制备方法 |
-
2017
- 2017-03-14 CN CN201710148065.4A patent/CN106925330B/zh not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104722335A (zh) * | 2015-01-30 | 2015-06-24 | 湖南大学 | 石墨型氮化碳-金属有机框架复合光催化剂及其制备方法和应用 |
CN105903439A (zh) * | 2016-04-26 | 2016-08-31 | 福州大学 | 三维层状石墨相碳化氮/mof复合材料及其制备方法 |
Non-Patent Citations (3)
Title |
---|
"Characterization and properties of Zn/Co zeolitic imidazolate frameworks vs. ZIF-8 and ZIF-67";Kui Zhou et al.;《Journal of Materials Chemistry A》;20161029(第5期);表1、图6、第953页右栏第4段、第954页右栏第1段、第956页右栏第1段,图6b |
"Graphitic Carbon Nitride Nanosheet@Metal Organic Framework Core-shell Nanoparticles for Photo-chemo Combination Therapy";Rui Chen et al.;《Nanoscale》;20150805;第7卷(第41期);第17299页右栏第1段,图1,第17303页右栏第2-3段,第17300页左栏第1段 |
"Photocatalytic CO2 reduction in metal-organic frameworks: A mini review";Chong-Chen Wang et al.;《Journal of Molecular Structure》;20141122(第1083期);第128页左栏第2段 |
Also Published As
Publication number | Publication date |
---|---|
CN106925330A (zh) | 2017-07-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106925330B (zh) | 一种石墨相碳化氮纳米片/ZiF-67片层结构复合材料 | |
He et al. | 2D/2D/0D TiO2/C3N4/Ti3C2 MXene composite S-scheme photocatalyst with enhanced CO2 reduction activity | |
Li et al. | Synergetic surface modulation of ZnO/Pt@ ZIF-8 hybrid nanorods for enhanced photocatalytic CO2 valorization | |
Sun et al. | Selective wet-chemical etching to create TiO2@ MOF frame heterostructure for efficient photocatalytic hydrogen evolution | |
CN106622324B (zh) | 一种石墨相碳化氮纳米片/四氧化三钴纳米片鱼鳞状结构复合纳米材料及制备方法和应用 | |
Tian et al. | Anchoring metal-organic framework nanoparticles on graphitic carbon nitrides for solar-driven photocatalytic hydrogen evolution | |
Li et al. | Boosting photocatalytic hydrogen production coupled with benzyl alcohol oxidation over CdS/metal–organic framework composites | |
Gao et al. | Facile synthesis of heterostructured YVO4/g-C3N4/Ag photocatalysts with enhanced visible-light photocatalytic performance | |
Yu et al. | TaOC chemical bond enhancing charge separation between Ta4+ doped Ta2O5 quantum dots and cotton-like g-C3N4 | |
Butburee et al. | Improved CO2 photocatalytic reduction using a novel 3-component heterojunction | |
Liu et al. | Assembling UiO-66 into layered HTiNbO5 nanosheets for efficient photocatalytic CO2 reduction | |
Wang et al. | Synthesis of novel Mn-doped Fe2O3 nanocube supported g-C3N4 photocatalyst for overall visible-light driven water splitting | |
Zhao et al. | Boron doped graphitic carbon nitride dots dispersed on graphitic carbon nitride/graphene hybrid nanosheets as high performance photocatalysts for hydrogen evolution reaction | |
Wan et al. | Haloid acid induced carbon nitride semiconductors for enhanced photocatalytic H2 evolution and reduction of CO2 under visible light | |
CN103991903B (zh) | 一种混相二氧化钛纳米片光催化剂的制备方法 | |
CN109908959B (zh) | 一种核壳型ZnO/贵金属@ZIF-8光催化材料及其制备方法和应用 | |
Liu et al. | 3D flower-like perylenetetracarboxylic-Zn (II) superstructures/Bi2WO6 step-scheme heterojunctions with enhanced visible light photocatalytic performance | |
CN113813948B (zh) | Co@In2O3/C复合光催化剂及其制备方法和应用 | |
Yao et al. | Improved photocatalytic activity of WO3/C3N4: By constructing an anchoring morphology with a Z-scheme band structure | |
Wang et al. | In situ decomposition-thermal polymerization method for the synthesis of Au nanoparticle–decorated gC 3 N 4 nanosheets with enhanced sunlight-driven photocatalytic activity | |
Mei et al. | Ultrathin indium vanadate/cadmium selenide-amine step-scheme heterojunction with interfacial chemical bonding for promotion of visible-light-driven carbon dioxide reduction | |
Ding et al. | Enhanced photocatalytic activity of mesoporous carbon/C3N4 composite photocatalysts | |
Li et al. | The heterojunction between 3D ordered macroporous TiO2 and MoS2 nanosheets for enhancing visible-light driven CO2 reduction | |
Hu et al. | Ultrathin graphitic carbon nitride modified PbBiO2Cl microspheres with accelerating interfacial charge transfer for the photodegradation of organic contaminants | |
Mao et al. | WO3@ Fe2O3 core-shell heterojunction photoanodes for efficient photoelectrochemical water splitting |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20190618 Termination date: 20210314 |
|
CF01 | Termination of patent right due to non-payment of annual fee |