CN106916175B - 一种金属有机骨架化学传感器和制备方法及其应用 - Google Patents

一种金属有机骨架化学传感器和制备方法及其应用 Download PDF

Info

Publication number
CN106916175B
CN106916175B CN201710192079.6A CN201710192079A CN106916175B CN 106916175 B CN106916175 B CN 106916175B CN 201710192079 A CN201710192079 A CN 201710192079A CN 106916175 B CN106916175 B CN 106916175B
Authority
CN
China
Prior art keywords
fji
chemical sensor
detection
dmf
tdpat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710192079.6A
Other languages
English (en)
Other versions
CN106916175A (zh
Inventor
王旭生
曹荣
黄远标
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujian Institute of Research on the Structure of Matter of CAS
Original Assignee
Fujian Institute of Research on the Structure of Matter of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujian Institute of Research on the Structure of Matter of CAS filed Critical Fujian Institute of Research on the Structure of Matter of CAS
Priority to CN201710192079.6A priority Critical patent/CN106916175B/zh
Publication of CN106916175A publication Critical patent/CN106916175A/zh
Application granted granted Critical
Publication of CN106916175B publication Critical patent/CN106916175B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F3/00Compounds containing elements of Groups 2 or 12 of the Periodic System
    • C07F3/003Compounds containing elements of Groups 2 or 12 of the Periodic System without C-Metal linkages
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N21/643Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" non-biological material
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/13Crystalline forms, e.g. polymorphs
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/188Metal complexes of other metals not provided for in one of the previous groups
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N2021/6432Quenching

Abstract

本发明属于环境保护和晶态材料领域。具体为通过溶剂热法合成一种金属有机骨架化学传感器和制备方法及应用。该化学传感器命名为FJI‑C8,化学简式为:{[(CH3)2NH2]10[Zn9(TDPAT)43‑O)2]·(H2O)27·(DMF)17}n,其中TDPAT代表2,4,6‑三(3,5‑二羧酸苯胺)‑1,3,5‑三嗪的羧酸盐阴离子。该材料的结构属于立方晶系,空间群为F4132,晶胞参数为:α=90.00°,该材料是三维的阴离子骨架材料,抗衡阳离子为二甲胺阳离子,其中包含 的方形一维通道和的三角形通道,孔隙率为61.1%。FJI‑C8可以作为化学传感器对微量硝基爆炸物和金属离子选择性检测。特别地,FJI‑C8对2,4‑二硝基苯酚和Fe3+特别敏感。该材料具有使用量低、工艺简单、操作方便、成本低廉、选择性高、检出限低等特点,有利于其以后的应用。

Description

一种金属有机骨架化学传感器和制备方法及其应用
技术领域
本发明属于环境保护和晶态材料领域。具体为通过溶剂热法合成一种多孔的阴离子金属有机骨架化学传感器和制备方法及应用。
背景技术
硝基爆炸物,如硝基苯(NB),对硝基苯酚(PNP),硝基甲苯(PNT),1,2-二硝基苯(1,2-DNB),1,4-二硝基苯(1,4-DNB),2,4-二硝基甲苯(2,4-DNT),2,6-二硝基甲苯(2,6-DNT),2,4-二硝基苯酚(2,4-DNP),2,4,6-三硝基甲苯(TNT)和2,4,6-三硝基苯酚(TNP)等对国家安全有很大的威胁作用,同时,硝基爆炸物也具有高毒性。然而其较低的蒸汽压和反应活性使得其很难被检测。另外,Fe3+的浓度在生物系统和地球中起着至关重要的作用,其合适的含量不仅可以促进肌肉的形成,同时可以提升脑功能。过高和过低都会影响生物系统的运行。因此,发展一种材料,可以同时检测硝基爆炸物和Fe3+的浓度至关重要。目前常用的检测手段有:表面增强拉曼光谱、质谱、电化学法。但是,这些检测手段具有仪器贵重、仪器笨重、操作步骤复杂、耗时等缺点。而通过化学传感器检测可以作为一种替代手段,具有低成本、高灵敏度和操作简单等特点。
发明内容
本文通过合成一种阴离子金属有机骨架材料作为化学传感器,命名为FJI-C8,可以对微量硝基爆炸物和Fe3+快速响应,同时具有高的选择性,很低的检出限,其使用量也是所有已报道的金属有机骨架材料中最低的。另外,值得注意的是,该材料对2,4-DNP的选择性首次超过TNP,这主要得益于金属有机骨架材料的荧光发射光谱与2,4-DNP的紫外可见吸收光谱的完美重合,同时得益于合适的孔径、高孔隙率、高密度未配位N原子和电子转移等协同作用。
该化学传感器FJI-C8,化学简式为:{[(CH3)2NH2]10[Zn9(TDPAT)43-O)2]·(H2O)27·(DMF)17}n,其中TDPAT代表2,4,6-三(3,5-二羧酸苯胺)-1,3,5-三嗪的羧酸盐阴离子。其特征在于,晶体的结构属于立方晶系,空间群为F4132,晶胞参数为:α=90.00°, 该材料是三维的阴离子骨架材料,抗衡阳离子为二甲胺阳离子,其中包含的方形一维通道和的三角形通道,孔隙率为61.1%。
该化学传感器具有以下特点:(1)阴离子金属有机骨架有利于金属阳离子的吸附,促进金属阳离子的检测;(2)高密度未配位N原子可以作为主客作用位点增强硝基爆炸物检测;(3)FJI-C8的荧光发射光谱与2,4-DNP的紫外可见吸收光谱重合,极大促进FJI-C8对2,4-DNP的检测。(4)高孔隙率、合适的孔径也促进FJI-C8对2,4-DNP的检测。
所述的化学传感器FJI-C8的制备方法,包括如下步骤:将H6TDPAT,硝酸锌水溶液,硼氟酸,DMF和甲醇加入厚壁玻璃瓶或者高压反应釜中,在烘箱中程序加热,80℃~90℃保温1天~5天,通过过滤或者离心,得到无色八面体晶体。
所述的化学传感器FJI-C8制备条件温和,方法简易,无需特殊的设备,成本比较低廉。本方法具有工艺简单,操作方便,应用范围广等特点。所述的化学传感器可以在多种溶剂中稳定存在,如甲醇、乙醇、乙腈、DMF、DMA、甲苯、乙酸乙酯、正庚烷。所述的化学传感器可以有效检测微量硝基爆炸物,特别是2,4-DNP。同时可以有效检测微量Fe3+离子。
具体实施方式
下面结合实施例对本发明做进一步说明,但本发明并不限于以下实施例。
实施例1:FJI-C8的合成
首先,将硝酸锌制备成1M的水溶液;其次,将H6TDPAT和硝酸锌水溶液(物质的量之比为1:2),加入到N,N’-二甲基甲酰胺,甲醇和硼氟酸(体积比为10:10:1)的混合溶剂中,置于厚壁玻璃瓶或者反应釜中,摇晃均匀后放入烘箱,在80℃~90℃保温1天~5天;最后,制备的无色八面体晶体通过过滤或者离心获得。晶体学数据见表一。
表一:化学传感器FJI-C8的晶体学数据
实施例2:FJI-C8检测液的配制
称取适量FJI-C8加入DMF中,并加入磁子搅拌超过12h,配制成4mg/mL的检测液。
实施例3:硝基爆炸物初步检测
在1mL实施例2中的FJI-C8检测液中加入1mL DMF,并测量其荧光强度,作为参比荧光强度。随后在1mL实施例2中的FJI-C8检测液中加入1mL DMA,并检测溶液加入后的荧光强度。
使用同样的方法,对乙醇、四氢呋喃、乙酸乙酯、甲醇、丙酮、甲苯、苯、异丙苯、乙腈、硝基苯、2,6-DNT(100mM,DMF溶液)、PNP(100mM,DMF溶液)或2,4-DNP(100mM,DMF溶液)分别检测。
研究表明,在加入1mL DMA、乙醇、四氢呋喃、乙酸乙酯、甲醇、丙酮、甲苯、苯、异丙苯或乙腈后,荧光强度基本没发生变化。而加入1mL硝基苯、2,6-DNT(100mM,DMF溶液)、PNP(100mM,DMF溶液)或2,4-DNP(100mM,DMF溶液)后,荧光完全淬灭。该现象说明,FJI-C8可以选择性地检测硝基爆炸物而不受其他各种小分子干扰。
实施例4:硝基爆炸物定量检测
在1mL实施例2中的FJI-C8检测液中加入1mL DMF,并测量其荧光强度,作为参比荧光强度。然后在上述混合液中加入20μL硝基苯(NB)(1mM,DMF溶液),并检测其荧光强度。随后继续加入20μL硝基苯(NB)(1mM,DMF溶液),并检测其相应的荧光强度,直到加入的硝基苯(NB)(1mM,DMF溶液)总量为200μL。
使用同样的方法,对PNP(1mM,DMF溶液),PNT(1mM,DMF溶液),1,2-DNB(1mM,DMF溶液),1,4-DNB(1mM,DMF溶液),2,4-DNT(1mM,DMF溶液),2,6-DNT(1mM,DMF溶液),2,4-DNP(1mM,DMF溶液),TNT(1mM,DMF溶液)和TNP(1mM,DMF溶液)分别检测。
使用Stern-Volmer(S-V)公式,I0/I=1+Ksv[C],对数据进行分析。其中,I0和I分别为加入硝基爆炸物之前和之后的荧光强度,Ksv是淬灭常数,[C]是硝基爆炸物浓度。
研究结果表明,FJI-C8检测液可以对PNP、2,4-DNP和TNP,特别是对2,4-DNP具有极高的灵敏度和极低的检出限。2,4-DNP的Ksv是5.11×104M-1,检出限为0.002866mM。
实施例5:Fe3+初步检测
在1mL实施例2中的FJI-C8检测液中加入1mL DMF,并测量其荧光强度,作为参比荧光强度。然后在其溶液中加入100μL M(NO3)x溶液(10mM,DMF溶液,Mx+=K+),并分别检测加入100μL M(NO3)x溶液(10mM,DMF溶液)后的荧光强度。
使用同样的方法,分别检测M(NO3)x溶液(10mM,DMF溶液,Mx+=Co2+,Na+,Gd2+,Zn2+,Mg2+,Cr3+,Ni2+,Ca2+,Al3+,Sr2+,Bi3+,Mn2+,Cu2+或Fe3+)。
在1mL实施例2中的FJI-C8检测液中加入1mL DMF,并测量其荧光强度,作为参比荧光强度。然后在其溶液中加入100μL NaY(10mM,DMF溶液,Y-=NO3 -),并检测加入100μL NaY溶液(10mM,DMF溶液)后的荧光强度。
使用同样的方法,分别检测NaY(10mM,DMF溶液,Y-=Br-,ClO4 -,F-,I-,NO2 -)。
研究表明,在加入100μL M(NO3)x溶液(10mM,DMF溶液,Mx+=K+,Co2+,Na+,Gd2+,Zn2+,Mg2+,Cr3+,Ni2+,Ca2+,Al3+,Sr2+,Bi3+,Mn2+,Cu2+),荧光强度基本没发生变化。而加入100μL M(NO3)x溶液(10mM,DMF溶液,Mx+=Fe3+),荧光完全淬灭。在加入100μL NaY(10mM,DMF溶液,Y-=NO3 -,Br-,ClO4 -,F-,I-,NO2 -)后,荧光强度也基本没发生变化。
该现象说明FJI-C8可以选择性地检测Fe3+,而不受各种金属阳离子和阴离子干扰。
实施例6:Fe3+定量检测
在1mL实施例2中的FJI-C8检测液中加入1mL DMF,并测量其荧光强度,作为参比荧光强度。然后在上述混合液中加入10μL M(NO3)x溶液(10mM,DMF溶液,Mx+=K+),并检测加入10μL M(NO3)x溶液(10mM,DMF溶液)后的荧光强度。随后继续加入10μL M(NO3)x溶液(10mM,DMF溶液),并检测其相应的荧光强度,直到M(NO3)x溶液(10mM,DMF溶液)的总量为100μL。
使用同样的方法,对M(NO3)x溶液(10mM,DMF溶液,Mx+=Co2+,Mg2+,Cr3+,Cu2+,or Fe3 +)分别进行检测。
使用Stern-Volmer(S-V)公式,I0/I=1+Ksv[C],对数据进行分析。其中,I0和I分别为加入M(NO3)x溶液之前和之后的荧光强度,Ksv是淬灭常数,[C]是M(NO3)x浓度。
使用Stern-Volmer(S-V)公式,I0/I=1+Ksv[C],对数据进行分析。其中,I0和I分别为加入M(NO3)x溶液之前和之后的荧光强度,Ksv是淬灭常数,[C]是M(NO3)x浓度。
研究表明,FJI-C8检测液对Fe3+具有很高的灵敏度和很低的检出限。其Ksv高达8.5×103M-1,检出限低至0.0233mM。
实施例7:硝基爆炸物检测速度
在1mL实施例2中的FJI-C8检测液中加入1mL DMF,并测量其荧光强度,作为参比荧光强度。然后在上述混合液中加入100μL 2,4-DNP(1mM,DMF溶液)后立即检测其荧光强度。随后每隔1分钟检测一次。
实验表明,FJI-C8检测液可以对2,4-DNP快速检测,一分钟就达到了平衡。
实施例8:Fe3+检测速度
在1mL实施例2中的FJI-C8检测液中加入1mL DMF,并测量其荧光强度,作为参比荧光强度。然后在上述混合液中加入100μL Fe(NO3)3溶液(10mM,DMF溶液)后立即检测其荧光强度。随后每隔1分钟检测一次。
实验表明,FJI-C8检测液可以对Fe3+快速检测,即时平衡。
实施例9:低FJI-C8检测液使用量对硝基爆炸物检测的影响
在0.2mL实施例2中的FJI-C8检测液中加入1.8mL DMF,并测量其荧光强度,作为参比荧光强度。然后在上述混合液中加入20μL 2,4-DNP(1mM,DMF溶液),并检测其应的荧光强度。随后依次加入20μL 2,4-DNP(1mM,DMF溶液),并检测其相应的荧光强度,直到2,4-DNP(1mM,DMF溶液)的总量为200μL。
为了进一步降低FJI-C8检测液的使用量,我们在0.02mL实施例2中的FJI-C8检测液中加入1.98mL DMF,并测量其荧光强度,作为参比荧光强度。然后在上述混合液中加入20μL 2,4-DNP(1mM,DMF溶液),并检测其相应的荧光强度。随后依次加入20μL 2,4-DNP(1mM,DMF溶液),并检测其相应的荧光强度,直到2,4-DNP(1mM,DMF溶液)的总量为200μL。
研究结果表明,0.4mg/mL FJI-C8检测液及0.04mg/mL FJI-C8检测液的检测效果与2mg/mL FJI-C8检测液的检测效果类似。0.4mg/mL FJI-C8检测液对应的Ksv是5.01×104M-1,0.04mg/mL FJI-C8检测液对应的Ksv是4.54×104M-1
实施例10:低FJI-C8检测液使用量对Fe3+检测的影响
在0.2mL实施例2中的FJI-C8检测液中加入1.8mL DMF,并测量其荧光强度,作为参比荧光强度。然后在上述混合液中加入10μL Fe(NO3)3溶液(10mM,DMF溶液),并检测加入10μL Fe(NO3)3溶液(10mM,DMF溶液)后的荧光强度。随后依次加入10μL Fe(NO3)3溶液(10mM,DMF溶液),并检测其相应的荧光强度,直到Fe(NO3)3溶液(10mM,DMF溶液)的总量为100μL。
为了进一步降低FJI-C8检测液的使用量,我们在0.02mL实施例2中的FJI-C8检测液中加入1.98mL DMF,并测量其荧光强度,作为参比荧光强度。然后在上述混合液中加入10μL Fe(NO3)3溶液(10mM,DMF溶液),并检测加入10μL Fe(NO3)3溶液(10mM,DMF溶液)后的荧光强度。随后依次加入10μLFe(NO3)3溶液(10mM,DMF溶液),并检测其相应的荧光强度,直到Fe(NO3)3溶液(10mM,DMF溶液)的总量为100μL。
研究结果表面,0.4mg/mL FJI-C8检测液及0.04mg/mL FJI-C8检测液的检测效果与2mg/mL FJI-C8检测液的检测效果类似。0.4mg/mL FJI-C8检测液对应的Ksv是9.6×103M-1,0.04mg/mL FJI-C8检测液对应的Ksv是8.2×103M-1

Claims (5)

1.一种金属有机骨架化学传感器,其晶体结构属于立方晶系,空间群为F4132,晶胞参数为:α=90.00°,骨架是三维的阴离子骨架,包含的方形一维通道和的三角形通道,孔隙率为61.1%,(CH3)2NH2阳离子作为抗衡阳离子平衡骨架阴离子,化学简式为:{[(CH3)2NH2]10[Zn9(TDPAT)43-O)2]·(H2O)27·(DMF)17}n,命名为FJI-C8,其中含C:31.92%,H:4.11%,N:10.05%,TDPAT为2,4,6-三(3,5-二羧酸苯胺)-1,3,5-三嗪的羧酸根离子。
2.一种权利要求1所述的化学传感器的制备方法,其特征在于合成步骤如下:将H6TDPAT,硝酸锌,加入到N,N’-二甲基甲酰胺,甲醇和硼氟酸的混合溶剂中,置于反应釜中,摇晃均匀后放入烘箱,加热保温;最后,制备的无色八面体晶体通过过滤或者离心获得。
3.如权利要求2所述的制备方法,其特征在于:首先,将硝酸锌制备成1M的水溶液;其次,H6TDPAT和硝酸锌的物质的量之比为1:2,N,N’-二甲基甲酰胺,甲醇和硼氟酸的体积比为10:10:1;再次,加热保温的条件是80℃~90℃保温1天~5天。
4.一种权利要求1所述的化学传感器用于微量硝基爆炸物的检测。
5.一种权利要求1所述的化学传感器用于微量Fe3+离子的检测。
CN201710192079.6A 2017-03-28 2017-03-28 一种金属有机骨架化学传感器和制备方法及其应用 Active CN106916175B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710192079.6A CN106916175B (zh) 2017-03-28 2017-03-28 一种金属有机骨架化学传感器和制备方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710192079.6A CN106916175B (zh) 2017-03-28 2017-03-28 一种金属有机骨架化学传感器和制备方法及其应用

Publications (2)

Publication Number Publication Date
CN106916175A CN106916175A (zh) 2017-07-04
CN106916175B true CN106916175B (zh) 2019-04-16

Family

ID=59462109

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710192079.6A Active CN106916175B (zh) 2017-03-28 2017-03-28 一种金属有机骨架化学传感器和制备方法及其应用

Country Status (1)

Country Link
CN (1) CN106916175B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108822051B (zh) * 2018-05-03 2020-04-28 天津师范大学 荧光型三维的Zn(II)配合物的合成方法与应用
CN113402727B (zh) * 2021-06-30 2022-07-12 云南师范大学 一种铽(ⅲ)负载的锌基金属有机框架及其制备与应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016077202A1 (en) * 2014-11-10 2016-05-19 Mirtech, Inc. Complexes of 1-methylcyclopropene with metal coordination polymer networks
CN105617994A (zh) * 2015-12-29 2016-06-01 中国科学院福建物质结构研究所 一种金属有机骨架材料用于有效分离尺寸相近的染料
CN105669721A (zh) * 2016-01-09 2016-06-15 齐鲁工业大学 三氮唑杂环的二维锌配位聚合物及其制备方法和应用
CN105885057A (zh) * 2016-04-20 2016-08-24 郑州轻工业学院 一种金属-有机骨架配位聚合物复合材料及其制法与应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016077202A1 (en) * 2014-11-10 2016-05-19 Mirtech, Inc. Complexes of 1-methylcyclopropene with metal coordination polymer networks
CN105617994A (zh) * 2015-12-29 2016-06-01 中国科学院福建物质结构研究所 一种金属有机骨架材料用于有效分离尺寸相近的染料
CN105669721A (zh) * 2016-01-09 2016-06-15 齐鲁工业大学 三氮唑杂环的二维锌配位聚合物及其制备方法和应用
CN105885057A (zh) * 2016-04-20 2016-08-24 郑州轻工业学院 一种金属-有机骨架配位聚合物复合材料及其制法与应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
A dual functional MOF as a luminescent sensor for quantitatively detecting the concentration of nitrobenzene and temperature;Dingxuan Ma et al.;《Chem. Commun.》;20130805;page: 8964-8966 *

Also Published As

Publication number Publication date
CN106916175A (zh) 2017-07-04

Similar Documents

Publication Publication Date Title
Chen et al. A terbium (III) lanthanide–organic framework as a platform for a recyclable multi-responsive luminescent sensor
Liang et al. A highly selective multifunctional Zn‐coordination polymer sensor for detection of Cr (III), Cr (VI) ion, and TNP molecule
Cao et al. Selective sensing of Fe3+ and Al3+ ions and detection of 2, 4, 6‐trinitrophenol by a water‐stable terbium‐based metal–organic framework
Kumar et al. New 1, 8-naphthalimide-conjugated sulfonamide probes for TNP sensing in water
CN105482812B (zh) 一种多金属离子同时选择测定的荧光探针试剂及制备和应用
Ghorai et al. A reversible fluorescent-colorimetric imino-pyridyl bis-Schiff base sensor for expeditious detection of Al 3+ and HSO 3− in aqueous media
Chen et al. A fluorescent Eu (III) MOF for highly selective and sensitive sensing of picric acid
Li et al. Development of turn-on fluorescent probes for the detection of H2O2 vapor with high selectivity and sensitivity
CN109749091B (zh) 一种天蓝色荧光镉有机环状超分子及其制备方法与应用
WO2013001534A1 (en) A reagent method and kit for the detection of nitro aliphatic compounds
CN106916175B (zh) 一种金属有机骨架化学传感器和制备方法及其应用
Wang et al. Fluorescent polymer nanotubes as bifunctional materials for selective sensing and fast removal of picric acid
He et al. Rapid visual detection of nitroaromatic explosives using a luminescent europium-organic framework material
Sahoo et al. Selective and sensitive detection of picric acid in aqueous, sol-gel and solid support media by Ln (III) probes
Kumar et al. Aggregation induced emission enhancement behavior of conformationally rigid pyreneamide-based probe for ultra-trace detection of picric acid (PA)
CN107602872A (zh) 一种发光多孔金属有机框架新材料的制备及其对痕量硝基爆炸物的检测方法
Aksuner et al. Highly sensitive sensing of zinc (II) by development and characterization of a PVC-based fluorescent chemical sensor
Zhong et al. Two novel colorimetric fluorescent probes: Hg 2+ and Al 3+ in the visual colorimetric recognition environment
Yang et al. Two novel pyrazole-based chemosensors:“naked-eye” colorimetric recognition of Ni 2+ and Al 3+ in alcohol and aqueous DMF media
Shang et al. Novel multifunctional Zn Metal− Organic framework fluorescent probe demonstrating unique sensitivity and selectivity for detection of TNP, ANI, TC and LIN in water solution
Ru et al. Water-stable Cd (II) metal-organic framework as multi-responsive luminescent sensor for CrO42−, Cr2O72− ions and picric acid as well as its mixed matrix membranes
Qureshi et al. A versatile calixarene derivative for transportation systems and sensor technology
Liu et al. A novel dual-mode turn-on optional chemodosimeter for the visualization of Pd0 with a low detection limit
CN108948033B (zh) 一种用于检测Hg2+的罗丹明衍生物荧光探针及其制备方法与应用
KR101171802B1 (ko) 수은 이온 선택성을 갖는 파이렌계 화합물 및 이를 이용한 수은 이온 검출 시스템

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant