CN106908781A - 基于单通道圆迹sar的直线运动动目标的速度矢量获取方法 - Google Patents

基于单通道圆迹sar的直线运动动目标的速度矢量获取方法 Download PDF

Info

Publication number
CN106908781A
CN106908781A CN201710109906.0A CN201710109906A CN106908781A CN 106908781 A CN106908781 A CN 106908781A CN 201710109906 A CN201710109906 A CN 201710109906A CN 106908781 A CN106908781 A CN 106908781A
Authority
CN
China
Prior art keywords
target
moving
sub
image
omsi
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710109906.0A
Other languages
English (en)
Other versions
CN106908781B (zh
Inventor
林赟
申文杰
洪文
鲍慊
赵月
陈诗强
薛斐腾
刘易凡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Electronics of CAS
Original Assignee
Institute of Electronics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Electronics of CAS filed Critical Institute of Electronics of CAS
Priority to CN201710109906.0A priority Critical patent/CN106908781B/zh
Publication of CN106908781A publication Critical patent/CN106908781A/zh
Application granted granted Critical
Publication of CN106908781B publication Critical patent/CN106908781B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/89Radar or analogous systems specially adapted for specific applications for mapping or imaging
    • G01S13/90Radar or analogous systems specially adapted for specific applications for mapping or imaging using synthetic aperture techniques, e.g. synthetic aperture radar [SAR] techniques
    • G01S13/9021SAR image post-processing techniques
    • G01S13/9029SAR image post-processing techniques specially adapted for moving target detection within a single SAR image or within multiple SAR images taken at the same time
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/58Velocity or trajectory determination systems; Sense-of-movement determination systems
    • G01S13/589Velocity or trajectory determination systems; Sense-of-movement determination systems measuring the velocity vector
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/89Radar or analogous systems specially adapted for specific applications for mapping or imaging
    • G01S13/90Radar or analogous systems specially adapted for specific applications for mapping or imaging using synthetic aperture techniques, e.g. synthetic aperture radar [SAR] techniques
    • G01S13/904SAR modes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/89Radar or analogous systems specially adapted for specific applications for mapping or imaging
    • G01S13/90Radar or analogous systems specially adapted for specific applications for mapping or imaging using synthetic aperture techniques, e.g. synthetic aperture radar [SAR] techniques
    • G01S13/9004SAR image acquisition techniques
    • G01S13/9017SAR image acquisition techniques with time domain processing of the SAR signals in azimuth
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/89Radar or analogous systems specially adapted for specific applications for mapping or imaging
    • G01S13/90Radar or analogous systems specially adapted for specific applications for mapping or imaging using synthetic aperture techniques, e.g. synthetic aperture radar [SAR] techniques
    • G01S13/904SAR modes
    • G01S13/9088Circular SAR [CSAR, C-SAR]

Abstract

本发明提供了本发明基于单通道圆迹SAR的直线运动动目标的速度矢量获取方法包括:将圆迹SAR回波数据的对应轨迹划分为N个弧,每个弧对应的角度范围相等,对每个弧对应的回波数据进行成像,生成N组OSMI序列;对于第i个OMSI序列OMSI(i),执行如下操作,包括:对OMSI(i)序列沿时间维进行中值滤波获得该OMSI(i)序列对应的背景图像B(i);将OMSI(i)序列与对应的背景图像B(i)做差,得到前景图像序列F(i);对前景图像序列F(i)的每幅图像分别进行阈值处理,检测到动目标,得到动目标的图上轨迹;追踪直线运动的动目标的全程图上轨迹,得到动目标真实轨迹;由动目标真实轨迹获取任意时刻动目标的速度矢量。本发明充分利用了圆迹SAR的优势,有利于进行动目标的检测与速度矢量获取。

Description

基于单通道圆迹SAR的直线运动动目标的速度矢量获取方法
技术领域
本发明涉及雷达信号处理领域,尤其涉及一种基于单通道圆迹SAR的直线运动动目标的速度矢量获取方法。
背景技术
合成孔径雷达(Synthetic Aperture Radar,简称SAR)是一种主动微波遥感手段,具有全天时全天候的对地观测能力。地面运动目标检测(GMTI)作为重要的城市交通管理及战场信息获取的重要组成部分,关系着国计民生与国防安全的方方面面。GMTI是SAR的一个重要的任务。
SAR动目标检测算法可以分为单通道和多通道两种类型。单通道算法主要利用动目标信号的多普勒偏移与散焦特性来对动目标进行检测分析。如文献[1]提出的频域滤波法,利用了动目标频谱超出地杂波频谱的特性能够检测出速度相对较快的目标。慢速目标由于频谱淹没在地杂波频谱中,无法进行检测。文献[2]利用动目标散焦特性提出一种动目标检测算法,对复图像域的散焦动目标进行迭代自聚焦操作进行检测。迭代算法的主要缺点是运算量太大,不适合进行实时检测。多通道主要则主要通过去杂波来实现动目标的检测工作。如沿航迹干涉技术(ATI)及相位中心偏置天线(DPCA)和空时自适应(STAP)技术。多通道技术在动目标复杂的硬件结构使得造价高,同时对飞行平台的性能要求较高。
然而,申请人经过长时间的工作实践发现:单通道算法计算量大不利于快速检测或无法检测慢速目标;而多通道算法所需硬件结构复杂,造价高昂。
发明内容
(一)要解决的技术问题
本发明提供了一种基于单通道圆迹SAR的地面直线运动目标速度矢量获取方法,以至少部分解决以上所提出的技术问题。
(二)技术方案
本发明基于单通道圆迹SAR的直线运动动目标的速度矢量获取方法包括:
步骤A:将圆迹SAR回波数据的对应轨迹划分为N个弧,每个弧对应的角度范围相等,对每个弧对应的回波数据进行成像,生成N组OSMI序列;
步骤B:对于第i个OMSI序列OMSI(i),i=1,2,3.....N,执行如下操作,得到动目标在全部观测时间内的图上轨迹,包括:
子步骤B1,对OMSI(i)序列沿时间维进行中值滤波获得该OMSI(i)序列对应的背景图像B(i);
子步骤B2:将OMSI(i)序列与对应的背景图像B(i)做差,得到前景图像序列F(i)。
子步骤B3:对前景图像序列F(i)的每幅图像分别进行阈值处理,检测到动目标,得到动目标的图上轨迹;
步骤C:追踪直线运动的动目标的全程图上轨迹,得到动目标真实轨迹;
步骤D:由动目标真实轨迹获取任意时刻动目标的速度矢量。
(三)有益效果
从上述技术方案可以看出,本发明基于单通道圆迹SAR的直线运动动目标的速度矢量获取方法至少具有以下有益效果其中之一:
(1)利用圆迹SAR能够进行360度观测的特点,由动目标在不同观测角度下图上轨迹不同的特点来获取速度矢量,从而充分利用了圆迹SAR的优势,有利于进行动目标的检测与速度矢量获取;
(2)利用背景差分方法提取匀速直线运动目标在不同子孔径下的图上位置,能够实现自动检测,与现有单通道迭代类检测算法相比速度快,可以自动获取动目标在SAR图像上的位置。
附图说明
图1为根据本发明实施例基于单通道圆迹SAR的直线运动动目标的速度矢量获取方法的流程图。
图2为图1所示速度矢量获取方法的子步骤A中圆迹SAR数据分割示意图。
图3为图1所示速度矢量获取方法的步骤C中一个匀速直线运动点目标的真实轨迹与图上轨迹示意图。
图4为图1所示速度矢量获取方法的步骤C中动目标与飞机相对几何关系示意图。
图5为采用图1所示速度矢量获取方法中步骤B中子步骤B1对实测数据进行处理得到的背景图片。
图6为采用图1所示速度矢量获取方法中步骤B中子步骤B3对实测数据进行处理得到的动目标检测结果。
具体实施方式
圆迹SAR是一种新的SAR精细观测模式。由于雷达进行圆周运动,可以对地面场景进行长时间观测并获取360°全方位信息。地面静止场景的散射特性在相邻子孔径图像中是缓变的。因此地面场景中的单个像素点的幅值只有在动目标信号进入和离开该像素时,该点像素的幅值才会发生剧烈变化。真实场景中的动目标相对飞机的观测角度不同,在子孔径图像上的形态和位置也会发生变化。因此地面场景在SAR图像上的是缓变的,动目标是捷变的。因为圆迹SAR进行360°观测,在与目标运动方向垂直的方向,目标在SAR图像中偏移最大,散焦程度最小;在与动目标平行的方向,目标在SAR图像中散焦程度最大,不偏移。因此,对于直线运动目标而言,可以通过分析其全局轨迹来确定运动的真实轨迹所在的位置,并由此可以利用道路模型信息计算相应时刻下动目标的径向速度值。申请人发现,以上特性有利于进行动目标的检测与速度矢量获取。
本发明正是利用圆迹SAR能够长时间观测以及获得目标的全方位向信息的特点,实现圆迹SAR直线运动目标检测与速度矢量获取。
为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明进一步详细说明。
在本发明的一个示例性实施例中,提供了一种基于单通道圆迹SAR的直线运动动目标的速度矢量获取方法。
图1为根据本发明实施例基于单通道圆迹SAR的地面直线运动动目标的速度矢量获取方法的流程图。如图1所示,本实施例基于单通道圆迹SAR的直线运动动目标的速度矢量获取方法包括:
步骤A:将圆迹SAR回波数据的对应轨迹划分为多个弧,每个弧对应的角度范围相等,对每个弧对应的回波数据进行成像,生成N组重叠子孔径幅度图像序列(overlapsubaperture magnitude image sequences,OSMI序列);
具体而言,该步骤A又可以包括以下子步骤:
子步骤A1:将圆迹SAR回波数据的对应轨迹划分为N个弧,弧i{i:1,2,3.....N}对应的观测角度为θ0,其中N≥2,如图2所示;
本子步骤中,观测角度θ0的取值需要根据雷达获取回波时的工作参数,如飞行半径,工作波段,分辨率等,来进行确定,其取值介于0.1~10度之间。本实施例中,θ0为0.79度。
子步骤A2:对于弧i,将弧i对应的回波数据进行划分为重叠子孔径,每个子孔径为θ1,相邻子孔径中心点间隔θ2,利用后向投影算法(Back-Projection,BP算法)对回波数据进行成像处理,得到子孔径图像,其中,i=1,2,3.....N;
其中,所述子孔径图像通过将在照射角度内的全部方位内的回波信号通过BP算法实现方位向聚焦,获取子孔径图像中,BP成像算法如下:
g(x,y)=∫s(x,y,θ)exp(j2KRxy(θ))dθ (1)
式中,g(x,y)为子孔径图像中坐标为(x,y)的任一点的复数值(包括幅值及相位);s(x,y,θ)为脉压之后的回波信号,K=2πf/c为波数,Rxy(θ)为雷达飞行平台与像素点(x,y,z)(z为场景区域的高程值)的距离函数。
子步骤A3:将弧i生成的子孔径图像取模,得到幅度图像,对幅度图像进行[5*5]中值滤波,降低相干斑噪声,并进行对比度拉伸,按照时间顺序排列构成3维矩阵,得到弧i对应的一组OMSI(i)序列,其中,i=1,2,3.....N。
步骤B:对于第i个OMSI序列OMSI(i),i=1,2,3.....N,执行如下操作,得到动目标在全部观测时间内的图上轨迹;
子步骤B1,对OMSI(i)序列沿时间维进行中值滤波获得该OMSI(i)序列对应的背景图像B(i);
其中,子步骤B1沿时间维进行中值滤波表达式如下:
B(i)=median filter[OMSI(i)] (2)
式中,OMSI(i)为弧i对应回波生成的重叠子孔径幅度图像序列,B(i)为对应的背景图片。
子步骤B2:将OMSI(i)序列与对应的背景图像B(i)做差,得到前景图像序列F(i);
其中,子步骤B2表达式为:
F(i)=|OMSI(i)-B(i)| (3)
F(i)即为对应的前景图像序列。
子步骤B3:对前景图像序列F(i)的每幅图像分别进行阈值处理,检测到动目标;
具体来讲,子步骤B3中,将F(i)中的每幅图像像素点的幅值与设定的阈值门限αn进行比较。当大于该门限时即可认为该幅前景图像内存在有动目标。表达式如下:
F(i)>αn→有动目标 (4)
其中,阈值αn的设定原则如下:
定义当前图像在[0,G]内共有K级灰度,Pk为第k级灰度,Nk为当前图像中该级灰度的像素数。上式即灰度直方图的加权平均值计算公式。
本实施例中,该子步骤B3进一步包括:
子分步骤B3a,对F(i)序列的任一幅图像,计算灰度直方图的加权平均值α1,对低于均值α1的像素点的值设为0;
子分步骤B3b,再次计算新图像的灰度直方图的加权平均值α2,对低于均值α2的像素点的值设为0,α2为最终得到的该幅前景图像的阈值,并进行二值化处理,由此可去掉F(i)序列中任一图像中的残留背景;进而检测到动目标。
步骤C:追踪直线运动的动目标的全程图上轨迹,得到动目标运动真实轨迹。
本实施例中,寻找动目标的图上轨迹的驻定点,真实轨迹与该点的切线重合,如图3所示,全程图上轨迹结合该驻定点得到动目标真实轨迹。
此外,在存在道路信息的前提下,全程图上轨迹还可以结合道路信息来得到动目标真实轨迹,或者还可以是全程图上轨迹结合驻定点和道路信息来共同获得动目标真实轨迹。
步骤D:由动目标真实轨迹获取任意时刻动目标的速度矢量。
本步骤中,通过子孔径序列中动目标图上位置的变动方向可以得到对应的动目标在运动真实轨迹中的运动方向。
图4为图1所示速度矢量获取方法的步骤C中动目标与飞机相对几何关系示意图。如图4所示,对于任一子孔径,飞机速度为vs,k1为与动目标的运动速度方向垂直的指向内侧的射线。动目标在图像上的坐标为T,该子孔径中心时刻飞机的位置为S,以S为圆心ST为半径画圆,得到与步骤S5中的真实轨迹的交点P。θt为ST与k1的夹角,θp为SP与k1的夹角。则动目标的径向速度vr可以计算得到。然后利用动目标的径向速度与运动方向的夹角即可得到动目标的真实运动速度vt。表达式如下:
vr=vs·(sinθp-sinθt) (6-1)
其中,图5为采用图1所示速度矢量获取方法中步骤B中子步骤B1对实测数据进行处理得到的背景图片。图6为采用图1所示速度矢量获取方法中步骤B中子步骤B3对实测数据进行处理得到的动目标检测结果。在图6中,(a)为子孔径图片,(b)为减掉背景后进行阈值化的结果。
至此,已经结合附图对本发明实施例进行了详细描述。依据以上描述,本领域技术人员应当对本发明基于单通道圆迹SAR的直线运动动目标的速度矢量获取方法有了清楚的认识。
需要说明的是,在附图或说明书正文中,未绘示或描述的实现方式,均为所属技术领域中普通技术人员所知的形式,并未进行详细说明。此外,上述对各元件和方法的定义并不仅限于实施例中提到的各种具体结构、形状或方式,本领域普通技术人员可对其进行简单地更改或替换,例如:子步骤B3中阈值设定方法可以用CFAR(恒虚警概率)算法来代替。
还需要说明的是,本文可提供包含特定值的参数的示范,但这些参数无需确切等于该特定值,而是可在可接受的误差容限或设计约束内近似于相应值。实施例中的方向用语,例如“上”、“下”、“前”、“后”、“左”、“右”等,仅是参考附图的方向,并非用来限制本发明的范围。
综上所述,本发明充分利用了圆迹SAR能够进行360度观测的优势,利用背景差分方法提取匀速直线运动的动目标在不同子孔径下的图上位置,利用动目标在不同观测角度下图上轨迹不同的特点来进行速度矢量获取,与现有单通道迭代类检测算法相比速度快。可以自动获取动目标在SAR图像上的位置,具有较好的推广应用前景。
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种基于单通道圆迹SAR的直线运动动目标的速度矢量获取方法,其特征在于,包括:
步骤A:将圆迹SAR回波数据的对应轨迹划分为N个弧,每个弧对应的角度范围相等,对每个弧对应的回波数据进行成像,生成N组OSMI序列;
步骤B:对于第i个OMSI序列OMSI(i),i=1,2,3.....N,执行如下操作,得到动目标在全部观测时间内的图上轨迹,包括:
子步骤B1,对OMSI(i)序列沿时间维进行中值滤波获得该OMSI(i)序列对应的背景图像B(i);
子步骤B2:将OMSI(i)序列与对应的背景图像B(i)做差,得到前景图像序列F(i);
子步骤B3:对前景图像序列F(i)的每幅图像分别进行阈值处理,检测到动目标,得到动目标的图上轨迹;
步骤C:追踪直线运动的动目标的全程图上轨迹,得到动目标真实轨迹;
步骤D:由动目标真实轨迹获取任意时刻动目标的速度矢量。
2.根据权利要求1所述的速度矢量获取方法,其特征在于,所述步骤C中:
结合道路信息来获得目标真实轨迹;或者
寻找动目标的图上轨迹的驻定点,真实轨迹与该点的切线重合,结合该驻定点来获得目标真实轨迹;或者
结合道路信息和动目标的图上轨迹的驻定点来获得目标真实轨迹。
3.根据权利要求1所述的速度矢量获取方法,其特征在于,所述步骤D中,通过子孔径序列中动目标图上位置的变动方向可以得到对应的动目标在运动真实轨迹中的运动方向。
4.根据权利要求1所述的速度矢量获取方法,其特征在于,所述子步骤B3中,将F(i)中的每幅图像像素点的幅值与设定的阈值门限αn进行比较。当大于该门限时即可认为该幅前景图像内存在有动目标,其中,阈值门限αn为当前图像的灰度直方图的加权平均值。
5.根据权利要求4所述的速度矢量获取方法,其特征在于,所述子步骤B3包括:
子分步骤B3a,对F(i)序列的任一幅图像,计算灰度直方图的加权平均值α1,对低于均值α1的像素点的值设为0;
子分步骤B3b,再次计算新图像的灰度直方图的加权平均值α2,对低于均值α2的像素点的值设为0,α2为最终得到的该幅前景图像的阈值,并进行二值化处理,由此可去掉F(i)序列中任一图像中的残留背景;进而检测到动目标。
6.根据权利要求1所述的速度矢量获取方法,其特征在于,
所述子步骤B1中,沿时间维进行中值滤波表达式如下:B(i)=median filter[OMSI(i)];
所述子步骤B2中,将OMSI(i)序列与对应的背景图像B(i)做差,得到前景图像序列F(i)的表达式为:F(i)=|OMSI(i)-B(i)|。
7.根据权利要求1至6中任一项所述的速度矢量获取方法,其特征在于,所述步骤A包括:
子步骤A1:将圆迹SAR回波数据的对应轨迹划分为N个弧,弧i{i:1,2,3.....N}对应的观测角度为θ0,其中N≥2;
子步骤A2:对于弧i,将弧i对应的回波数据进行划分为重叠子孔径,每个子孔径为θ1,相邻子孔径中心点间隔θ2,对回波数据进行成像处理,得到子孔径图像,其中,i=1,2,3....N;以及
子步骤A3:将弧i生成的各子孔径图像取模,得到幅度图像,对其进行对比度拉伸,按照时间顺序排列构成3维矩阵,得到弧i对应的一组OMSI(i)序列,其中,i=1,2,3.....N。
8.根据权利要求7所述的速度矢量获取方法,其特征在于,所述子步骤A1中,θ0的取值0.1~10度之间。
9.根据权利要求7所述的速度矢量获取方法,其特征在于,所述子步骤A2中,利用BP算法对回波数据进行成像处理。
10.根据权利要求7所述的速度矢量获取方法,其特征在于,所述子步骤A3中,在得到幅度图像之后,对其进行对比度度拉伸之前还包括:
对幅度图像进行[5*5]中值滤波,以降低相干斑噪声。
CN201710109906.0A 2017-02-27 2017-02-27 基于单通道圆迹sar的直线运动动目标的速度矢量获取方法 Active CN106908781B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710109906.0A CN106908781B (zh) 2017-02-27 2017-02-27 基于单通道圆迹sar的直线运动动目标的速度矢量获取方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710109906.0A CN106908781B (zh) 2017-02-27 2017-02-27 基于单通道圆迹sar的直线运动动目标的速度矢量获取方法

Publications (2)

Publication Number Publication Date
CN106908781A true CN106908781A (zh) 2017-06-30
CN106908781B CN106908781B (zh) 2019-10-18

Family

ID=59209366

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710109906.0A Active CN106908781B (zh) 2017-02-27 2017-02-27 基于单通道圆迹sar的直线运动动目标的速度矢量获取方法

Country Status (1)

Country Link
CN (1) CN106908781B (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108051812A (zh) * 2018-01-22 2018-05-18 南京航空航天大学 基于二维速度搜索的星载sar运动目标检测方法
CN108549081A (zh) * 2018-05-02 2018-09-18 北京空间飞行器总体设计部 一种高轨合成孔径雷达动目标速度检测方法
CN109581378A (zh) * 2018-12-29 2019-04-05 中国科学院电子学研究所 动目标检测方法、电子设备及存储介质
CN110095774A (zh) * 2019-01-28 2019-08-06 南京航空航天大学 一种圆迹视频sar动目标检测方法
CN110146882A (zh) * 2019-04-03 2019-08-20 北京空间飞行器总体设计部 一种基于星载视频sar的运动目标检测与参数估计方法
CN111983592A (zh) * 2020-08-14 2020-11-24 西安应用光学研究所 一种机载光电系统无源定位拟合测向测速方法
CN112099004A (zh) * 2019-09-05 2020-12-18 北京无线电测量研究所 一种机载干涉合成孔径雷达复杂场景高程反演方法及系统
CN112529797A (zh) * 2020-12-04 2021-03-19 中国人民解放军63921部队 基于序列视轴指向矢量的目标轨迹确认方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101111852A (zh) * 2004-06-22 2008-01-23 伍比克公司 利用参数反射技术的rfid系统
WO2011102762A1 (en) * 2010-02-17 2011-08-25 Saab Ab Wideband transmitter/receiver arrangement for multifunctional radar and communication
CN102928841A (zh) * 2012-10-30 2013-02-13 西安电子科技大学 一种基于级数反演的机载圆迹环扫sar成像方法
CN103033816A (zh) * 2012-12-07 2013-04-10 清华大学 基于圆弧扫描转换的合成孔径聚焦超声成像实现方法
US20130300599A1 (en) * 2012-05-11 2013-11-14 Raytheon Company On-Board INS Quadratic Correction Method Using Maximum Likelihood Motion Estimation Of Ground Scatterers From Radar Data
CN105044719A (zh) * 2015-06-23 2015-11-11 电子科技大学 一种基于圆周sar的太赫兹高精度垂直曲面成像方法
CN105849620A (zh) * 2013-11-01 2016-08-10 艾罗伯特公司 扫描测距仪

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101111852A (zh) * 2004-06-22 2008-01-23 伍比克公司 利用参数反射技术的rfid系统
WO2011102762A1 (en) * 2010-02-17 2011-08-25 Saab Ab Wideband transmitter/receiver arrangement for multifunctional radar and communication
US20130300599A1 (en) * 2012-05-11 2013-11-14 Raytheon Company On-Board INS Quadratic Correction Method Using Maximum Likelihood Motion Estimation Of Ground Scatterers From Radar Data
CN102928841A (zh) * 2012-10-30 2013-02-13 西安电子科技大学 一种基于级数反演的机载圆迹环扫sar成像方法
CN103033816A (zh) * 2012-12-07 2013-04-10 清华大学 基于圆弧扫描转换的合成孔径聚焦超声成像实现方法
CN105849620A (zh) * 2013-11-01 2016-08-10 艾罗伯特公司 扫描测距仪
CN105044719A (zh) * 2015-06-23 2015-11-11 电子科技大学 一种基于圆周sar的太赫兹高精度垂直曲面成像方法

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108051812A (zh) * 2018-01-22 2018-05-18 南京航空航天大学 基于二维速度搜索的星载sar运动目标检测方法
CN108051812B (zh) * 2018-01-22 2021-06-22 南京航空航天大学 基于二维速度搜索的星载sar运动目标检测方法
CN108549081A (zh) * 2018-05-02 2018-09-18 北京空间飞行器总体设计部 一种高轨合成孔径雷达动目标速度检测方法
CN108549081B (zh) * 2018-05-02 2020-05-08 北京空间飞行器总体设计部 一种高轨合成孔径雷达动目标速度检测方法
CN109581378A (zh) * 2018-12-29 2019-04-05 中国科学院电子学研究所 动目标检测方法、电子设备及存储介质
CN109581378B (zh) * 2018-12-29 2020-12-22 中国科学院电子学研究所 动目标检测方法、电子设备及存储介质
CN110095774A (zh) * 2019-01-28 2019-08-06 南京航空航天大学 一种圆迹视频sar动目标检测方法
CN110095774B (zh) * 2019-01-28 2022-04-15 南京航空航天大学 一种圆迹视频sar动目标检测方法
CN110146882A (zh) * 2019-04-03 2019-08-20 北京空间飞行器总体设计部 一种基于星载视频sar的运动目标检测与参数估计方法
CN112099004A (zh) * 2019-09-05 2020-12-18 北京无线电测量研究所 一种机载干涉合成孔径雷达复杂场景高程反演方法及系统
CN111983592A (zh) * 2020-08-14 2020-11-24 西安应用光学研究所 一种机载光电系统无源定位拟合测向测速方法
CN112529797A (zh) * 2020-12-04 2021-03-19 中国人民解放军63921部队 基于序列视轴指向矢量的目标轨迹确认方法

Also Published As

Publication number Publication date
CN106908781B (zh) 2019-10-18

Similar Documents

Publication Publication Date Title
CN106908781B (zh) 基于单通道圆迹sar的直线运动动目标的速度矢量获取方法
CN101221239B (zh) 一种基于水平集的合成孔径雷达图像分割方法
CN104183127B (zh) 交通监控视频检测方法和装置
AU715501B2 (en) Improved method of moment estimation and feature extraction for devices which measure spectra as a function of range or time
CN101498788B (zh) 一种逆合成孔径雷达的目标转角估计和横向定标方法
CN109856635B (zh) 一种csar地面动目标重聚焦成像方法
DE102006009121B4 (de) Verfahren zur Verarbeitung und Darstellung von mittels Synthetik-Apertur-Radarsystemen (SAR) gewonnen Bodenbildern
CN104851097B (zh) 基于目标形状与阴影辅助的多通道sar‑gmti方法
CN102508219B (zh) 风廓线雷达湍流目标检测方法
CN106569193B (zh) 基于前-后向收益参考粒子滤波的海面小目标检测方法
Wen et al. Video SAR moving target detection using dual faster R-CNN
CN104376330A (zh) 基于超像素散射机制的极化sar图像舰船目标检测方法
CN108776342A (zh) 一种高速平台sar慢速动目标检测与速度估计方法
CN112051568B (zh) 一种两坐标雷达的俯仰测角方法
CN102288943A (zh) 基于两视实图像处理的单通道sar-gmti方法
CN112835009B (zh) 一种基于fmcw雷达rai的数据集拓展方法
CN104200471A (zh) 基于自适应权值图像融合的sar图像变化检测方法
CN108469608A (zh) 一种运动平台雷达多普勒质心精确估计方法
CN106156758A (zh) 一种sar海岸图像中海岸线提取方法
CN110095774A (zh) 一种圆迹视频sar动目标检测方法
Berthold et al. A radar measurement model for extended object tracking in dynamic scenarios
CN111796288B (zh) 一种基于杂波频谱补偿技术的三坐标雷达动目标处理方法
CN105741286B (zh) 基于幅相联合的sar图像动目标阴影提取方法
CN105242272B (zh) 基于自回归时间序列模型的车载毫米波防撞雷达恒虚警检测方法
CN110736988B (zh) 双基地pfa运动目标参数估计和成像方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant