CN106905957A - 一种锰掺杂甲基氨基钙钛矿纳米晶体的制备方法及其产品和应用 - Google Patents

一种锰掺杂甲基氨基钙钛矿纳米晶体的制备方法及其产品和应用 Download PDF

Info

Publication number
CN106905957A
CN106905957A CN201710165541.3A CN201710165541A CN106905957A CN 106905957 A CN106905957 A CN 106905957A CN 201710165541 A CN201710165541 A CN 201710165541A CN 106905957 A CN106905957 A CN 106905957A
Authority
CN
China
Prior art keywords
additive
methylamino
preparation
perovskite
oleic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710165541.3A
Other languages
English (en)
Other versions
CN106905957B (zh
Inventor
唐孝生
陈威威
臧志刚
刘洪均
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing Ding Ding Photoelectric Technology Co Ltd
Chongqing University
Original Assignee
Chongqing Ding Ding Photoelectric Technology Co Ltd
Chongqing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing Ding Ding Photoelectric Technology Co Ltd, Chongqing University filed Critical Chongqing Ding Ding Photoelectric Technology Co Ltd
Priority to CN201710165541.3A priority Critical patent/CN106905957B/zh
Publication of CN106905957A publication Critical patent/CN106905957A/zh
Application granted granted Critical
Publication of CN106905957B publication Critical patent/CN106905957B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Optics & Photonics (AREA)
  • Biophysics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Luminescent Compositions (AREA)

Abstract

本发明涉及一种锰掺杂甲基氨基钙钛矿纳米晶体的制备方法,实验方法简单,利用简单的热注射反应方法得到锰掺杂半导体量子点,并通过改变某些参数,能制备出锰掺杂的钙钛矿纳米线。根据本制备方法得到的锰掺杂有机钙钛矿纳米晶体颗粒均匀,荧光效率高,且具有较大的斯托克斯位移,在发光二极管,太阳能电池等领域具有广泛的应用前景。

Description

一种锰掺杂甲基氨基钙钛矿纳米晶体的制备方法及其产品和 应用
技术领域
本发明属于纳米技术领域,涉及一种锰掺杂甲基氨基钙钛矿纳米晶体的制备方法及其产品和应用。
背景技术
钙钛矿作为最近几年的研究热点,以其卓越的性能,例如光谱可调,发光效率高,高的吸收系数,广泛应用于光电探测,太阳能电池,发光二极管等领域。过渡金属掺杂半导体量子点是一种非常有效的改善量子点光学和电磁性能的方法。近年来,MAPbX3(X=Cl,Br,I)量子点更是引起了众多学者的兴趣。例如E.Horvath小组使用锰掺杂钙钛矿,在光伏设备中用光来改变磁性。Prasenjit Kar小组制备的锰掺杂有机钙钛矿体材料,应用于太阳能电池中,使其填充因子可达87.9%,但一般的MAPbCl3量子点的效率小于5%。另外MAPbCl3有很强的自吸收能力,使得其在LED等发光领域有很强的限制。因此需要一种新制备钙钛矿晶体的方法,能很好的合成Mn掺杂MAPbCl3钙钛矿量子点,并且通过改变某些参数,能制备出Mn掺杂的钙钛矿纳米线,使他们的发光效率和斯托克斯位移有所提高。
发明内容
有鉴于此,本发明的目的在于提供一种锰掺杂甲基氨基钙钛矿纳米晶体的制备方法及其产品。
为达到上述目的,本发明提供如下技术方案:
一种锰掺杂甲基氨基钙钛矿纳米晶体的制备方法为以下步骤:
(1)将质量比为1:0.8~1的PbCl2和MnCl2·4H2O混合,加入十八烯,油酸和油胺,氮气氛围下搅拌10分钟,加热到120℃,保持30分钟,再到165℃,保持10分钟,记为A溶液;
(2)再将步骤(1)所述A溶液加热到200℃,再加入油酸和油胺,保持10分钟,至溶液变澄清时,把溶液温度降到50~100℃,加入甲胺的四氢呋喃溶液,得到乳白色溶液,再加入甲苯洗涤离心,去掉上清液,得到锰掺杂甲基氨基钙钛矿纳米晶体。
进一步,步骤(1)所述PbCl2、油酸和油胺质量体积比(mg:ml:ml)为100:0.8~1.3:0.8~1.3。
进一步,步骤(2)所述油酸和油胺加入体积量分别和步骤(1)中油酸和油胺加入体积量相等。
进一步,甲胺的四氢呋喃溶液中甲胺与PbCl2摩尔比为10~20:1。
进一步,所述锰掺杂甲基氨基钙钛矿纳米晶体为锰掺杂甲基氨基钙钛矿量子点或锰掺杂甲基氨基钙钛矿纳米线。
进一步,所述锰掺杂甲基氨基钙钛矿纳米晶体为锰掺杂甲基氨基钙钛矿量子点时,所述油酸和油胺加入量体积比为1:1。
进一步,所述锰掺杂甲基氨基钙钛矿纳米晶体为锰掺杂甲基氨基钙钛矿纳米线时,所述油酸和油胺加入量体积为比为1.1~1.6:1。
由以上任一项所述的制备方法得到的锰掺杂甲基氨基钙钛矿纳米晶体。
锰掺杂甲基氨基钙钛矿纳米晶体在制备太阳能电池、量子点发光二极管或激光器中的应用。
本发明的有益效果在于:1、本技术方案的制备方法是一种简单的热注射反应方法,操作步骤简单,适合工业化生产。2、本技术方案得到的纳米晶体颗粒均匀,荧光效率高,且具有较大的斯托克斯位移。3、本技术方案得到的纳米线发光效率维持在50%。
附图说明
为了使本发明的目的、技术方案和有益效果更加清楚,本发明提供如下附图进行说明:
图1为Mn-MAPbCl3钙钛矿量子点分散于正己烷中在日光灯下(a)及其在紫外灯下(λ=365nm)(b)的照片;
图2为Mn-MAPbCl3钙钛矿纳米线分散于正己烷中在日光灯下(a)及其在紫外灯下(λ=365nm)(b)的照片;
图3为Mn-MAPbCl3钙钛矿量子点透射电镜照片;
图4为Mn-MAPbCl3钙钛矿量子点高分辨透射电镜照片;
图5为Mn-MAPbCl3钙钛矿纳米线的扫描电镜mapping照片;
图6为Mn-MAPbCl3钙钛矿量子点的光致发光照片;
图7为Mn-MAPbCl3钙钛矿纳米线的光致发光照片;
图8为Mn-MAPbCl3钙钛矿纳米线的吸收光谱照片;
其中图5中a图为SEM图,b-f图是各元素面扫图,b图为C元素,显示湖蓝色;c图为N元素,显示紫色;d图表示Mn元素,显示黄色;e图为Pb元素,显示红色;f图为Cl元素,显示绿色。
具体实施方式
下面将结合附图,对本发明的优选实施例进行详细的描述。
实施例1锰掺杂甲基氨基钙钛矿量子点的制备
将61.5mg PbCl2和61.5mg MnCl2·4H2O放入50mL的烧瓶内,加入5mL十八烯,0.8mL油酸和0.8mL油胺,氮气氛围下搅拌10分钟。然后对烧瓶加热到120℃,保持30分钟,升高温度到165℃,保持10分钟,再升高温度到200℃,加入0.8mL油酸和0.8mL油胺,保持10分钟,可以看到溶液边澄清。最后把溶液温度降到80℃,将20M甲胺的四氢呋喃溶液170ul加入进去,得到乳白色溶液。将得到的样品进行洗涤,在8000rpm离心5分钟,去掉上清液,将沉淀物用甲苯分散,再次离心,重复三次,将最终得到的锰掺杂甲基氨基钙钛矿量子点,简称Mn-MAPbCl3钙钛矿量子点,分散在正己烷里。
图1为由实施例1得到的Mn-MAPbCl3钙钛矿量子点分散于正己烷中在日光灯下(a)及其在紫外灯下(λ=365nm)(b)的照片;图3.为Mn-MAPbCl3钙钛矿量子点透射电镜照片;图4为Mn-MAPbCl3钙钛矿量子点高分辨透射电镜照片;图6.Mn-MAPbCl3钙钛矿量子点的光致发光照片。
实施例2锰掺杂甲基氨基钙钛矿纳米线的制备
将61.5mg PbCl2和61.5mg MnCl2·4H2O放入50mL的烧瓶内,加入5mL十八烯,0.7mL油酸和0.6mL油胺,氮气氛围下搅拌10分钟;然后加热到120℃,保持30分钟,升高温度到165℃,保持10分钟,再升高温度到200℃,加入0.7mL油酸和0.6mL油胺,保持10分钟,可以看到溶液边澄清。最后把溶液温度降到80℃,将20M甲胺的四氢呋喃溶液170ul加入进去,得到乳白色溶液。将得到的样品进行洗涤,在8000rpm离心5分钟,去掉上清液,将沉淀物用甲苯分散,再次离心,重复三次,将最终得到的锰掺杂甲基氨基钙钛矿纳米线,简称Mn-MAPbCl3钙钛矿纳米线,分散在正己烷里。
图2为由实施例2得到的Mn-MAPbCl3钙钛矿纳米线分散于正己烷中在日光灯下(a)及其在紫外灯下(λ=365nm)(b)的照片;图5为Mn-MAPbCl3钙钛矿纳米线的扫描电镜mapping照片;图7为Mn-MAPbCl3钙钛矿纳米线的光致发光照片;由图7和8可知斯托克斯位移较大,避免光的自吸收,纳米晶体分散性好,颗粒均匀,发光效率高。
最后说明的是,以上优选实施例仅用以说明本发明的技术方案而非限制,尽管通过上述优选实施例已经对本发明进行了详细的描述,但本领域技术人员应当理解,可以在形式上和细节上对其作出各种各样的改变,而不偏离本发明权利要求书所限定的范围。

Claims (9)

1.一种锰掺杂甲基氨基钙钛矿纳米晶体的制备方法,其特征在于,所述制备方法为以下步骤:
(1)将质量比为1:0.8~1的PbCl2和MnCl2·4H2O混合,加入十八烯,油酸和油胺,氮气氛围下搅拌10分钟,加热到120℃,保持30分钟,再到165℃,保持10分钟,记为A溶液;
(2)再将步骤(1)所述A溶液加热到200℃,再加入油酸和油胺,保持10分钟,至溶液变澄清时,把溶液温度降到50~100℃,加入甲胺的四氢呋喃溶液,得到乳白色溶液,再加入甲苯洗涤离心,去掉上清液,得到锰掺杂甲基氨基钙钛矿纳米晶体。
2.根据权利要求1所述的制备方法,其特征在于:步骤(1)所述PbCl2、油酸和油胺质量体积比(mg:ml:ml)为100:0.8~1.3:0.8~1.3。
3.根据权利要求1所述的制备方法,其特征在于:步骤(2)所述油酸和油胺加入体积量分别和步骤(1)中油酸和油胺加入体积量相等。
4.根据权利要求1所述的制备方法,其特征在于:甲胺的四氢呋喃溶液中甲胺与PbCl2摩尔比为10~20:1。
5.一种锰掺杂甲基氨基钙钛矿纳米晶体的制备方法,其特征在于,所述锰掺杂甲基氨基钙钛矿纳米晶体为锰掺杂甲基氨基钙钛矿量子点或锰掺杂甲基氨基钙钛矿纳米线。
6.根据权利要求5所述的制备方法,其特征在于:所述锰掺杂甲基氨基钙钛矿纳米晶体为锰掺杂甲基氨基钙钛矿量子点时,所述油酸和油胺加入量体积比为1:1。
7.根据权利要求5所述的制备方法,其特征在于:所述锰掺杂甲基氨基钙钛矿纳米晶体为锰掺杂甲基氨基钙钛矿纳米线时,所述油酸和油胺加入量体积为比为1.1~1.6:1。
8.由权利要求1~7任一项所述的制备方法得到的锰掺杂甲基氨基钙钛矿纳米晶体。
9.权利要求7所述锰掺杂甲基氨基钙钛矿纳米晶体在制备太阳能电池、量子点发光二极管或激光器中的应用。
CN201710165541.3A 2017-03-20 2017-03-20 一种锰掺杂甲基氨基钙钛矿纳米晶体的制备方法及其产品和应用 Expired - Fee Related CN106905957B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710165541.3A CN106905957B (zh) 2017-03-20 2017-03-20 一种锰掺杂甲基氨基钙钛矿纳米晶体的制备方法及其产品和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710165541.3A CN106905957B (zh) 2017-03-20 2017-03-20 一种锰掺杂甲基氨基钙钛矿纳米晶体的制备方法及其产品和应用

Publications (2)

Publication Number Publication Date
CN106905957A true CN106905957A (zh) 2017-06-30
CN106905957B CN106905957B (zh) 2019-06-14

Family

ID=59187461

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710165541.3A Expired - Fee Related CN106905957B (zh) 2017-03-20 2017-03-20 一种锰掺杂甲基氨基钙钛矿纳米晶体的制备方法及其产品和应用

Country Status (1)

Country Link
CN (1) CN106905957B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108192605A (zh) * 2018-01-22 2018-06-22 汕头大学 一种高光致发光量子产率的锰掺杂二维铅卤钙钛矿材料及其制备
CN108534055A (zh) * 2018-03-05 2018-09-14 清华大学 一种荧光集光太阳能照明系统
CN110295039A (zh) * 2018-03-23 2019-10-01 Tcl集团股份有限公司 一种颗粒及其制备方法
CN114085168A (zh) * 2021-11-30 2022-02-25 南京理工大学 高光产额的镉掺杂二苯胍锰溴闪烁体及其合成方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120100617A (ko) * 2011-03-04 2012-09-12 주식회사 나노스퀘어 동일한 크기에 각기 다른 파장을 갖는 코어-쉘 구조의 양자점 제조 방법
CN105441074A (zh) * 2015-11-18 2016-03-30 重庆大学 一种基于对CsPbBr3钙钛矿量子点从蓝光到绿光调控的制备方法
CN105470391A (zh) * 2015-11-23 2016-04-06 中国科学院上海硅酸盐研究所 有机无机杂化钙钛矿薄膜以及钙钛矿太阳能电池的制备方法
WO2016072805A1 (ko) * 2014-11-06 2016-05-12 포항공과대학교 산학협력단 페로브스카이트 나노결정입자 및 이를 이용한 광전자 소자
CN105702865A (zh) * 2016-04-05 2016-06-22 河北大学 一种金属掺杂钙钛矿薄膜、其制备方法及应用
CN105802607A (zh) * 2016-02-25 2016-07-27 吉林大学 一种MAPbX3钙钛矿纳米簇的制备方法
CN105883909A (zh) * 2016-01-22 2016-08-24 重庆大学 一种CsPbBrxI3-x纳米棒的制备方法
CN105969349A (zh) * 2016-04-13 2016-09-28 东南大学 一种高亮度单色性好的溴化物钙钛矿量子点材料及其制备方法
US9570240B1 (en) * 2016-08-04 2017-02-14 The United States of America represented by the Secretary of the Air Force Controlled crystallization to grow large grain organometal halide perovskite thin film

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120100617A (ko) * 2011-03-04 2012-09-12 주식회사 나노스퀘어 동일한 크기에 각기 다른 파장을 갖는 코어-쉘 구조의 양자점 제조 방법
WO2016072805A1 (ko) * 2014-11-06 2016-05-12 포항공과대학교 산학협력단 페로브스카이트 나노결정입자 및 이를 이용한 광전자 소자
CN105441074A (zh) * 2015-11-18 2016-03-30 重庆大学 一种基于对CsPbBr3钙钛矿量子点从蓝光到绿光调控的制备方法
CN105470391A (zh) * 2015-11-23 2016-04-06 中国科学院上海硅酸盐研究所 有机无机杂化钙钛矿薄膜以及钙钛矿太阳能电池的制备方法
CN105883909A (zh) * 2016-01-22 2016-08-24 重庆大学 一种CsPbBrxI3-x纳米棒的制备方法
CN105802607A (zh) * 2016-02-25 2016-07-27 吉林大学 一种MAPbX3钙钛矿纳米簇的制备方法
CN105702865A (zh) * 2016-04-05 2016-06-22 河北大学 一种金属掺杂钙钛矿薄膜、其制备方法及应用
CN105969349A (zh) * 2016-04-13 2016-09-28 东南大学 一种高亮度单色性好的溴化物钙钛矿量子点材料及其制备方法
US9570240B1 (en) * 2016-08-04 2017-02-14 The United States of America represented by the Secretary of the Air Force Controlled crystallization to grow large grain organometal halide perovskite thin film

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
B. NÁFRÁDI ET AL.: "Optically switched magnetism in photovoltaic perovskite CH3NH3(Mn:Pb)I3", 《NATURE COMMUNICATIONS》 *
OLEH VYBORNYI ET AL.: "Polar-solvent-free colloidal synthesis of highly luminescent alkylammonium lead halide perovskite nanocrystals", 《NANOSCALE》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108192605A (zh) * 2018-01-22 2018-06-22 汕头大学 一种高光致发光量子产率的锰掺杂二维铅卤钙钛矿材料及其制备
CN108192605B (zh) * 2018-01-22 2021-04-02 汕头大学 一种高光致发光量子产率的锰掺杂二维铅卤钙钛矿材料及其制备
CN108534055A (zh) * 2018-03-05 2018-09-14 清华大学 一种荧光集光太阳能照明系统
CN108534055B (zh) * 2018-03-05 2020-02-11 清华大学 一种荧光集光太阳能照明系统
CN110295039A (zh) * 2018-03-23 2019-10-01 Tcl集团股份有限公司 一种颗粒及其制备方法
CN114085168A (zh) * 2021-11-30 2022-02-25 南京理工大学 高光产额的镉掺杂二苯胍锰溴闪烁体及其合成方法

Also Published As

Publication number Publication date
CN106905957B (zh) 2019-06-14

Similar Documents

Publication Publication Date Title
CN106905957A (zh) 一种锰掺杂甲基氨基钙钛矿纳米晶体的制备方法及其产品和应用
Wang et al. Polymer-assisted self-assembly of multicolor carbon dots as solid-state phosphors for fabrication of warm, high-quality, and temperature-responsive white-light-emitting devices
Zhai et al. Synthesis of green emissive carbon dots@ montmorillonite composites and their application for fabrication of light-emitting diodes and latent fingerprints markers
EP3119851B1 (en) Quantum dot compositions
KR101448127B1 (ko) 봉지된 반도체 나노 입자 기반 물질
Chen et al. Synthesis of silica-based carbon dot/nanocrystal hybrids toward white LEDs
US20130105839A1 (en) Semiconductor nanoparticle-based materials for use in light emitting diodes, optoelectronic displays and the like
CN106947477B (zh) Mn-CsPbCl3纳米棒的制备方法及其产品和应用
Ma et al. Carbon dot-doped sodium borosilicate gel glasses with emission tunability and their application in white light emitting diodes
CN106967412A (zh) 含荧光体颗粒和使用它的发光装置、含荧光体片
CN102217106A (zh) 基于半导体纳米粒子的发光装置和相关的材料和方法
KR20150039127A (ko) 첨가제를 포함한 봉지된 반도체 나노 입자 기반 물질
Wang et al. A dual-emitting core–shell carbon dot–silica–phosphor composite for LED plant grow light
Yang et al. Fluorescent silicon nanoparticles utilized as stable color converters for white light-emitting diodes
Wu et al. Bright and multicolor emissive carbon dots/organosilicon composite for highly efficient tandem luminescent solar concentrators
Chang et al. Quench-resistant and stable nanocarbon dot/sheet emitters with tunable solid-state fluorescence via aggregation-induced color switching
Liu et al. Stability improvement of photoluminescent QLEDs based on Mn-doped all-inorganic metal halide perovskite quantum dots with silica shell
Liu et al. Impact of molecular ligands in the synthesis and transformation between metal halide perovskite quantum dots and magic sized clusters
Shen et al. Polyacrylic acid-b-polystyrene-passivated CsPbBr 3 perovskite quantum dots with high photoluminescence quantum yield for light-emitting diodes
Lv et al. Tunable KLa (MoO4) 2: Eu3+@ CDs composite materials for white LED and multi-mode information encryption technology
Chen et al. Highly fluorescent CsPbBr3/TiO2 core/shell perovskite nanocrystals with excellent stability
Yao et al. All-inorganic zero-dimensional Sn-doped Rb4CdCl6 with near-unity quantum efficiency
Soltani et al. Efficiency enhancement of Si solar cell based on spectral down-shifting property of CsGeBr 3 optimized by time and temperature of synthesis
Liu et al. Towards efficient and stable multi-color carbon nanoparticle phosphors: synergy between inner polar groups and outer silica matrix
Cao et al. Synthesis and optical properties of Mn 2+-doped Cd–In–S colloidal nanocrystals

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190614

CF01 Termination of patent right due to non-payment of annual fee