CN106894006A - 一种用于化学镀Ni‑Mo‑B/GO多功能纳米复合沉积层的镀液、制备方法及其应用 - Google Patents

一种用于化学镀Ni‑Mo‑B/GO多功能纳米复合沉积层的镀液、制备方法及其应用 Download PDF

Info

Publication number
CN106894006A
CN106894006A CN201710172154.2A CN201710172154A CN106894006A CN 106894006 A CN106894006 A CN 106894006A CN 201710172154 A CN201710172154 A CN 201710172154A CN 106894006 A CN106894006 A CN 106894006A
Authority
CN
China
Prior art keywords
plating
plating solution
nano composite
multifunctional nano
sedimentary layers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710172154.2A
Other languages
English (en)
Inventor
蒋继波
钱炜
陈浩天
朱丽莹
韩生
冯晨萁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Technology
Original Assignee
Shanghai Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Technology filed Critical Shanghai Institute of Technology
Priority to CN201710172154.2A priority Critical patent/CN106894006A/zh
Publication of CN106894006A publication Critical patent/CN106894006A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/48Coating with alloys
    • C23C18/50Coating with alloys with alloys based on iron, cobalt or nickel
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1635Composition of the substrate
    • C23C18/1637Composition of the substrate metallic substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1655Process features
    • C23C18/1662Use of incorporated material in the solution or dispersion, e.g. particles, whiskers, wires
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1655Process features
    • C23C18/1664Process features with additional means during the plating process
    • C23C18/1666Ultrasonics

Abstract

本发明公开了一种用于化学镀Ni‑Mo‑B/GO多功能纳米复合沉积层的镀液、制备方法及其应用。所述镀液按照每升计算,其组成和含量如下:六水合氯化镍20‑55g,硼氢化钠0.5‑4g,钼酸钠10‑25g,氢氧化钠20‑65g,乙二胺15‑65克,十二烷基硫酸钠0.1‑0.2g,氧化石墨烯0.1‑10g,乙酸铅0.01‑1g,余量为蒸馏水。其制备方法通过将六水合氯化镍,硼氢化钠,钼酸钠,氢氧化钠,乙二胺,十二烷基硫酸钠,氧化石墨烯,乙酸铅依次加入到蒸馏水中溶解,然后静置,即得到镀液。本发明的镀液用于在低碳钢工件的表面进行施镀,即形成耐磨性好,耐腐蚀强的复合镀层。

Description

一种用于化学镀Ni-Mo-B/GO多功能纳米复合沉积层的镀液、 制备方法及其应用
技术领域
本发明涉及一种化学镀技术领域,具体的说,涉及一种用于化学镀Ni-Mo-B/GO多功能纳米复合沉积层的镀液、制备方法及其应用。
背景技术
超声波在液体媒质中传播时产生的空化效应和机械剪切效应,在纳米复合镀工艺中可以有效地分散纳米颗粒,细化晶粒,从而保证纳米复合镀层具有良好的组织性能,改善镀层晶向,增加镀层光亮度,提高硬度和耐蚀性等。由于其频率高、波长短,因而传播的方向性好、穿透能力强。超声波在化学镀中的作用:(1)提高镀层沉积速率:采用超声波后有助于Ni2+的扩散,镀层的沉积速度明显提高,这是由超声波的机械效应引起的。当超声波在溶液体系内振荡时,镀层表面会形成一种有次序和相同频率的冲击波微射流,从而使Ni沉积时随着超声波的频率振动,使沉积逐次进行,提高了镀层沉积速度。另一方面,施加的超声波导致镀液与基体界面处形成空化作用,促进了镀层表面活化态氢原子的生成,提高了体系的还原性,加速了Ni或其他金属离子的沉积。(2)改善镀层表面质量:由于镀速的提高使得更多的金属离子能够沉积到低碳钢表面,从而大大增加了镀层的厚度,增加了镀层的强度,另一方面,在超声波作用时,空化作用引起的强烈微射流以及乳化作用会使这层小气泡迅速破碎,气泡很难再长大和长时间停留,从而提高了镀层的致密性、光亮度、孔隙率及结合力,结晶更为细致、均匀,表面质量得到改善。(3)促进微纳米颗粒分散和沉积:在微纳米复合镀层的制备中,超声波因震荡而产生的机械效应以及乳化作用使微纳米颗粒的团聚现象明显减少,改善了微粒在镀液中的分散性,促进了微粒与金属离子的共沉积,形成了均匀、致密而平整的复合镀层。
化学镀是指在镀液中加入适当的还原剂使金属离子在表面自发还原的一种新型表面处理技术。由于无需外加电源,成本较低,并且能够使得镀层均匀,具有较好的装饰效果,在许多领域已经开始取代电镀技术,在电子、阀门制造、机械和汽车等工业中能得到广泛地应用。
1944年,美国国家标准局的A.Brenner和G.Riddell的发现,弄清楚了形成涂层的催化特性,发现了沉积非粉末状镍的方法,使化学镀镍技术工业应用有了可能性,但那时的化学镀镍溶液极不稳定,因此严格意义上讲没有实际价值。经过多年的不断探索与研究,近几年已发展极成熟了。化学镀镍几乎适用于所有金属表面镀镍。如:钢铁镀镍,不锈钢镀镍,铝镀镍,铜镀镍等等,它同样适用于非金属表面镀镍。比如:陶瓷镀镍,玻璃镀镍,金刚石镀镍,碳片镀镍,塑料镀镍,树脂镀镍等等。用化学镀镍沉积的镀层,有一些不同于电沉积层的特性。硬度高、耐磨性良好。电镀镍层的硬度仅为l60~180HV,而化学镀镍层的硬度一般为400~700HV,经适当热处理后还可进一步提高到接近甚至超过铬镀层的硬度,故耐磨性良好,更难得的是化学镀镍层兼备了良好的耐蚀与耐磨性能。化学稳定性高、镀层结合力好。在大气中以及在其他介质中,化学镀镍层的化学稳定性高于电镀镍层的化学稳定性。与通常的钢铁、铜等基体的结合良好,结合力不低于电镀镍层和基体的结合力。
石墨烯是以其独特的二维结构和优异的电学、光学、热学和机械性能,备受科研机构的大力关注,已经成为化学、物理等领域的热点研究课题。大量理论和实验研究表明,石墨烯及其衍生物在纳米器件、半导体材料、生物传感器、信息存储、太阳能电池和储氢材料等领域具有潜在的重要应用价值。
然而目前还没有关于Ni-Mo-B/GO多功能纳米复合沉积层制备方法的研究。即使少数有涉及到Ni-B合金的研究,但其并没有涉及到超声及氧化石墨烯GO。
发明内容
本发明的目的之一在于为了解决上述的Ni-Mo-B/GO复合镀层通过超声波技术共同沉积到基体材料的技术问题而提供一种沉积新方法。
本发明的目的之二在于提供上述的一种Ni-Mo-B/GO复合镀液的制备方法。
本发明的目的之三在于将上述复合镀液通过超声辅助及化学镀的方法应用于低碳钢的表面,形成镀层。最终所得的低碳钢表面具有很强的耐腐蚀,高硬度性能。
本发明技术方案具体介绍如下。
本发明提供一种用于复合化学镀Ni-Mo-B/GO多功能纳米复合沉积层的镀液,参考文献以及正交实验得出镀液配方,按每升镀液计算,其组成及含量如下:氧化石墨烯0.25-1g,氯化镍20-55g,钼酸钠10-25g,硼氢化钠0.5-4g,乙二胺15-65g,氢氧化钠20-65g,十二烷基硫酸钠0.1-0.2g,乙酸铅0.01-1g,蒸馏水余量。
本发明中,所述用于复合化学镀Ni-Mo-B/GO多功能纳米复合沉积层的镀液,按每升镀液计算,其组成及含量如下:氧化石墨烯0.5-0.8g,氯化镍35-45g,钼酸钠15-20g,硼氢化钠1-2g,乙二胺45-55g,氢氧化钠40-55g,十二烷基硫酸钠0.1-0.2g,乙酸铅0.15-0.15g,蒸馏水余量。
本发明还提供一种上述镀液的制备方法,具体步骤如下:将六水合氯化镍,硼氢化钠,钼酸钠,氢氧化钠,乙二胺,十二烷基硫酸钠,氧化石墨烯、乙酸铅和水按比例混合溶解,然后静置10~15小时,即得到用于复合化学镀Ni-Mo-B/GO多功能纳米复合沉积层的镀液。
本发明进一步提供一种上述镀液在化学镀Ni-Mo-B/GO多功能纳米复合沉积层方面的应用,应用方法如下:将预处理后的基体放入配好的镀液中,溶液温度控制在80~90℃,超声强度在150~250W,超声频率在50~70KHZ,45min~90min后取出,用去离子水进行洗净后干燥,即得到Ni-Mo-B/GO多功能纳米复合沉积层。优选的,基体为低碳钢或者高碳钢。
本发明的一种用于复合化学镀Ni-Mo-B/GO多功能纳米复合沉积层的镀液,超声波在液体媒质中传播时产生的空化效应和机械剪切效应,在纳米复合镀工艺中可以有效地分散纳米颗粒,细化晶粒,从而保证纳米复合镀层具有良好的组织性能,改善镀层晶向,增加镀层光亮度,提高硬度和耐蚀性等。
本发明的一种用于复合化学镀Ni-Mo-B/GO多功能纳米复合沉积层的镀液,由于在原有的镍钼硼镀中加入了硬度极高的氧化石墨烯,因此应用该石墨烯镍钼硼镀液在低碳钢工件表面施镀时,最终所形成的Ni-Mo-B/GO(氧化石墨烯)复合镀镀层的耐磨性增强,解决了镍钼硼镀层耐磨性差的问题。即通过石墨烯的抗磨性,阻止外界对石墨烯镍钼硼复合镀镀层的摩擦,增强石墨烯镍钼硼复合镀镀层的耐磨性,若镀液中成份浓度变化,会导致镀层开裂,出现裂纹。
和现有技术相比,本发明的有益效果在于:利用本发明的一种用于复合化学镀Ni-Mo-B/GO多功能纳米复合沉积层的镀液施镀后,所得的石墨烯镍钼硼复合镀镀层为高温耐磨复合型镀层,其表现硬度比单纯的镍钼硼镀层要好,并且对基体材料的物理性能无任何影响;该石墨烯镍钼硼复合镀镀层为含有石墨烯的镍钼硼合金,因此,最终所形成的石墨烯镍钼硼复合镀镀层同样具有非常良好的耐腐蚀性能。
附图说明
图1是应用实施例1所得的表面镀有Ni-Mo-B/GO的钢铁合金镀件A的镀层表面的扫描电镜图。
图2是应用实施例2所得的表面镀有Ni-Mo-B/GO的钢铁合金镀件B的镀层表面的扫描电镜图。
图3是应用实施例3所得的表面镀有Ni-Mo-B/GO的钢铁合金镀件C的镀层表面的扫描电镜图。
具体实施方式
下面结合具体的实施例对本发明的技术方案做进一步的描述,但本发明并不限于下述实施例。
本发明各实施例中所用的各种原料,如无特殊说明,均为市售。
实施例1
一种Ni-Mo-B/GO(氧化石墨烯)多功能纳米复合镀液,其特征在与按每升镀液计算,其组成及含量如下:
将六水合氯化镍,硼氢化钠,钼酸钠,氢氧化钠,乙二胺,十二烷基硫酸钠,氧化石墨烯,乙酸铅依次加入到蒸馏水中溶解,然后静置12小时,即得到Ni-Mo-B/GO(氧化石墨烯)多功能纳米复合镀液。
应用实施例1
将实施例1所得的多功能纳米复合镀液应用于低碳钢的表面以形成Ni-Mo-B/GO复合镀镀层,具体包括如下步骤:
(1)低碳钢工件表面预处理
将低碳钢的表面依次经1、4、6、7号金相砂纸磨光除污,接着用二氧化硅悬浮液进行抛光2min,然后在乙醇溶液中进行超声清洗1min,接着是在(30g/L无水碳酸钠,30g/L三磷酸钠)溶液中进行除油;接着用10%盐酸进行清洗,除去表面氧化膜;最后用蒸馏水进行冲洗。
(2)将步骤(1)经预处理后的低碳钢工件放入配好的复合镀液中,溶液温度控制在85℃,超声强度在200W,超声频率在60KHZ,1h后取出,用去离子水进行洗净后,控制温度在25℃进行干燥后,即得到表面镀有Ni-Mo-B/GO(氧化石墨烯)多功能纳米复合沉积镀层镀件A。图1是应用实施例1所得的表面镀有Ni-Mo-B/GO的钢铁合金镀件A的镀层表面的扫描电镜图。
实施例2
一种Ni-Mo-B/GO(氧化石墨烯)多功能纳米复合镀液,其特征在与按每升镀液计算,其组成及含量如下:
将六水合氯化镍,硼氢化钠,钼酸钠,氢氧化钠,乙二胺,十二烷基硫酸钠,氧化石墨烯,乙酸铅依次加入到蒸馏水中溶解,然后静置12小时,即得到Ni-Mo-B/GO(氧化石墨烯)多功能纳米复合镀液。
应用实施例2
将实施例2所得的多功能纳米复合镀液应用于低碳钢的表面以形成Ni-Mo-B/GO复合镀镀层,具体包括如下步骤:
(1)低碳钢工件表面预处理
将低碳钢的表面依次经1、4、6、7号金相砂纸磨光除污,接着用二氧化硅悬浮液进行抛光2min,然后在乙醇溶液中进行超声清洗1min,接着是在(30g/L无水碳酸钠,30g/L三磷酸钠)溶液中进行除油;接着用10%盐酸进行清洗,除去表面氧化膜;最后用蒸馏水进行冲洗。
(2)将步骤(1)经预处理后的低碳钢工件放入配好的复合镀液中,溶液温度控制在85℃,超声强度在200W,超声频率在60KHZ,1h后取出,用去离子水进行洗净后,控制温度在25℃进行干燥后,即得到表面镀有RE-Ni-Mo-GO(氧化石墨烯)多功能纳米复合电沉积镀层镀件B。图2是应用实施例2所得的表面镀有Ni-Mo-B/GO的钢铁合金镀件B的镀层表面的扫描电镜图。
实施例3
一种Ni-Mo-B/GO(氧化石墨烯)多功能纳米复合镀液,其特征在与按每升镀液计算,其组成及含量如下:
将六水合氯化镍,硼氢化钠,钼酸钠,氢氧化钠,乙二胺,十二烷基硫酸钠,氧化石墨烯,乙酸铅依次加入到蒸馏水中溶解,然后静置12小时,即得到Ni-Mo-B/GO(氧化石墨烯)多功能纳米复合镀液。
应用实施例3
将实施例3所得的多功能纳米复合镀液应用于低碳钢的表面以形成Ni-Mo-B/GO复合镀镀层,具体包括如下步骤:
(1)低碳钢工件表面预处理
将低碳钢的表面依次经1、4、6、7号金相砂纸磨光除污,接着用二氧化硅悬浮液进行抛光2min,然后在乙醇溶液中进行超声清洗1min,接着是在(30g/L无水碳酸钠,30g/L三磷酸钠)溶液中进行除油;接着用10%盐酸进行清洗,除去表面氧化膜;最后用蒸馏水进行冲洗。
(2)将步骤(1)经预处理后的低碳钢工件放入配好的复合镀液中,溶液温度控制在85℃,超声强度在200W,超声频率在60KHZ,1h后取出,用去离子水进行洗净后,控制温度在25℃进行干燥后,即得到表面镀有Ni-Mo-B/GO(氧化石墨烯)多功能纳米复合沉积镀层镀件C。图3是应用实施例3所得的表面镀有Ni-Mo-B/GO的钢铁合金镀件C的镀层表面的扫描电镜图。

Claims (5)

1.一种用于化学镀Ni-Mo-B/GO多功能纳米复合沉积层的镀液,其特征在于,按每升镀液计算,其组成及含量如下:氧化石墨烯0.25-1g,氯化镍20-55g,钼酸钠10-25g,硼氢化钠0.5-4g,乙二胺15-65g,氢氧化钠20-65g,十二烷基硫酸钠0.1-0.2g,乙酸铅0.01-1g,蒸馏水余量。
2.根据权利要求1所述的镀液,其特征在于,按每升镀液计算,其组成及含量如下:氧化石墨烯0.5-0.8g,氯化镍35-45g,钼酸钠15-20g,硼氢化钠1-2g,乙二胺45-55g,氢氧化钠40-55g,十二烷基硫酸钠0.1-0.2g,乙酸铅0.15-0.15g,蒸馏水余量。
3.一种如权利要求1所述的镀液的制备方法,其特征在于,将六水合氯化镍,硼氢化钠,钼酸钠,氢氧化钠,乙二胺,十二烷基硫酸钠,氧化石墨烯、乙酸铅和水按比例混合溶解,然后静置10~15小时,即得到用于复合化学镀Ni-Mo-B/GO多功能纳米复合沉积层的镀液。
4.一种如权利要求1所述的镀液在化学镀Ni-Mo-B/GO多功能纳米复合沉积层方面的应用,其特征在于,应用方法如下:将预处理后的基体放入配好的镀液中,溶液温度控制在80~90℃,超声强度在150~250W,超声频率在50~70KHZ,45min~90min后取出,用去离子水进行洗净后干燥,即得到Ni-Mo-B/GO多功能纳米复合沉积层。
5.根据权利要求4所述的应用,其特征在于,基体为低碳钢或者高碳钢。
CN201710172154.2A 2017-03-22 2017-03-22 一种用于化学镀Ni‑Mo‑B/GO多功能纳米复合沉积层的镀液、制备方法及其应用 Pending CN106894006A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710172154.2A CN106894006A (zh) 2017-03-22 2017-03-22 一种用于化学镀Ni‑Mo‑B/GO多功能纳米复合沉积层的镀液、制备方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710172154.2A CN106894006A (zh) 2017-03-22 2017-03-22 一种用于化学镀Ni‑Mo‑B/GO多功能纳米复合沉积层的镀液、制备方法及其应用

Publications (1)

Publication Number Publication Date
CN106894006A true CN106894006A (zh) 2017-06-27

Family

ID=59194197

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710172154.2A Pending CN106894006A (zh) 2017-03-22 2017-03-22 一种用于化学镀Ni‑Mo‑B/GO多功能纳米复合沉积层的镀液、制备方法及其应用

Country Status (1)

Country Link
CN (1) CN106894006A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109252147A (zh) * 2018-11-07 2019-01-22 武汉大学深圳研究院 制备铜-石墨烯复合镀层的方法、化学镀液及镀液制备方法
CN112421026A (zh) * 2020-11-19 2021-02-26 浙江南都电源动力股份有限公司 一种Ni基合金-石墨烯集流体及其制备方法与应用
CN114892241A (zh) * 2022-06-07 2022-08-12 国网福建省电力有限公司 一种高温耐磨Ni-Mo基氮化物氮化物陶瓷相复合涂层及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030113576A1 (en) * 2001-12-19 2003-06-19 Intel Corporation Electroless plating bath composition and method of using
CN101275223A (zh) * 2008-01-02 2008-10-01 卢金松 一种渗透合金化学镀镍溶液的配制方法
CN102409321A (zh) * 2011-11-09 2012-04-11 程绍鹏 一种抗高温、耐腐、耐压、自润滑化学复合液及其制备施镀方法
CN102418092A (zh) * 2011-11-09 2012-04-18 程绍鹏 一种耐高温、高速耐磨、自润滑化学复合液及其制备施镀方法
CN103757617B (zh) * 2014-01-09 2016-07-20 成都理工大学 一种Ni-Cu-La-B四元合金镀液及用于玻璃纤维化学镀的方法
CN105839082A (zh) * 2016-06-13 2016-08-10 上海应用技术学院 一种Ce-Ni-B/GO化学复合沉积层及其超声波辅助制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030113576A1 (en) * 2001-12-19 2003-06-19 Intel Corporation Electroless plating bath composition and method of using
CN101275223A (zh) * 2008-01-02 2008-10-01 卢金松 一种渗透合金化学镀镍溶液的配制方法
CN102409321A (zh) * 2011-11-09 2012-04-11 程绍鹏 一种抗高温、耐腐、耐压、自润滑化学复合液及其制备施镀方法
CN102418092A (zh) * 2011-11-09 2012-04-18 程绍鹏 一种耐高温、高速耐磨、自润滑化学复合液及其制备施镀方法
CN103757617B (zh) * 2014-01-09 2016-07-20 成都理工大学 一种Ni-Cu-La-B四元合金镀液及用于玻璃纤维化学镀的方法
CN105839082A (zh) * 2016-06-13 2016-08-10 上海应用技术学院 一种Ce-Ni-B/GO化学复合沉积层及其超声波辅助制备方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109252147A (zh) * 2018-11-07 2019-01-22 武汉大学深圳研究院 制备铜-石墨烯复合镀层的方法、化学镀液及镀液制备方法
CN112421026A (zh) * 2020-11-19 2021-02-26 浙江南都电源动力股份有限公司 一种Ni基合金-石墨烯集流体及其制备方法与应用
CN112421026B (zh) * 2020-11-19 2022-04-19 浙江南都电源动力股份有限公司 一种Ni基合金-石墨烯集流体及其制备方法与应用
CN114892241A (zh) * 2022-06-07 2022-08-12 国网福建省电力有限公司 一种高温耐磨Ni-Mo基氮化物氮化物陶瓷相复合涂层及其制备方法

Similar Documents

Publication Publication Date Title
Sadreddini et al. Corrosion resistance enhancement of Ni-P-nano SiO2 composite coatings on aluminum
Sudagar et al. Electroless nickel, alloy, composite and nano coatings–A critical review
Barati et al. Electroless Ni-B and composite coatings: A critical review on formation mechanism, properties, applications and future trends
US6258237B1 (en) Electrophoretic diamond coating and compositions for effecting same
CN106894006A (zh) 一种用于化学镀Ni‑Mo‑B/GO多功能纳米复合沉积层的镀液、制备方法及其应用
CN104911642B (zh) RE‑Ni‑Mo/GO纳米复合沉积液及制备方法和用途
CN105839082A (zh) 一种Ce-Ni-B/GO化学复合沉积层及其超声波辅助制备方法
CN106637158B (zh) 一种Nd-Ni-Mo-P/Go化学复合沉积层及其制备方法
Bonin et al. Corrosion behaviour of electroless high boron-mid phosphorous nickel duplex coatings in the as-plated and heat-treated states in NaCl, H2SO4, NaOH and Na2SO4 media
Yildiz et al. Effect of heat treatments for electroless deposited Ni-B and Ni-WB coatings on 7075 Al alloy
CN1769540A (zh) 镍基纳米聚四氟乙烯复合镀层的制备方法
CN107740074A (zh) 一种超声波与双络合剂辅助的Ce‑Ni‑Mo‑P/Go化学复合沉积层及其制备方法
CN105002483B (zh) 一种非晶态镍磷碳化钨粉末复合镀层的制备方法
Shakoor et al. Corrosion behavior of electrodeposited Ni-B coatings modified with SiO2 particles
Ajibola et al. Effects of hard surface grinding and activation on electroless-nickel plating on cast aluminium alloy substrates
Ma et al. Performance of Ni–SiC composites deposited using magnetic-field-assisted electrodeposition under different magnetic-field directions
CN1301881A (zh) 化学镀镍溶液及其制备和使用方法
CN104988474A (zh) 一种复合梯度涂层的化学镀制备方法
CA3092257C (en) Electroless plating of objects with carbon-based material
CN106756908A (zh) 一种耐高温Ni‑B‑Ce化学复合沉积层及其超声波辅助制备方法
Jia et al. Effect of rare earth on microstructure and corrosion behavior of electroless Ni-WP composite coatings
Bose et al. Fortification of Ni–Y 2 O 3 nanocomposite coatings prepared by pulse and direct current methods
CN103806075A (zh) 一种薄型刃具表面的电镀工艺
Srinivasan et al. Electroless deposition of Ni-P composite coatings containing kaolin nanoparticles
Yang et al. Effect of laser spot overlap on the mechanical properties and corrosion resistance of laser-assisted electrodeposited Ni-based coatings

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20170627

RJ01 Rejection of invention patent application after publication