CN106893083B - 二维共轭聚合物及其制备方法和应用 - Google Patents

二维共轭聚合物及其制备方法和应用 Download PDF

Info

Publication number
CN106893083B
CN106893083B CN201710080901.XA CN201710080901A CN106893083B CN 106893083 B CN106893083 B CN 106893083B CN 201710080901 A CN201710080901 A CN 201710080901A CN 106893083 B CN106893083 B CN 106893083B
Authority
CN
China
Prior art keywords
organic
polymer
preparation
conjugated polymer
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710080901.XA
Other languages
English (en)
Other versions
CN106893083A (zh
Inventor
刘举庆
刘正东
黄维
宋梦亚
居尚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Tech University
Original Assignee
Nanjing Tech University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Tech University filed Critical Nanjing Tech University
Priority to CN201710080901.XA priority Critical patent/CN106893083B/zh
Publication of CN106893083A publication Critical patent/CN106893083A/zh
Application granted granted Critical
Publication of CN106893083B publication Critical patent/CN106893083B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/124Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one nitrogen atom in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/126Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one sulfur atom in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/11Homopolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/142Side-chains containing oxygen
    • C08G2261/1422Side-chains containing oxygen containing OH groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/142Side-chains containing oxygen
    • C08G2261/1424Side-chains containing oxygen containing ether groups, including alkoxy
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/148Side-chains having aromatic units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/18Definition of the polymer structure conjugated
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/324Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed
    • C08G2261/3241Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed containing one or more nitrogen atoms as the only heteroatom, e.g. carbazole
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • C08G2261/92TFT applications
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • C08G2261/94Applications in sensors, e.g. biosensors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2365/00Characterised by the use of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Derivatives of such polymers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

本发明公开了二维共轭聚合物及其制备方法和应用,属于聚合物半导体材料领域。该类二维共轭聚合物是以咔唑为骨架,具有选自通式(Ⅰ)或通式(Ⅱ)的化学式的结构:制备方法是先将咔唑衍生物旋涂在平整的衬底上,然后将旋涂有单体的聚合物浸入含有无水三氯化铁的有机溶剂中,通过衬底辅助的氧化聚合反应,制备大面积超薄二维共轭聚合物纳米片。本发明提供的二维共轭聚合物尺寸达到厘米级,厚度为几个纳米。这类聚合物在酸、碱和水中都能稳定存在。它们在紫外区有吸收峰,表现为蓝光发射等特点,在有机光电探测器件、有机发光器件、有机电存储、有机场效应晶体管、有机传感器、有机纳米器件和分离过滤膜等领域具有很好的应用前景。

Description

二维共轭聚合物及其制备方法和应用
技术领域
本发明属于聚合物半导体材料领域,具体涉及大面积超薄二维共轭聚合物半导体材料及其制备方法和应用。
背景技术
自从2004年二维材料石墨烯被单独剥离出来后,其优异的性能及在电子器件、能源、环境等多领域的潜在应用引起了人们极大的研究兴趣[Chem.Rev.2013,113,3766-3798]。同时,国内外许多大学以及研究机构和公司也将研究兴趣转向其他二维纳米材料如二硫化钼、氮化硼以及二维聚合物等的合成和应用[Nat.Nanotechnol.2014,9,768-779]。石墨烯可以被认为是一种二维聚合物,但它的零带隙特点限制了其在有机电子器件中的应用。而有机和塑料电子产品材料制备成本低、工艺简单、具有通用高分子的柔韧性和可塑性的优点,使得人们设想如何将二维聚合物应用于有机电子器件中。在这种情况下,二维共轭聚合物的合成制备及应用引起了研究者的关注。二维共轭聚合物是一类具有广阔用途的新材料。它们是一种片状结构的大分子,结构单元在侧向通过分子碳碳双键或碳碳三键连接而形成。它们具有周期性的超薄结构,只有几个甚至一个分子层厚度。由于可以通过改变官能团来调控二维共轭聚合物的性能,这样在纳米尺寸控制聚合物性能变得可行。二维共轭聚合物的上述特性使得其有望在多个领域发挥应用,诸如有机光电探测器件、有机发光器件、有机电存储、有机场效应晶体管、有机传感器、有机纳米器件和分离过滤膜等[Nat.Chem.2013,5,453-465]。大面积超薄二维共轭聚合物合成和制备是实现上述用途的关键。
当前,二维共轭聚合物的合成主要是通过乌尔曼反应、希夫碱反应等在金属或高定向裂解石墨上生长获得[ACS Nano 2011,5,3923-3929;Chem.Sci.2013,4,3263-3268]。通过这些途径制备的二维共轭聚合物存在面积小(微米级别)、难以从衬底上进行分离以及转移时薄膜产生褶皱等不足。此外,通过希夫碱反应在气液界面可以实现厘米级别的二维共轭聚合物的合成[Angew.Chem.-Int.Edit.2016,55,213-217]。但将制备的大面积二维共轭聚合物转移到其他绝缘性固体衬底上进行实际应用时,同样会在聚合物薄膜上引入褶皱,影响薄膜的性能。并且用于这种聚合方法的单体必须是两亲性结构,单体结构的特殊性会限制这种策略在二维共轭聚合物制备中的应用和发展。因此,发展一种操作简单、普适性强的方法制备大面积超薄二维共轭聚合物材料,对光电信息材料领域的发展具有积极意义。
发明内容
本发明提出了一种新的制备大面积超薄二维共轭聚合物的方法,并通过该方法制备合成了一系列以咔唑为骨架的大面积超薄二维共轭聚合物材料。这种方法叫做衬底辅助的氧化聚合反应,它是将可以发生氧化聚合反应的咔唑衍生物单体直接旋涂在绝缘性衬底上,然后将旋涂有单体的衬底浸泡于含有氧化剂的有机溶剂中,单体在固-液界面发生氧化聚合反应,在绝缘性衬底上生长得到大面积超薄二维共轭聚合物材料。这些咔唑衍生物的结构特点是单体上含有两个咔唑基团。已报道的在单一有机相中咔唑衍生物进行氧化聚合反应制备的聚合物为三维多孔结构,不能得到二维薄膜结构的聚合物。因此,通过衬底辅助来制备超薄二维聚合物是必要的条件。制备的这类二维聚合物材料的尺寸达到厘米级,厚度为几个纳米。此外,这类聚合物在大部分有机溶剂、酸、碱和水中能稳定存在,在紫外区有吸收峰、宽的能带结构、蓝光发射等聚合物半导体性能。
本发明的技术方案:
大面积超薄二维共轭聚合物材料,该聚合物材料的结构以咔唑为骨架,具体选自通式(Ⅰ)或通式(Ⅱ)的化学式的结构:
所述Ar代表共轭芳环单元。
所述Ar为苯环、咔唑、噻吩、芴共轭基团。
所述Ar选自如下单元中的一种:
R为H,C1~12直链烷基、支链烷基及其同分异构体或C1~12烷氧基、支链烷基及其同分异构体。
所述R为H,直链烷基CH3、C2H5、C3H7、C4H9、C5H11、C6H13、C7H15、C8H17、C9H19、C10H21、C11H23、C12H25,支链烷基CH3、C2H5、C3H7、C4H9、C5H11、C6H13、C7H15、C8H17、C9H19、C10H21、C11H23、C12H25及其同分异构体,直链烷氧基OCH3、OC2H5、OC3H7、OC4H9、OC5H11、OC6H13、OC7H15、OC8H17、OC9H19、OC10H21、OC11H23、OC12H25,支链烷氧基OCH3、OC2H5、OC3H7、OC4H9、OC5H11、OC6H13、OC7H15、OC8H17、OC9H19、OC10H21、OC11H23、OC12H25及其同分异构体。
一种大面积超薄二维共轭聚合物的制备方法,先将咔唑衍生物(式a、b、c、d、e、或f)旋涂在平整的衬底上(咔唑衍生物可以直接购买或者合成,其合成步骤参考中国专利《共轭打断超支化聚合物半导体光电材料、制备方法及其应用》,专利申请公开号:CN102295758 A;也可以参考文献[Polym.Chem.2011,2,2179-2182]),然后在室温下,通过氧化聚合反应合成大面积超薄的二维共轭聚合物材料(式Ⅰ、Ⅱ、Ⅲ、Ⅳ、Ⅴ或Ⅵ),具体反应路线如下:
具体包括如下步骤:
将溶于有机溶剂中的咔唑衍生物旋涂或蒸镀在平整的衬底上,将单体覆盖的衬底在烘箱中干燥,控制干燥温度为40~200℃。随后将干燥后覆盖有单体的衬底浸泡于含有强氧化性催化剂的有机溶剂中,在常压条件下,控制反应温度为-78~160℃,反应1~72小时。反应结束后,用甲醇、去离子水、浓盐酸、二氯甲烷依次反复清洗样品,在40~200℃烘箱中进行干燥,得到生长在平整衬底上的二维共轭聚合物;
在实验步骤中,所述有机溶剂为二氯甲烷、二氯乙烷、三氯甲烷、氯苯、甲苯等等。所述平整衬底为二氧化硅(300纳米)/硅、石英片或玻璃等等。所述催化剂为无水三氯化铁、磷钼酸、铜的配合物、锰的配合物或钴的配合物。
一类大面积超薄二维共轭聚合物在有机光电探测器件、有机发光器件、有机电存储、有机场效应晶体管、有机传感器、有机纳米器件和分离过滤膜等应用。
有益效果:
本发明提出的衬底辅助氧化聚合反应策略可以实现在绝缘性衬底上大面积超薄二维共轭聚合物的制备。该方法具有操作简单、反应条件温和等特点。该方法所制备的二维聚合物尺寸达到晶圆大小(10厘米),厚度介于1.6-2.5纳米之间。适用于该方法的反应单体种类多,苯基、咔唑、噻吩、芴等共轭基团都可以引入到反应单体中,这样对拓展该方法在二维共轭聚合物合成中的意义重大。通过单一有机相中氧化聚合反应制备的聚合物具有三维多孔无序的结构,并且成膜性差,不适合用于有机薄膜器件中。本发明中所制备的大面积超薄二维共轭聚合物是生长在绝缘性衬底上厚度为几个纳米的薄膜,可以直接用于有机电子器件中,省去了材料用于器件制备时所需要的加工成膜步骤。这些生长在绝缘性衬底上的聚合物容易转移,这有助于材料的结构表征。常用的共轭聚合物存在稳定性差等问题,本发明提供的大面积超薄二维共轭聚合物材料在大部分有机溶剂、酸、碱和水中都能稳定存在。
本发明提出大面积超薄二维共轭聚合物的制备方法具有操作简单、反应条件温和等特点,易于工业应用。本发明提供的大面积超薄二维共轭聚合物材料在酸、碱和水中能稳定存在,它们尺寸达到厘米级,厚度为几个纳米,在有机光电探测器件、有机发光器件、有机电存储、有机场效应晶体管、有机传感器、有机纳米器件和分离过滤膜等领域具有很好的应用前景。
附图说明
图1为制备二维共轭聚合物的实验示意图;
图2为材料I的原子力显微镜图片;
图3为材料Ⅲ在晶圆上的照片;
图4为材料Ⅲ的原子力显微镜图片;
图5为材料Ⅲ转移到铜网上后的光学照片;
图6为材料Ⅲ转移到铜网上后的透射电镜图片;
图7为材料Ⅲ的红外光谱图;
图8为材料Ⅲ的紫外吸收谱图(A)和发射光谱图(B);
图9以材料Ⅲ为活性层的平面型二极管器件的电流-电压曲线。
图10为材料Ⅳ的原子力显微镜图片;
图11为材料Ⅴ的原子力显微镜图片;
图12为材料Ⅴ转移到铜网上后的透射电镜图片;
图13为材料Ⅴ的红外光谱图;
图14为材料Ⅴ的紫外吸收谱图(A)和发射光谱图(B);
图15为材料Ⅵ的原子力显微镜图片;
图16为材料Ⅵ转移到铜网上后的透射电镜图片;
图17为材料Ⅵ的红外光谱图;
图18为材料Ⅵ的紫外吸收谱图(A)和发射光谱图(B);
图19为材料Ⅶ的原子力显微镜图片;
图20为材料Ⅷ的原子力显微镜图片;
具体实施方式
下面通过实施例的方式,对本发明技术方案进行详细说明,但是本发明的保护范围不局限于所述实施例。实施例中未注明具体技术或条件者,按照本领域内的文献所描述的技术或条件或者按照产品说明书进行。
实施例1
聚9,9'-双咔唑(材料I)的制备
聚合反应的示意图如图1所示,具体步骤如下:将10mg/mL的9,9'-双咔唑的氯苯溶液旋涂在干净的二氧化硅(300纳米)/硅晶片(直径为10厘米,通过塑料尺进行测量)衬底上,旋涂条件为500转/分钟,5秒以及2000转/分钟,30秒。随后将旋涂有单体的衬底在120℃的烘箱中干燥30分钟。接着在25℃条件下,将衬底浸泡于含有无水三氯化铁的干燥二氯甲烷溶剂中,反应24小时后取出,用甲醇、去离子水、浓盐酸、二氯甲烷依次反复清洗样品。在50℃烘箱中干燥,得到生长在衬底上的大面积超薄聚9,9'-双咔唑薄膜。通过原子力显微镜(Dimension ICON with NanoScope V controller,Bruker)测试所得聚合物膜厚度约为1.8纳米(图2)。
实施例2
聚4,4'-双(N-咔唑)-1,1'-联苯(材料Ⅲ)的制备
将10mg/mL的4,4'-双(N-咔唑)-1,1'-联苯的二氯甲烷溶液旋涂在干净的二氧化硅(300纳米)/硅晶片(直径为10厘米,通过塑料尺进行测量)衬底上,旋涂条件为500转/分钟,5秒以及2000转/分钟,30秒。随后将旋涂有单体的衬底在120℃的烘箱中干燥30分钟。接着在25℃条件下,将衬底浸泡于含有无水三氯化铁的干燥三氯甲烷溶剂中,反应24小时后取出,用甲醇、去离子水、浓盐酸、二氯甲烷依次反复清洗样品。在50℃烘箱中干燥,得到生长在衬底上的大面积超薄聚4,4'-双(N-咔唑)-1,1'-联苯薄膜。
对所制备的材料进行拍照(图3),由图可知,晶圆的上半部分覆盖有材料Ⅲ,下半部分为空白晶片,对比可以看到它们之间有明显的界限。这说明晶圆尺寸的超薄二维聚合物被制备合成。进一步通过原子力显微镜测试所得聚合物膜厚度约为1.6纳米(图4)。将材料Ⅲ通过在氢氧化钠溶液中进行剥离、在去离子水中清洗转移到铜网上后,由光镜图片(图5)和透射电镜图片(图6)可以得知所得聚合物具有较强的机械强度。
对比单体和聚合物的红外光谱可知,单体含有一个邻取代苯的特征峰(单峰),而聚合物含有1,2,4-取代苯的特征峰(双峰)。通过对比单体中邻取代苯的消失,聚合物中1,2,4-取代苯的生成证明了聚合物的分子结构(图7)。
采用岛津Shimadzu UV-3600型紫外可见分光光度计和岛津Shimadzu RF-5301PC型荧光发射光谱测试仪对所得聚合物材料及相对应单体的光谱进行测试。这些聚合物材料生长在石英片上,单体旋涂在石英片上,结果见图8。由单体和聚合物的吸收光谱图可知,它们在紫外区都有吸收峰,并且聚合物的吸收峰变宽。而对比单体和聚合物的发射光谱可知,它们都在蓝光区有发射峰。相比单体,聚合物的发射峰有明显的红移。这是由于聚合物的共轭性比单体更强造成的。蓝光发射表明聚合物在有机发光器件中具有潜在应用。
以制得的聚合物材料Ⅲ为活性层,二氧化硅(300纳米)/硅为衬底,在聚合物材料Ⅲ上蒸镀平行金电极,制备平行二极管器件,两个电极之间的距离为500纳米,并对其电学性能进行测试(图9)。
由测试结果可知,当对器件施加-2伏特到2伏特的电压时,器件显示出非线性的电流-电压曲线,说明所得聚合物材料具有半导体性能。此外,当对器件施加光照时,器件电流明显增大,说明聚合物材料具有光响应性。
实施例3
聚4,4'-双(N-咔唑)噻吩(材料Ⅳ)的制备
将10mg/mL的4,4'-双(N-咔唑)噻吩的二氯乙烷溶液旋涂在干净的二氧化硅(300纳米)/硅晶片(直径为10厘米,通过塑料尺进行测量)衬底上,旋涂条件为500转/分钟,5秒以及2000转/分钟,30秒。随后将旋涂有单体的衬底在120℃的烘箱中干燥30分钟。接着在25℃条件下,将衬底浸泡于含有无水三氯化铁的干燥甲苯溶剂中,反应24小时后取出,用甲醇、去离子水、浓盐酸、二氯甲烷依次反复清洗样品。在50℃烘箱中干燥,得到生长在衬底上的大面积超薄聚4,4'-双(N-咔唑)噻吩薄膜。通过原子力显微镜测试所得聚合物膜厚度约为1.7纳米(图10)。
实施例4
聚2,7'-双(N-咔唑)-9-芴酮(材料Ⅴ)的制备
将10mg/mL的2,7'-双(N-咔唑)-芴酮的三氯甲烷溶液旋涂在干净的二氧化硅(300纳米)/硅晶片(直径为10厘米,通过塑料尺进行测量)衬底上,旋涂条件为500转/分钟,5秒以及2000转/分钟,30秒。随后将旋涂有单体的衬底在120℃的烘箱中干燥30分钟。接着在25℃条件下,将衬底浸泡于含有无水三氯化铁的干燥氯苯溶剂中,反应24小时后取出,用甲醇、去离子水、浓盐酸、二氯甲烷依次反复清洗样品。在50℃烘箱中干燥,得到生长在衬底上的大面积超薄聚2,7'-双(N-咔唑)-芴酮薄膜。通过原子力显微镜测试所得聚合物膜厚度约为2.5纳米(图11)。通过透射电镜可知聚合物薄膜具有完整的薄膜结构(图12)。
由图13对比单体和聚合物的红外光谱可知,单体含有一个邻取代苯的特征峰(单峰),而聚合物含有1,2,4-取代苯的特征峰(双峰),同时单体和聚合物材料中含有C=O特征峰。单体和聚合物的红外特征峰证明了聚合物的分子结构。此外,由图14中单体和聚合物的吸收光谱图和发射光谱可知,单体和聚合物都在紫外区有吸收峰,并且都在蓝光区有发射峰。
实施例5
聚2,7'-双(N-咔唑)-9-(4-辛氧基苯)-9-芴醇(材料Ⅵ)的制备
将2,7'-双(N-咔唑)-9-辛氧基苯-9-芴醇的甲苯溶液旋涂在干净的二氧化硅(300纳米)/硅晶片(直径为10厘米,通过塑料尺进行测量)衬底上,旋涂条件为500转/分钟,5秒以及2000转/分钟,30秒。随后将旋涂有单体的衬底在120℃的烘箱中干燥30分钟。接着在25℃条件下,将衬底浸泡于含有无水三氯化铁的干燥二氯乙烷溶剂中,反应24小时后取出,用甲醇、去离子水、浓盐酸、二氯甲烷依次反复清洗样品。在50℃烘箱中干燥,得到生长在衬底上的大面积超薄聚2,7'-双(N-咔唑)-9-辛氧基苯9-芴醇薄膜。通过原子力显微镜测试所得聚合物膜厚度约为1.4纳米(图15)。通过透射电镜可知聚合物薄膜具有完整的薄膜结构(图16)。
由图17单体和聚合物的红外光谱可知,单体含有一个邻取代苯的特征峰(单峰),而聚合物含有1,2,4-取代苯的特征峰(双峰),同时单体和聚合物材料中含有-OH特征峰。单体和聚合物的红外特征峰证明了聚合物的分子结构。此外,由图18中单体和聚合物的吸收光谱图和发射光谱可知,单体和聚合物都在紫外区有吸收峰,并且都在蓝光区有发射峰。
实施例6
聚2,7'-双(N-咔唑)-9-(4-(己烷-2-基)苯)-9-芴醇(材料Ⅶ)的制备
将2,7'-双(N-咔唑)-9-(4-(己烷-2-基)苯)-9-芴醇的二氯甲烷溶液旋涂在干净的二氧化硅(300纳米)/硅晶片(直径为10厘米,通过塑料尺进行测量)衬底上,旋涂条件为500转/分钟,5秒以及2000转/分钟,30秒。随后将旋涂有单体的衬底在120℃的烘箱中干燥30分钟。接着在25℃条件下,将衬底浸泡于含有无水三氯化铁的干燥二氯甲烷溶剂中,反应24小时后取出,用甲醇、去离子水、浓盐酸、二氯甲烷依次反复清洗样品。在50℃烘箱中干燥,得到生长在衬底上的大面积超薄聚2,7'-双(N-咔唑)-9-(4-(己烷-2-基)苯)-9-芴醇薄膜。通过原子力显微镜测试所得聚合物膜厚度约为2.1纳米(图19)。
实施例7
聚2,7'-双(N-咔唑)-9-(4-(己烷-2-基氧)苯)-9-芴醇(材料Ⅷ)的制备
将2,7'-双(N-咔唑)-9-(4-(己烷-2-基氧)苯)-9-芴醇的氯苯溶液旋涂在干净的二氧化硅(300纳米)/硅晶片(直径为10厘米,通过塑料尺进行测量)衬底上,旋涂条件为500转/分钟,5秒以及2000转/分钟,30秒。随后将旋涂有单体的衬底在120℃的烘箱中干燥30分钟。接着在25℃条件下,将衬底浸泡于含有无水三氯化铁的干燥甲苯溶剂中,反应24小时后取出,用甲醇、去离子水、浓盐酸、二氯甲烷依次反复清洗样品。在50℃烘箱中干燥,得到生长在衬底上的大面积超薄聚2,7'-双(N-咔唑)-9-(4-(己烷-2-基氧)苯)-9-芴醇薄膜。通过原子力显微镜测试所得聚合物膜厚度约为2.4纳米(图20)。
总之,以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所作的均等变化与修饰,皆应属本发明专利的涵盖范围。

Claims (5)

1.一种二维共轭聚合物的制备方法,其特征在于,具有如下反应步骤:将溶于有机溶剂中的单体旋涂或者蒸镀在平整的衬底上,将旋涂有单体的衬底在烘箱中干燥,干燥温度为40~200℃,随后将干燥后旋涂有单体的衬底浸泡于含有催化剂的有机溶剂中,在常压条件下,反应温度为-78~160℃,反应时间1~72小时,反应结束后,用甲醇、去离子水、浓盐酸、二氯甲烷依次反复清洗样品,得到生长在衬底上的二维共轭聚合物;所述有机溶剂为二氯甲烷、二氯乙烷、三氯甲烷、氯苯、甲苯;所述单体结构为:
或者
所述二维共轭聚合物的结构以咔唑为骨架,具有选自通式(Ⅰ)或通式(Ⅱ)的化学式的结构:
其中,Ar代表共轭芳环单元;
所述平整的衬底为300纳米的二氧化硅/硅、石英片或玻璃;
所述的催化剂为无水三氯化铁、磷钼酸、铜的配合物、锰的配合物或钴的配合物。
2.根据权利要求1所述的制备方法,其特征在于,所述Ar为苯环、咔唑、噻吩、芴共轭基团。
3.根据权利要求1所述的制备方法,其特征在于,所述Ar选自如下单元中的一种:
其中,R为H或C1~12烷基或C1~12烷氧基。
4.根据权利要求3所述的制备方法,其特征在于:所述R为H,直链烷基CH3、C2H5、C3H7、C4H9、C5H11、C6H13、C7H15、C8H17、C9H19、C10H21、C11H23、C12H25,支链烷基C3H7、C4H9、C5H11、C6H13、C7H15、C8H17、C9H19、C10H21、C11H23、C12H25及其同分异构体,直链烷氧基OCH3、OC2H5、OC3H7、OC4H9、OC5H11、OC6H13、OC7H15、OC8H17、OC9H19、OC10H21、OC11H23、OC12H25,支链烷氧基OC3H7、OC4H9、OC5H11、OC6H13、OC7H15、OC8H17、OC9H19、OC10H21、OC11H23、OC12H25及其同分异构体。
5.一种根据权利要求1至4任意一项所述的制备方法制备的二维共轭聚合物在有机光电探测器件、有机发光器件、有机电存储、有机场效应晶体管、有机传感器和分离过滤膜领域的应用。
CN201710080901.XA 2017-02-15 2017-02-15 二维共轭聚合物及其制备方法和应用 Active CN106893083B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710080901.XA CN106893083B (zh) 2017-02-15 2017-02-15 二维共轭聚合物及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710080901.XA CN106893083B (zh) 2017-02-15 2017-02-15 二维共轭聚合物及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN106893083A CN106893083A (zh) 2017-06-27
CN106893083B true CN106893083B (zh) 2019-11-08

Family

ID=59198690

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710080901.XA Active CN106893083B (zh) 2017-02-15 2017-02-15 二维共轭聚合物及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN106893083B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109988325B (zh) * 2018-01-03 2021-01-26 中国科学院化学研究所 一种大面积超薄高晶态二维共轭高分子薄膜及其制备方法和应用
CN108912329B (zh) * 2018-06-15 2021-02-02 南京工业大学 一种图案化二维共轭微孔聚合物的制备方法和应用
CN111848928B (zh) * 2019-04-30 2022-04-12 台州学院 一种共轭微孔咔唑聚合物及其制备方法和应用以及一种荧光薄膜及其制备方法
CN110240721B (zh) * 2019-06-20 2022-03-25 江西科技师范大学 一种π-共轭单体有机聚合物薄膜的制备方法
CN113491959B (zh) * 2020-03-20 2023-09-22 国家纳米科学中心 一种多孔聚合物薄膜及其制备方法与应用
CN112259685B (zh) * 2020-10-30 2023-04-07 南京工业大学 一种高稳定快擦写图案化的聚合物存储器及其制备方法
CN113707807B (zh) * 2021-08-27 2023-12-22 南京工业大学 一种自组装共轭聚合物薄膜的制备方法及其应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102295758A (zh) * 2011-05-26 2011-12-28 南京邮电大学 共轭打断超支化聚合物半导体光电材料及其制备和应用方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102295758A (zh) * 2011-05-26 2011-12-28 南京邮电大学 共轭打断超支化聚合物半导体光电材料及其制备和应用方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"BF3 center dot Et2O-mediated Friedel-Crafts C-H bond polymerization to synthesize pi-conjugation-interrupted polymer semiconductors";Liu, Zheng-Dong etal.;《Polymer Chemistry》;20110727;第2卷(第10期);第2179-2182页 *
"Dendrimer-like conjugated microporous polymers";Shanlin Qiao et al.;《Polymer Chemistry》;20160104;第7卷(第6期);第1281-1289页 *
"Design and synthesis of novel carbazole-spacer-carbazole type conjugated microporous networks for gas storage and separation";Qiao, Shanlin et al.;《Journal of Materials Chemistry A》;20131111;第2卷(第6期);第1877-1885页 *
"Porosity Enhancement of Carbazolic Porous Organic Frameworks Using Dendritic Building Blocks for Gas Storage and Separation";Xiang Zhang et al.;《Chemistry of Materials》;20140708;第26卷(第13期);第4023-4029页 *

Also Published As

Publication number Publication date
CN106893083A (zh) 2017-06-27

Similar Documents

Publication Publication Date Title
CN106893083B (zh) 二维共轭聚合物及其制备方法和应用
Dössel et al. Synthesis and controlled self-assembly of covalently linked hexa-peri-hexabenzocoronene/perylene diimide dyads as models to study fundamental energy and electron transfer processes
Lin et al. Synthesis and optoelectronic properties of starlike polyfluorenes with a silsesquioxane core
CN108912329B (zh) 一种图案化二维共轭微孔聚合物的制备方法和应用
Zou et al. Synthesis and solution processing of a hydrogen-bonded ladder polymer
Izawa et al. Morphological stability of organic solar cells based upon an oligo (p-phenylenevinylene)–C 70 dyad
Zhang et al. Synthesis of star-shaped small molecules carrying peripheral 1, 8-naphthalimide functional groups and their applications in organic solar cells
TW201535816A (zh) 有機薄膜電晶體及其製造方法
Liu et al. WORM memory devices based on conformation change of a PVK derivative with a rigid spacer in side chain
Xiao et al. Structurally defined high-LUMO-level 66π-[70] fullerene derivatives: synthesis and application in organic photovoltaic cells
Ejima et al. Morphology-retaining carbonization of honeycomb-patterned hyperbranched poly (phenylene vinylene) film
Li et al. Hole extraction layer utilizing well defined graphene oxide with multiple functionalities for high-performance bulk heterojunction solar cells
Broggi et al. Squaraine‐Based Polymers: Toward Optimized Structures for Optoelectronic Devices
US9377684B2 (en) Thin films organized in nanodomains on the basis of copolymers having polysaccharide blocks for applications in nanotechnology
Zhang et al. Applications of self-assembled one-bilayer nanofilms based on hydroxyl-containing tetraphenylethene derivative's nanoaggregates as chemosensors to volatile of solid nitroaromatics
KR20160068880A (ko) 나노 입자
WO2013162929A1 (en) Semiconductor devices and methods of preparation
Liu et al. An optical fiber taper fluorescent probe for detection of nitro-explosives based on tetraphenylethylene with aggregation-induced emission
TW201547074A (zh) 有機薄膜電晶體
Kutsarov et al. Achieving 6.7% Efficiency in P3HT/Indene‐C70 Bisadduct Solar Cells through the Control of Vertical Volume Fraction Distribution and Optimized Regio‐Isomer Ratios
Ramar et al. Immobilization of polymers to surfaces by click reaction for photocatalysis with recyclability
JP5667704B2 (ja) 有機半導体材料の作製方法、及び、有機半導体材料
KR102488388B1 (ko) 클릭반응을 이용한 패턴화된 cnt 필름 코팅 기판 및 이의 제조방법
Virkar et al. Oligothiophene based organic semiconductors with cross-linkable benzophenone moieties
CN109897055B (zh) 一种基于联二咔唑和苝二酰亚胺的有机化合物及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant