CN106892800A - 一种未活化烯烃氢三氟甲基化的制备方法及应用 - Google Patents

一种未活化烯烃氢三氟甲基化的制备方法及应用 Download PDF

Info

Publication number
CN106892800A
CN106892800A CN201610097405.0A CN201610097405A CN106892800A CN 106892800 A CN106892800 A CN 106892800A CN 201610097405 A CN201610097405 A CN 201610097405A CN 106892800 A CN106892800 A CN 106892800A
Authority
CN
China
Prior art keywords
ethyl acetate
reaction
solvent
cdcl
nmr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610097405.0A
Other languages
English (en)
Other versions
CN106892800B (zh
Inventor
朱磊
汪连生
李博解
付伯桥
李伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hubei Engineering University
Original Assignee
Hubei Engineering University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hubei Engineering University filed Critical Hubei Engineering University
Priority to CN201610097405.0A priority Critical patent/CN106892800B/zh
Publication of CN106892800A publication Critical patent/CN106892800A/zh
Application granted granted Critical
Publication of CN106892800B publication Critical patent/CN106892800B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C43/00Ethers; Compounds having groups, groups or groups
    • C07C43/02Ethers
    • C07C43/20Ethers having an ether-oxygen atom bound to a carbon atom of a six-membered aromatic ring
    • C07C43/225Ethers having an ether-oxygen atom bound to a carbon atom of a six-membered aromatic ring containing halogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B39/00Halogenation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/26Preparation of halogenated hydrocarbons by reactions involving an increase in the number of carbon atoms in the skeleton
    • C07C17/272Preparation of halogenated hydrocarbons by reactions involving an increase in the number of carbon atoms in the skeleton by addition reactions
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C22/00Cyclic compounds containing halogen atoms bound to an acyclic carbon atom
    • C07C22/02Cyclic compounds containing halogen atoms bound to an acyclic carbon atom having unsaturation in the rings
    • C07C22/04Cyclic compounds containing halogen atoms bound to an acyclic carbon atom having unsaturation in the rings containing six-membered aromatic rings
    • C07C22/08Cyclic compounds containing halogen atoms bound to an acyclic carbon atom having unsaturation in the rings containing six-membered aromatic rings containing fluorine
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C231/00Preparation of carboxylic acid amides
    • C07C231/12Preparation of carboxylic acid amides by reactions not involving the formation of carboxamide groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C233/00Carboxylic acid amides
    • C07C233/01Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms
    • C07C233/02Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having nitrogen atoms of carboxamide groups bound to hydrogen atoms or to carbon atoms of unsubstituted hydrocarbon radicals
    • C07C233/04Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having nitrogen atoms of carboxamide groups bound to hydrogen atoms or to carbon atoms of unsubstituted hydrocarbon radicals with carbon atoms of carboxamide groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton
    • C07C233/07Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having nitrogen atoms of carboxamide groups bound to hydrogen atoms or to carbon atoms of unsubstituted hydrocarbon radicals with carbon atoms of carboxamide groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C315/00Preparation of sulfones; Preparation of sulfoxides
    • C07C315/04Preparation of sulfones; Preparation of sulfoxides by reactions not involving the formation of sulfone or sulfoxide groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C317/00Sulfones; Sulfoxides
    • C07C317/14Sulfones; Sulfoxides having sulfone or sulfoxide groups bound to carbon atoms of six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C319/00Preparation of thiols, sulfides, hydropolysulfides or polysulfides
    • C07C319/14Preparation of thiols, sulfides, hydropolysulfides or polysulfides of sulfides
    • C07C319/20Preparation of thiols, sulfides, hydropolysulfides or polysulfides of sulfides by reactions not involving the formation of sulfide groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C321/00Thiols, sulfides, hydropolysulfides or polysulfides
    • C07C321/24Thiols, sulfides, hydropolysulfides, or polysulfides having thio groups bound to carbon atoms of six-membered aromatic rings
    • C07C321/28Sulfides, hydropolysulfides, or polysulfides having thio groups bound to carbon atoms of six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C41/00Preparation of ethers; Preparation of compounds having groups, groups or groups
    • C07C41/01Preparation of ethers
    • C07C41/18Preparation of ethers by reactions not forming ether-oxygen bonds
    • C07C41/30Preparation of ethers by reactions not forming ether-oxygen bonds by increasing the number of carbon atoms, e.g. by oligomerisation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/61Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups
    • C07C45/67Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by isomerisation; by change of size of the carbon skeleton
    • C07C45/68Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by isomerisation; by change of size of the carbon skeleton by increase in the number of carbon atoms
    • C07C45/69Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by isomerisation; by change of size of the carbon skeleton by increase in the number of carbon atoms by addition to carbon-to-carbon double or triple bonds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C47/00Compounds having —CHO groups
    • C07C47/52Compounds having —CHO groups bound to carbon atoms of six—membered aromatic rings
    • C07C47/575Compounds having —CHO groups bound to carbon atoms of six—membered aromatic rings containing ether groups, groups, groups, or groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C49/00Ketones; Ketenes; Dimeric ketenes; Ketonic chelates
    • C07C49/76Ketones containing a keto group bound to a six-membered aromatic ring
    • C07C49/80Ketones containing a keto group bound to a six-membered aromatic ring containing halogen
    • C07C49/813Ketones containing a keto group bound to a six-membered aromatic ring containing halogen polycyclic
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C49/00Ketones; Ketenes; Dimeric ketenes; Ketonic chelates
    • C07C49/76Ketones containing a keto group bound to a six-membered aromatic ring
    • C07C49/84Ketones containing a keto group bound to a six-membered aromatic ring containing ether groups, groups, groups, or groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/28Preparation of carboxylic acid esters by modifying the hydroxylic moiety of the ester, such modification not being an introduction of an ester group
    • C07C67/293Preparation of carboxylic acid esters by modifying the hydroxylic moiety of the ester, such modification not being an introduction of an ester group by isomerisation; by change of size of the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/30Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group
    • C07C67/333Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group by isomerisation; by change of size of the carbon skeleton
    • C07C67/343Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group by isomerisation; by change of size of the carbon skeleton by increase in the number of carbon atoms
    • C07C67/347Preparation of carboxylic acid esters by modifying the acid moiety of the ester, such modification not being an introduction of an ester group by isomerisation; by change of size of the carbon skeleton by increase in the number of carbon atoms by addition to unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/76Esters of carboxylic acids having a carboxyl group bound to a carbon atom of a six-membered aromatic ring
    • C07C69/78Benzoic acid esters
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/02Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
    • C07D209/44Iso-indoles; Hydrogenated iso-indoles
    • C07D209/48Iso-indoles; Hydrogenated iso-indoles with oxygen atoms in positions 1 and 3, e.g. phthalimide
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07JSTEROIDS
    • C07J1/00Normal steroids containing carbon, hydrogen, halogen or oxygen, not substituted in position 17 beta by a carbon atom, e.g. estrane, androstane

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Cosmetics (AREA)

Abstract

本发明公开了一种未活化烯烃氢三氟甲基化的制备方法及应用,其步骤:A、在舒伦克管中加入未活化烯烃I,三氟甲基亚磺酸钠和光催化剂Ir[dF(CF3)ppy]2(dtbpy)PF6;B、抽真空换氩气后,加入甲醇;C、以荧光灯照射舒伦克管,搅拌进行反应;D、反应结束后,向体系中加入水淬灭反应,乙酸乙酯萃取,分离出有机相后,干燥,过滤,旋转蒸发除去溶剂,残留物经乙酸乙酯/石油醚混合溶剂柱层析,得到目标产物II,所述的乙酸乙酯/石油醚混合溶剂的比例依据产物极性不同选择,柱层析采用硅胶为固定相。该方法在合成药物分子中的应用。方法易行,操作简便,选用廉价的三氟甲基化试剂,以温和的条件实现未活化烯烃的氢三氟甲基化反应,制备出一系列含有三氟甲基的目标化合物。

Description

一种未活化烯烃氢三氟甲基化的制备方法及应用
技术领域
本发明涉及化合物合成领域,更具体涉及一种未活化烯烃氢三氟甲基化的制备方法,同时还涉及一种未活化烯烃氢三氟甲基化的制备方法在合成药物分子中的应用。
背景技术
三氟甲基(CF3)的强吸电子性和C-F键的稳定性,使得结构中含有三氟甲基的有机化合物,其极性、偶极距、亲脂性和代谢稳定性都会有显著的改变,因此此类化合物被广泛应用于医药、农药和新型功能材料等领域。例如,除草剂氟乐灵(Trifluralin)、治疗精神抑郁的药物盐酸氟西汀(Prozac)和治疗II型糖尿病的药物捷诺维(Januvia)中都含有三氟甲基。
在三氟甲基取代的有机化合物的合成方法中,不饱和烯烃的氢三氟甲基化反应是一种直接有效的方法,但是以未活化烯烃为底物的相关文献却鲜有报道。而且在已报道仅有的几例合成方法中,也存在着诸多不足,比如较高的催化剂用量,昂贵的三氟甲基化试剂等,限制了该类反应的应用性。因此通过改变过渡金属催化剂和选用价格低廉的三氟甲基化试剂,以温和的条件高效的制备出一系列含有三氟甲基的化合物,有利于推进此类反应于实际生产中的应用。
发明内容
本发明的目的是在于提供了一种未活化烯烃氢三氟甲基化的制备方法,方法易行,操作简便,选用廉价的三氟甲基化试剂,以温和的条件实现未活化烯烃的氢三氟甲基化反应,制备出一系列含有三氟甲基的目标化合物。该制备方法以可见光为光源,三氟甲基亚磺酸钠为氟化试剂,成本较低,适合大规模生产,而且所需催化剂用量低,反应活性高,适用于一系列不同取代基的底物,适合在天然产物结构中引入三氟甲基,制备药物分子。
本发明的另一个目的是在于提供了一种未活化烯烃氢三氟甲基化的制备方法在合成药物分子中的应用。药物炔雌醇能够刺激垂体合成和释放促性腺激素,主要用于补充雌激素不足,治疗性腺功能不良等疾病。该药物的主要结构为雌酚酮,利用本发明所提供的方法在雌酚酮分子上引入三氟甲基,可显著提高该药物的药效和生理活性,治疗所需药品的总剂量大大降低,也极大的避免了副作用的风险。为了实现上述的目的,本发明采用以下技术措施:
其技术构思是:一种未活化烯烃氢三氟甲基化的方法,在可见光光照条件下, 以铱的络合物(Ir[dF(CF3)ppy]2(dtbpy)PF6)为光催化剂,三氟甲基亚磺酸钠(CF3SO2Na,百灵威化学试剂公司)为三氟甲基化试剂,甲醇(国药化学试剂公司)为溶剂,使未活化的烯烃I发生氢三氟甲基化反应,制备出含有三氟甲基的目标化合物II。
铱的络合物在可见光的光照下,催化三氟甲基亚磺酸钠生成三氟甲基自由基,该自由基进攻未活化烯烃I,生成中间体,三氟甲基连接于末端,相邻的位置生成新的自由基。该中间体从铱的络合物中攫取一个电子形成碳负离子,而后从溶剂中获得质子,生成反马氏规则的目标化合物II。化学反应方程式如下:
反应方程式中所述化合物I和II中R1基团的定义相同,为苯氧基、对甲基苯氧基、对甲氧基苯氧基、对氯苯氧基、对溴苯氧基、间碘苯氧基、对醛基苯氧基、对乙酰基苯氧基、苯基、对甲基苯硫基、苯甲酸酯基、酞酰亚胺基、苯磺酰基、苯酚酯基、N,N-甲基苯基-酰胺基或苯酮基。
反应方程式中所述化合物I和II中CH2单元的重复数n定义相同,为0、2或4。
反应方程式中所述化合物I和II中取代基R2定义相同,为氢、甲基或苯基。
一种未活化烯烃氢三氟甲基化的制备方法,其步骤是:
A、在舒伦克(Schlenk)管中加入未活化烯烃I,三氟甲基亚磺酸钠和光催化剂Ir[dF(CF3)ppy]2(dtbpy)PF6;所述的三氟甲基亚磺酸钠与结构I所示化合物的物质的量之比为2.0-3.0,更优选为2.0;所述的光催化剂Ir[dF(CF3)ppy]2(dtbpy)PF6的用量为结构I所示化合物的物质的量的1.0%-2.0%,更优选为2.0%;
B、抽真空换氩气后,加入溶剂(甲醇);所述的溶剂为N,N-二甲基甲酰胺与水1:1(体积比)混合溶液、二甲基亚砜与与水1:1(体积比)混合溶液、甲醇与水1:1(体积比)混合溶液、乙腈与水1:1(体积比)混合溶液、二氯甲烷与水1:1(体积比)混合溶液、甲醇、乙醇、异丙醇、叔丁醇中至少一种,更优选为甲醇;所述的溶剂甲醇的毫升数与结构I所示化合物的物质的量之比为8.0-12.0,更优选为12.0;
C、以荧光灯照射舒伦克管,搅拌进行反应;所述的荧光灯波长范围为可见光,功率为36W;所述的反应温度为室温(20-25℃,以下相同),反应时间为22-26小时;
D、反应结束后,向体系中加入水淬灭反应,乙酸乙酯萃取,分离出有机相后,用无水Na2SO4干燥,过滤,旋转蒸发除去溶剂。残留物经乙酸乙酯/石油醚混合溶剂柱层析,分离纯化得到目标产物II。所述的乙酸乙酯/石油醚混合溶剂的比例依据产物极性不同而具体选择,柱层析采用硅胶为固定相。
一种未活化烯烃氢三氟甲基化的制备方法在合成药物分子中的应用,其步骤是:
A.在舒伦克(Schlenk)管中加入雌酚酮衍生物I-19(88.1mg,0.25mmol),三氟甲基亚磺酸钠(78.0mg,0.50mmol)和光催化剂Ir[dF(CF3)ppy]2(dtbpy)PF6(2mol%,5.6mg);所述的三氟甲基亚磺酸钠与I-19的物质的量之比为2.0;所述的光催化剂Ir[dF(CF3)ppy]2(dtbpy)PF6的用量为I-19的物质的量的2.0%;
B.抽真空换氩气后,加入溶剂(甲醇)3mL;所述的溶剂为甲醇;所述的溶剂甲醇的毫升数与I-19的物质的量之比为12.0;
C.以荧光灯照射舒伦克管,搅拌进行反应;所述的荧光灯波长范围为可见光,功率为36W;所述的反应温度为室温(20-25℃,以下相同),反应时间为24小时;
D.反应结束后,向体系中加入水淬灭反应,乙酸乙酯萃取,分离出有机相后,用无水Na2SO4干燥,过滤,旋转蒸发除去溶剂。残留物经乙酸乙酯/石油醚混合溶剂柱层析,分离纯化得到三氟甲基化的雌酚酮衍生物II-1986mg,产率81%。所述的乙酸乙酯/石油醚混合溶剂的比例为1:50,柱层析采用硅胶为固定相。
本发明与现有技术相比,具有以下优点和效果:
1.该方法主要原料大部分来源丰富,成本较低,尤其是选用了价格比较低廉的三氟甲基亚磺酸钠作为三氟甲基化试剂;
2.该方法仅需要使用较低的光催化剂用量,即可实现反应物较高的转化数;
3.该方法反应条件温和,简便易操作;
4.该方法应用性广,可适用于各种不同类型的底物,制备出一系列含有三氟甲基的目标化合物。
附图说明
图1为本发明实施例1所制备的化合物II-1的核磁氢谱图。
图2为本发明实施例1所制备的化合物II-1的核磁碳谱图。
图3为本发明实施例1所制备的化合物II-1的核磁氟谱图。
图4为本发明实施例19所制备的化合物II-19的核磁氢谱图。
图5为本发明实施例19所制备的化合物II-19的核磁碳谱图。
图6为本发明实施例19所制备的化合物II-19的核磁氟谱图。
具体实施方式
下面通过实施例,进一步阐明本发明的突出特点,仅在于说明本发明而决不限制本发明。
实施例1:
化合物II-1的制备:
A、在舒伦克(Schlenk)管中加入未活化烯烃I-1(R1=苯氧基,R2=氢,n=4)(44.1mg,0.25mmol),三氟甲基亚磺酸钠(78.0mg,0.50mmol)和光催化剂Ir[dF(CF3)ppy]2(dtbpy)PF6(2mol%,5.6mg);所述的三氟甲基亚磺酸钠与I-1的物质的量之比为2.0;所述的光催化剂Ir[dF(CF3)ppy]2(dtbpy)PF6的用量为I-1的物质的量的2.0%;
B、抽真空换氩气后,加入溶剂(甲醇)3mL;所述的溶剂为甲醇;所述的溶剂甲醇的毫升数与I-1的物质的量之比为12.0;
C、以荧光灯照射舒伦克管,搅拌进行反应;所述的荧光灯波长范围为可见光,功率为36W;所述的反应温度为室温(20-25℃,以下相同),反应时间为24小时;
D、反应结束后,向体系中加入水淬灭反应,乙酸乙酯萃取,分离出有机相后,用无水Na2SO4干燥,过滤,旋转蒸发除去溶剂。残留物经乙酸乙酯/石油醚混合溶剂柱层析,分离纯化得到目标产物II-150mg,产率77%。所述的乙酸乙酯/石油醚混合溶剂的比例为0:100,柱层析采用硅胶为固定相。
1H NMR(400MHz,CDCl3)δ7.28(t,J=8.0Hz,2H),6.99–6.83(m,3H),3.95(t,J=6.4Hz,2H),2.18–1.99(m,2H),1.84–1.74(m,2H),1.67–1.38(m,6H).
13C NMR(101MHz,CDCl3)δ157.98,128.41,126.21(d,J=276.3Hz),119.54,113.41,66.50,32.63(q,J=28.3Hz),28.01,27.43,24.73,20.80(q,J=2.9Hz).
19F NMR(376MHz,CDCl3)δ-66.37.GC-MS:m/z 246(M+).
实施例2:
化合物II-2的制备:
在10mL舒伦克(Schlenk)管中加入未活化烯烃I-2(R1=对甲基苯氧基,R2=氢,n=4)(47.6mg,0.25mmol),三氟甲基亚磺酸钠(78.0mg,0.50mmol)和Ir[dF(CF3)ppy]2(dtbbpy)PF6(5.6mg,0.005mmol)。抽真空换氩气后,加入溶剂(甲醇)3mL,以荧光灯照射舒伦克管,搅拌进行反应。荧光灯波长范围为可见光,功率为36W,反应温度为室温,反应时间为24小时。反应结束后,向体系中加入水淬灭反应,乙酸乙酯(3×10mL)萃取,分离出有机相后,用无水Na2SO4干燥,过滤,旋转蒸发除去溶剂。残留物以纯石油醚进行柱层析,分离纯化得到目标产物II-253mg,产率82%。
1H NMR(400MHz,CDCl3)δ7.06(d,J=8.2Hz,2H),6.78(d,J=8.5Hz,2H),3.91(t,J=6.4Hz,2H),2.27(s,3H),2.15–1.98(m,2H),1.81–1.72(m,2H),1.64–1.35(m,6H).
13C NMR(101MHz,CDCl3)δ156.96,129.91,129.79,127.30(d,J=276.2Hz),114.35,67.74,33.69(q,J=28.3Hz),29.11,28.50,25.78,21.87(q,J=2.9Hz),20.46.
19F NMR(376MHz,CDCl3)δ-66.39.GC-MS:m/z 260(M+).
实施例3:
化合物II-3的制备:
在10mL舒伦克(Schlenk)管中加入未活化烯烃I-3(R1=对甲氧基苯氧基,R2=氢,n=4)(51.6mg,0.25mmol),三氟甲基亚磺酸钠(78.0mg,0.50mmol)和Ir[dF(CF3)ppy]2(dtbbpy)PF6(5.6mg,0.005mmol)。抽真空换氩气后,加入溶剂(甲醇)3mL,以荧光灯照射舒伦克管,搅拌进行反应。荧光灯波长范围为可见光,功率为36W,反应温度为室温,反应时间为24小时。反应结束后,向体系中加入水淬灭反应,乙酸乙酯(3×10mL)萃取,分离出有机相后,用无水Na2SO4 干燥,过滤,旋转蒸发除去溶剂。残留物以纯石油醚进行柱层析,分离纯化得到目标产物II-356mg,产率82%。
1H NMR(400MHz,CDCl3)δ6.85–6.79(m,4H),3.90(t,J=6.4Hz,2H),3.76(s,3H),2.16–1.98(m,2H),1.81–1.70(m,2H),1.65–1.36(m,6H).
13C NMR(101MHz,CDCl3)δ153.78,153.23,127.31(d,J=276.2Hz),115.42,114.65,68.34,55.71,33.68(q,J=28.3Hz),29.17,28.51,25.78,21.87(q,J=2.8Hz).
19F NMR(376MHz,CDCl3)δ-66.40.
实施例4:
化合物II-4的制备:
在10mL舒伦克(Schlenk)管中加入未活化烯烃I-4(R1=对氯苯氧基,R2=氢,n=4)(52.7mg,0.25mmol),三氟甲基亚磺酸钠(78.0mg,0.50mmol)和Ir[dF(CF3)ppy]2(dtbbpy)PF6(5.6mg,0.005mmol)。抽真空换氩气后,加入溶剂(甲醇)3mL,以荧光灯照射舒伦克管,搅拌进行反应。荧光灯波长范围为可见光,功率为36W,反应温度为室温,反应时间为24小时。反应结束后,向体系中加入水淬灭反应,乙酸乙酯(3×10mL)萃取,分离出有机相后,用无水Na2SO4干燥,过滤,旋转蒸发除去溶剂。残留物以纯石油醚进行柱层析,分离纯化得到目标产物II-450mg,产率71%。
1H NMR(400MHz,CDCl3)δ7.22(d,J=9.0Hz,2H),6.81(d,J=9.0Hz,2H),3.91(t,J=6.4Hz,2H),2.16–2.00(m,2H),1.82–1.72(m,2H),1.65–1.39(m,6H).
13C NMR(101MHz,CDCl3)δ157.65,129.30,127.24(d,J=276.3Hz),125.40,115.72,68.00,33.65(q,J=28.4Hz),28.95,28.44,25.71,21.83(q,J=2.9Hz).
19F NMR(376MHz,CDCl3)δ-66.38.
实施例5:
化合物II-5的制备:
在10mL舒伦克(Schlenk)管中加入未活化烯烃I-5(R1=对溴苯氧基,R2 =氢,n=4)(63.8mg,0.25mmol),三氟甲基亚磺酸钠(78.0mg,0.50mmol)和Ir[dF(CF3)ppy]2(dtbbpy)PF6(5.6mg,0.005mmol)。抽真空换氩气后,加入溶剂(甲醇)3mL,以荧光灯照射舒伦克管,搅拌进行反应。荧光灯波长范围为可见光,功率为36W,反应温度为室温,反应时间为24小时。反应结束后,向体系中加入水淬灭反应,乙酸乙酯(3×10mL)萃取,分离出有机相后,用无水Na2SO4干燥,过滤,旋转蒸发除去溶剂。残留物以纯石油醚进行柱层析,分离纯化得到目标产物II-560mg,产率74%。
1H NMR(400MHz,CDCl3)δ7.36(d,J=9.0Hz,2H),6.76(d,J=9.0Hz,2H),3.91(t,J=6.4Hz,2H),2.17–1.99(m,2H),1.84–1.72(m,2H),1.67–1.37(m,6H).
13C NMR(101MHz,CDCl3)δ158.14,132.23,127.22(d,J=276.3Hz),116.25,112.67,67.93,33.65(q,J=28.4Hz),28.92,28.44,25.70,21.82(q,J=2.9Hz).
19F NMR(376MHz,CDCl3)δ-66.38.GC-MS:m/z 324(M+).
实施例6:
化合物II-6的制备:
在10mL舒伦克(Schlenk)管中加入未活化烯烃I-6(R1=邻碘苯氧基,R2=氢,n=4)(75.5mg,0.25mmol),三氟甲基亚磺酸钠(78.0mg,0.50mmol)和Ir[dF(CF3)ppy]2(dtbbpy)PF6(5.6mg,0.005mmol)。抽真空换氩气后,加入溶剂(甲醇)3mL,以荧光灯照射舒伦克管,搅拌进行反应。荧光灯波长范围为可见光,功率为36W,反应温度为室温,反应时间为24小时。反应结束后,向体系中加入水淬灭反应,乙酸乙酯(3×10mL)萃取,分离出有机相后,用无水Na2SO4干燥,过滤,旋转蒸发除去溶剂。残留物以纯石油醚进行柱层析,分离纯化得到目标产物II-674mg,产率80%。
1H NMR(400MHz,CDCl3)δ7.76(dd,J=7.8,1.6Hz,1H),7.27(ddd,J=8.3,7.4,1.6Hz,1H),6.79(dd,J=8.2,1.2Hz,1H),6.69(td,J=7.7,1.3Hz,1H),4.00(t,J=6.2Hz,2H),2.17–2.01(m,2H),1.89–1.79(m,2H),1.66–1.39(m,6H).
13C NMR(101MHz,CDCl3)δ157.49,139.42,129.43,127.26(d,J=276.3Hz),122.40,112.01,86.66,68.82,33.65(q,J=28.3Hz),28.82,28.36,25.80,21.82(q,J=2.9Hz).
19F NMR(376MHz,CDCl3)δ-66.34.GC-MS:m/z 372(M+).
实施例7:
化合物II-7的制备:
在10mL舒伦克(Schlenk)管中加入未活化烯烃I-7(R1=对醛基苯氧基,R2=氢,n=4)(51.1mg,0.25mmol),三氟甲基亚磺酸钠(78.0mg,0.50mmol)和Ir[dF(CF3)ppy]2(dtbbpy)PF6(5.6mg,0.005mmol)。抽真空换氩气后,加入溶剂(甲醇)3mL,以荧光灯照射舒伦克管,搅拌进行反应。荧光灯波长范围为可见光,功率为36W,反应温度为室温,反应时间为24小时。反应结束后,向体系中加入水淬灭反应,乙酸乙酯(3×10mL)萃取,分离出有机相后,用无水Na2SO4干燥,过滤,旋转蒸发除去溶剂。残留物经乙酸乙酯/石油醚=1:20混合溶剂进行柱层析,分离纯化得到目标产物II-753mg,产率78%。
1H NMR(400MHz,CDCl3)δ9.88(s,1H),7.83(d,J=8.7Hz,2H),6.99(d,J=8.7Hz,2H),4.05(t,J=6.4Hz,2H),2.17–2.01(m,2H),1.89–1.76(m,2H),1.66–1.41(m,6H).
13C NMR(101MHz,CDCl3)δ190.85,164.13,132.01,129.83,127.21(d,J=276.3Hz),114.72,68.11,33.63(q,J=28.4Hz),28.81,28.40,25.67,21.81(q,J=2.9Hz). 19F NMR(376MHz,CDCl3)δ-66.37.GC-MS:m/z 274(M+).
实施例8:
化合物II-8的制备:
在10mL舒伦克(Schlenk)管中加入未活化烯烃I-8(R1=对乙酰基苯氧基,R2=氢,n=4)(54.6mg,0.25mmol),三氟甲基亚磺酸钠(78.0mg,0.50mmol)和Ir[dF(CF3)ppy]2(dtbbpy)PF6(5.6mg,0.005mmol)。抽真空换氩气后,加入溶剂(甲醇)3mL,以荧光灯照射舒伦克管,搅拌进行反应。荧光灯波长范围为可见光,功率为36W,反应温度为室温,反应时间为24小时。反应结束后,向体系中加入水淬灭反应,乙酸乙酯(3×10mL)萃取,分离出有机相后,用无水Na2SO4干燥,过滤,旋转蒸发除去溶剂。残留物经乙酸乙酯/石油醚=1:20混合溶剂进 行柱层析,分离纯化得到目标产物II-863mg,产率88%。
1H NMR(400MHz,CDCl3)δ7.93(d,J=8.9Hz,2H),6.91(d,J=8.9Hz,2H),4.02(t,J=6.4Hz,2H),2.55(s,3H),2.17–2.00(m,2H),1.87–1.75(m,2H),1.66–1.41(m,6H).
13C NMR(101MHz,CDCl3)δ196.82,162.99,130.60,130.19,127.21(d,J=276.3Hz),114.10,67.94,33.63(q,J=28.3Hz),28.84,28.41,26.33,25.68,21.81(q,J=2.9Hz).
19F NMR(376MHz,CDCl3)δ-66.38.GC-MS:m/z 288(M+).
实施例9:
化合物II-9的制备:
在10mL舒伦克(Schlenk)管中加入未活化烯烃I-9(R1=苯基,R2=氢,n=2)(33.1mg,0.25mmol),三氟甲基亚磺酸钠(78.0mg,0.50mmol)和Ir[dF(CF3)ppy]2(dtbbpy)PF6(5.6mg,0.005mmol)。抽真空换氩气后,加入溶剂(甲醇)3mL,以荧光灯照射舒伦克管,搅拌进行反应。荧光灯波长范围为可见光,功率为36W,反应温度为室温,反应时间为24小时。反应结束后,向体系中加入水淬灭反应,乙酸乙酯(3×10mL)萃取,分离出有机相后,用无水Na2SO4干燥,过滤,旋转蒸发除去溶剂。残留物经纯石油醚进行柱层析,分离纯化得到目标产物II-943mg,产率85%。
1H NMR(400MHz,CDCl3)δ7.30(t,J=7.4Hz,2H),7.20(dd,J=13.9,7.2Hz,3H),2.65(t,J=7.5Hz,2H),2.19–2.02(m,2H),1.78–1.54(m,4H).
13C NMR(101MHz,CDCl3)δ141.68,128.39,128.33,127.14(d,J=273.2Hz),125.79,35.48,33.59(q,J=28.4Hz),30.46,21.51(q,J=2.9Hz).
19F NMR(376MHz,CDCl3)δ-66.32.
实施例10:
化合物II-10的制备:
在10mL舒伦克(Schlenk)管中加入未活化烯烃I-10(R1=对甲基苯硫基, R2=氢,n=2)(44.6mg,0.25mmol),三氟甲基亚磺酸钠(78.0mg,0.50mmol)和Ir[dF(CF3)ppy]2(dtbbpy)PF6(5.6mg,0.005mmol)。抽真空换氩气后,加入溶剂(甲醇)3mL,以荧光灯照射舒伦克管,搅拌进行反应。荧光灯波长范围为可见光,功率为36W,反应温度为室温,反应时间为24小时。反应结束后,向体系中加入水淬灭反应,乙酸乙酯(3×10mL)萃取,分离出有机相后,用无水Na2SO4干燥,过滤,旋转蒸发除去溶剂。残留物经纯石油醚进行柱层析,分离纯化得到目标产物II-1040mg,产率65%。
1H NMR(400MHz,CDCl3)δ7.25(d,J=8.1Hz,2H),7.10(d,J=8.0Hz,2H),2.88(t,J=6.8Hz,2H),2.32(s,3H),2.16–1.98(m,2H),1.74–1.60(m,4H).
13C NMR(101MHz,CDCl3)δ136.41,132.23,130.34,129.75,127.04(d,J=276.3Hz),34.04,33.33(q,J=28.6Hz),28.22,21.01(q,J=3.2Hz).(one carbon signal isoverlapped)
19F NMR(376MHz,CDCl3)δ-66.35.GC-MS:m/z 248(M+).
实施例11:
化合物II-11的制备:
在10mL舒伦克(Schlenk)管中加入未活化烯烃I-11(R1=苯甲酸酯基,R2=氢,n=4)(51.1mg,0.25mmol),三氟甲基亚磺酸钠(78.0mg,0.50mmol)和Ir[dF(CF3)ppy]2(dtbbpy)PF6(5.6mg,0.005mmol)。抽真空换氩气后,加入溶剂(甲醇)3mL,以荧光灯照射舒伦克管,搅拌进行反应。荧光灯波长范围为可见光,功率为36W,反应温度为室温,反应时间为24小时。反应结束后,向体系中加入水淬灭反应,乙酸乙酯(3×10mL)萃取,分离出有机相后,用无水Na2SO4干燥,过滤,旋转蒸发除去溶剂。残留物以乙酸乙酯/石油醚=1:50混合溶剂进行柱层析,分离纯化得到目标产物II-1143mg,产率63%。
1H NMR(400MHz,CDCl3)δ8.04(d,J=7.2Hz,2H),7.56(t,J=7.4Hz,1H),7.44(t,J=7.8Hz,2H),4.32(t,J=6.5Hz,2H),2.16–1.97(m,2H),1.84–1.71(m,2H),1.66–1.37(m,6H).
13C NMR(101MHz,CDCl3)δ166.64,132.89,130.40,129.53,128.36,127.21(d,J=276.2Hz),64.80,33.64(q,J=28.4Hz),28.49,28.37,25.73,21.81(q,J=2.9Hz). 19F NMR(376MHz,CDCl3)δ-66.40.
实施例12:
化合物II-12的制备:
在10mL舒伦克(Schlenk)管中加入未活化烯烃I-12(R1=酞酰亚胺基,R2=氢,n=4)(57.3mg,0.25mmol),三氟甲基亚磺酸钠(78.0mg,0.50mmol)和Ir[dF(CF3)ppy]2(dtbbpy)PF6(5.6mg,0.005mmol)。抽真空换氩气后,加入溶剂(甲醇)3mL,以荧光灯照射舒伦克管,搅拌进行反应。荧光灯波长范围为可见光,功率为36W,反应温度为室温,反应时间为24小时。反应结束后,向体系中加入水淬灭反应,乙酸乙酯(3×10mL)萃取,分离出有机相后,用无水Na2SO4干燥,过滤,旋转蒸发除去溶剂。残留物以乙酸乙酯/石油醚=1:10混合溶剂进行柱层析,分离纯化得到目标产物II-1256mg,产率75%。
1H NMR(400MHz,CDCl3)δ7.88–7.82(m,2H),7.72(dd,J=5.5,3.0Hz,2H),3.69(t,J=7.2Hz,2H),2.18–1.95(m,2H),1.75–1.64(m,2H),1.62–1.50(m,2H),1.48–1.31(m,4H).
13C NMR(101MHz,CDCl3)δ168.41,133.88,132.07,127.14(d,J=276.0Hz),123.16,37.74,33.58(q,J=28.3Hz),28.31,28.21,26.39,21.72(q,J=2.9Hz).
19F NMR(376MHz,CDCl3)δ-66.42.
实施例13:
化合物II-13的制备:
在10mL舒伦克(Schlenk)管中加入未活化烯烃I-13(R1=对溴苯氧基,R2=甲基,n=2)(60.3mg,0.25mmol),三氟甲基亚磺酸钠(78.0mg,0.50mmol)和Ir[dF(CF3)ppy]2(dtbbpy)PF6(5.6mg,0.005mmol)。抽真空换氩气后,加入溶剂(甲醇)3mL,以荧光灯照射舒伦克管,搅拌进行反应。荧光灯波长范围为可见光,功率为36W,反应温度为室温,反应时间为24小时。反应结束后,向体系中加入水淬灭反应,乙酸乙酯(3×10mL)萃取,分离出有机相后,用无水Na2SO4 干燥,过滤,旋转蒸发除去溶剂。残留物以纯石油醚进行柱层析,分离纯化得到目标产物II-1353mg,产率68%。
1H NMR(400MHz,CDCl3)δ7.40–7.33(m,2H),6.79–6.73(m,2H),4.05–3.85(m,2H),2.28–2.08(m,2H),2.07–1.85(m,2H),1.74–1.64(m,1H),1.08(d,J=6.3Hz,3H).
19F NMR(376MHz,CDCl3)δ-63.21.GC-MS:m/z 310(M+).
实施例14:
化合物II-14的制备:
在10mL舒伦克(Schlenk)管中加入未活化烯烃I-14(R1=苯磺酰基,R2=氢,n=0)(42.1mg,0.25mmol),三氟甲基亚磺酸钠(78.0mg,0.50mmol)和Ir[dF(CF3)ppy]2(dtbbpy)PF6(5.6mg,0.005mmol)。抽真空换氩气后,加入溶剂(甲醇)3mL,以荧光灯照射舒伦克管,搅拌进行反应。荧光灯波长范围为可见光,功率为36W,反应温度为室温,反应时间为24小时。反应结束后,向体系中加入水淬灭反应,乙酸乙酯(3×10mL)萃取,分离出有机相后,用无水Na2SO4干燥,过滤,旋转蒸发除去溶剂。残留物以乙酸乙酯/石油醚=1:5进行柱层析,分离纯化得到目标产物II-1433mg,产率55%。
1H NMR(400MHz,CDCl3)δ7.87(d,J=7.2Hz,2H),7.65(t,J=7.5Hz,1H),7.55(t,J=7.7Hz,2H),3.28–3.17(m,2H),2.58–2.41(m,2H).
13C NMR(101MHz,CDCl3)δ138.07,134.47,129.70,128.11,125.41(d,J=276.5Hz),49.35(q,J=2.9Hz),28.04(q,J=31.5Hz).
19F NMR(376MHz,CDCl3)δ-65.94.
实施例15:
化合物II-15的制备:
在10mL舒伦克(Schlenk)管中加入未活化烯烃I-15(R1=苯酚酯基,R2=氢,n=0)(37.0mg,0.25mmol),三氟甲基亚磺酸钠(78.0mg,0.50mmol)和 Ir[dF(CF3)ppy]2(dtbbpy)PF6(5.6mg,0.005mmol)。抽真空换氩气后,加入溶剂(甲醇)3mL,以荧光灯照射舒伦克管,搅拌进行反应。荧光灯波长范围为可见光,功率为36W,反应温度为室温,反应时间为24小时。反应结束后,向体系中加入水淬灭反应,乙酸乙酯(3×10mL)萃取,分离出有机相后,用无水Na2SO4干燥,过滤,旋转蒸发除去溶剂。残留物以乙酸乙酯/石油醚=1:20进行柱层析,分离纯化得到目标产物II-1532mg,产率58%。
1H NMR(400MHz,CDCl3)δ7.39(t,J=7.9Hz,2H),7.26(d,J=6.4Hz,1H),7.08(d,J=8.0Hz,2H),2.96–2.79(m,2H),2.68–2.47(m,2H).
13C NMR(101MHz,CDCl3)δ169.60,150.38,129.56,127.80,126.43(d,J=276.0Hz),121.35,29.37(q,J=30.2Hz),27.35(q,J=3.3Hz).
19F NMR(376MHz,CDCl3)δ-66.89.
实施例16:
化合物II-16的制备:
在10mL舒伦克(Schlenk)管中加入未活化烯烃I-16(R1=苯酚酯基,R2=甲基,n=0)(40.5mg,0.25mmol),三氟甲基亚磺酸钠(78.0mg,0.50mmol)和Ir[dF(CF3)ppy]2(dtbbpy)PF6(5.6mg,0.005mmol)。抽真空换氩气后,加入溶剂(甲醇)3mL,以荧光灯照射舒伦克管,搅拌进行反应。荧光灯波长范围为可见光,功率为36W,反应温度为室温,反应时间为24小时。反应结束后,向体系中加入水淬灭反应,乙酸乙酯(3×10mL)萃取,分离出有机相后,用无水Na2SO4干燥,过滤,旋转蒸发除去溶剂。残留物以乙酸乙酯/石油醚=1:20进行柱层析,分离纯化得到目标产物II-1650mg,产率86%。
1H NMR(400MHz,CDCl3)δ7.38(t,J=7.9Hz,2H),7.24(t,J=7.9Hz,1H),7.07(d,J=7.6Hz,2H),3.14–2.97(m,1H),2.87–2.68(m,1H),2.36–2.19(m,1H),1.44(d,J=7.1Hz,3H).
13C NMR(101MHz,CDCl3)δ173.05,150.52,129.53,126.30(d,J=276.8Hz),126.11,121.33,37.09(q,J=28.9Hz),34.28(q,J=2.7Hz),17.62.
19F NMR(376MHz,CDCl3)δ-64.80.GC-MS:m/z 232(M+).
实施例17:
化合物II-17的制备:
在10mL舒伦克(Schlenk)管中加入未活化烯烃I-17(R1=N,N-甲基苯基-酰胺基,R2=甲基,n=0)(43.8mg,0.25mmol),三氟甲基亚磺酸钠(78.0mg,0.50mmol)和Ir[dF(CF3)ppy]2(dtbbpy)PF6(5.6mg,0.005mmol)。抽真空换氩气后,加入溶剂(甲醇)3mL,以荧光灯照射舒伦克管,搅拌进行反应。荧光灯波长范围为可见光,功率为36W,反应温度为室温,反应时间为24小时。反应结束后,向体系中加入水淬灭反应,乙酸乙酯(3×10mL)萃取,分离出有机相后,用无水Na2SO4干燥,过滤,旋转蒸发除去溶剂。残留物以乙酸乙酯/石油醚=1:20进行柱层析,分离纯化得到目标产物II-1732mg,产率52%。
1H NMR(400MHz,CDCl3)δ7.48–7.42(m,2H),7.41–7.35(m,1H),7.23–7.16(m,2H),3.27(s,3H),2.85–2.61(m,2H),2.05–1.85(m,1H),1.10(d,J=6.5Hz,3H).
13C NMR(101MHz,CDCl3)δ174.26,143.50,129.96,128.21,127.27,126.45(d,J=277.0Hz),37.62,37.57(q,J=28.1Hz),30.91(q,J=2.5Hz),18.75.
19F NMR(376MHz,CDCl3)δ-65.20.GC-MS:m/z 245(M+).
实施例18:
化合物II-18的制备:
在10mL舒伦克(Schlenk)管中加入未活化烯烃I-18(R1=苯酮基,R2=苯基,n=0)(52.1mg,0.25mmol),三氟甲基亚磺酸钠(78.0mg,0.50mmol)和Ir[dF(CF3)ppy]2(dtbbpy)PF6(5.6mg,0.005mmol)。抽真空换氩气后,加入溶剂(甲醇)3mL,以荧光灯照射舒伦克管,搅拌进行反应。荧光灯波长范围为可见光,功率为36W,反应温度为室温,反应时间为24小时。反应结束后,向体系中加入水淬灭反应,乙酸乙酯(3×10mL)萃取,分离出有机相后,用无水Na2SO4干燥,过滤,旋转蒸发除去溶剂。残留物以乙酸乙酯/石油醚=1:20进行柱层析, 分离纯化得到目标产物II-1843mg,产率62%。
1H NMR(400MHz,CDCl3)δ7.96(d,J=7.2Hz,2H),7.50(t,J=7.4Hz,1H),7.40(t,J=7.6Hz,2H),7.31(d,J=4.3Hz,4H),7.25–7.19(m,1H),4.91(dd,J=7.7,5.5Hz,1H),3.42–3.19(m,1H),3.41–3.22(m,1H).
13C NMR(101MHz,CDCl3)δ196.75,137.41,135.67,133.39,129.36,128.85,128.69,128.06,127.86,126.41(d,J=277.1Hz),47.18(q,J=2.4Hz),37.37(q,J=28.2Hz).
19F NMR(376MHz,CDCl3)δ-64.60.
实施例19:
雌酚酮衍生物II-19的制备:
在舒伦克(Schlenk)管中加入雌酚酮衍生物I-19(88.1mg,0.25mmol),三氟甲基亚磺酸钠(78.0mg,0.50mmol)和光催化剂Ir[dF(CF3)ppy]2(dtbpy)PF6(2mol%,5.6mg)。抽真空换氩气后,加入溶剂(甲醇)3mL,以荧光灯照射舒伦克管,搅拌进行反应。荧光灯波长范围为可见光,功率为36W,反应温度为室温,反应时间为24小时。反应结束后,向体系中加入水淬灭反应,乙酸乙酯萃取,分离出有机相后,用无水Na2SO4干燥,过滤,旋转蒸发除去溶剂。残留物以乙酸乙酯/石油醚=1:50进行柱层析,分离纯化得到三氟甲基化的雌酚酮衍生物II-1986mg,产率81%。
1H NMR(400MHz,CDCl3)δ7.19(d,J=8.6Hz,1H),6.70(dd,J=8.6,2.6Hz,1H),6.64(d,J=2.5Hz,1H),3.93(t,J=6.4Hz,2H),2.95–2.83(m,2H),2.54–2.46(m,1H),2.43–2.34(m,1H),2.30–1.90(m,8H),1.84–1.71(m,2H),1.68–1.36(m,11H),0.90(s,3H).
13C NMR(101MHz,CDCl3)δ220.86,157.08,137.74,131.98,127.26(d,J=276.3Hz),126.34,114.56,112.10,67.61,50.45,48.02,44.01,38.39,35.90,33.67(q,J=28.3Hz),31.60,29.68,29.07,28.45,26.58,25.94,25.76,21.84(q,J=2.8Hz),21.60,13.87.
19F NMR(376 MHz,CDCl3)δ-66.35.GC-MS:m/z 422(M+)。

Claims (3)

1.结构式如下的化合物:
R1基团为苯氧基、对甲基苯氧基、对甲氧基苯氧基、对氯苯氧基、对溴苯氧基、间碘苯氧基、对醛基苯氧基、对乙酰基苯氧基、苯基、对甲基苯硫基、苯甲酸酯基、酞酰亚胺基、苯磺酰基、苯酚酯基、N,N-甲基苯基-酰胺基或苯酮基;
n为0、2或4;
R2为氢、甲基或苯基。
2.一种权利要求1所述的化合物的制备方法,其步骤是:
A、在舒伦克管中加入未活化烯烃I,三氟甲基亚磺酸钠和光催化剂Ir[dF(CF3)ppy]2(dtbpy)PF6;所述的三氟甲基亚磺酸钠与结构I所示化合物的物质的量之比为2.0-3.0;所述的光催化剂Ir[dF(CF3)ppy]2(dtbpy)PF6的用量为结构I所示化合物的物质的量的1.0%-2.0%;
B、抽真空换氩气后,加入甲醇;所述的溶剂为N,N-二甲基甲酰胺与水1:1体积比混合溶液、二甲基亚砜与与水1:1体积比混合溶液、甲醇与水1:1体积比混合溶液、乙腈与水1:1体积比混合溶液、二氯甲烷与水1:1体积比混合溶液、甲醇、乙醇、异丙醇、叔丁醇中至少一种;所述的甲醇的毫升数与结构I所示化合物的物质的量之比为8.0-12.0;
C、以荧光灯照射舒伦克管,搅拌进行反应;所述的荧光灯波长范围为可见光,功率为36W;所述的反应温度为室温,反应时间为22-26小时;
D、反应结束后,向体系中加入水淬灭反应,乙酸乙酯萃取,分离出有机相后,用无水Na2SO4干燥,过滤,旋转蒸发除去溶剂,残留物经乙酸乙酯/石油醚混合溶剂柱层析,分离纯化得到目标产物II,所述的乙酸乙酯/石油醚混合溶剂的比例依据产物极性不同选择,柱层析采用硅胶为固定相。
3.权利要求2所述的一种未活化烯烃氢三氟甲基化的制备方法在合成药物分子中的应用。
CN201610097405.0A 2016-02-19 2016-02-19 一种未活化烯烃氢三氟甲基化的制备方法及应用 Active CN106892800B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610097405.0A CN106892800B (zh) 2016-02-19 2016-02-19 一种未活化烯烃氢三氟甲基化的制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610097405.0A CN106892800B (zh) 2016-02-19 2016-02-19 一种未活化烯烃氢三氟甲基化的制备方法及应用

Publications (2)

Publication Number Publication Date
CN106892800A true CN106892800A (zh) 2017-06-27
CN106892800B CN106892800B (zh) 2020-08-28

Family

ID=59190363

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610097405.0A Active CN106892800B (zh) 2016-02-19 2016-02-19 一种未活化烯烃氢三氟甲基化的制备方法及应用

Country Status (1)

Country Link
CN (1) CN106892800B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108976174A (zh) * 2018-07-06 2018-12-11 河北工业大学 一种3-三氟甲基喹喔啉酮类化合物制备方法
CN110590552A (zh) * 2019-09-26 2019-12-20 青岛农业大学 乙酸酯类化合物的合成方法
CN111303089A (zh) * 2020-03-10 2020-06-19 河北科技大学 一种α-卤代三氟甲基取代烷烃的制备方法
CN114702364A (zh) * 2022-05-11 2022-07-05 闽都创新实验室 一种多氟烷基芳香烃的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DALE J. WILGER等: "Catalytic hydrotrifluoromethylation of styrenes and unactivated aliphatic alkenes via an organic photoredox system", 《CHEMICAL SCIENCE》 *
QING-YU LIN等: "Chemo‑, Regio‑, and Stereoselective Trifluoromethylation of Styrenes via Visible Light-Driven Single-Electron Transfer (SET) and Triplet−Triplet Energy Transfer (TTET) Processes", 《J. ORG. CHEM》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108976174A (zh) * 2018-07-06 2018-12-11 河北工业大学 一种3-三氟甲基喹喔啉酮类化合物制备方法
CN108976174B (zh) * 2018-07-06 2021-08-03 河北工业大学 一种3-三氟甲基喹喔啉酮类化合物制备方法
CN110590552A (zh) * 2019-09-26 2019-12-20 青岛农业大学 乙酸酯类化合物的合成方法
CN110590552B (zh) * 2019-09-26 2022-02-08 青岛农业大学 乙酸酯类化合物的合成方法
CN111303089A (zh) * 2020-03-10 2020-06-19 河北科技大学 一种α-卤代三氟甲基取代烷烃的制备方法
CN114702364A (zh) * 2022-05-11 2022-07-05 闽都创新实验室 一种多氟烷基芳香烃的制备方法
CN114702364B (zh) * 2022-05-11 2024-01-02 闽都创新实验室 一种多氟烷基芳香烃的制备方法

Also Published As

Publication number Publication date
CN106892800B (zh) 2020-08-28

Similar Documents

Publication Publication Date Title
Gao et al. Visible-light photoredox synthesis of internal alkynes containing quaternary carbons
Xie et al. A room temperature decarboxylation/C–H functionalization cascade by visible-light photoredox catalysis
CN107011145B (zh) 一种利用可见光催化制备2-碘戊-2-烯-1,4-二酮衍生物的方法
CN106892800A (zh) 一种未活化烯烃氢三氟甲基化的制备方法及应用
Liu et al. Pd (II)-catalyzed asymmetric Wacker-type cyclization for the preparation of 2-vinylchroman derivatives with biphenyl tetraoxazoline ligands
Huang et al. Visible-light-induced photocatalysis of 1, 1, 1-trifluoro-2-iodoethane with alkylalkenes and silyl enol ethers
Fu et al. Visible-light-mediated trifluoroethylation of 2-isocyanobiaryl with trifluoroethyl iodide: Synthesis of 6-trifluoroethyl-phenanthridines
Jia et al. Cu (BTC)-MOF catalyzed multicomponent reaction to construct 1, 4-disubstituted-1, 2, 3-triazoles
Wang et al. One-pot synthesis of 3-fluoroflavones via 1-(2-hydroxyphenyl)-3-phenylpropane-1, 3-diones and selectfluor at room temperature
Zhang et al. Metal-free, visible-light-promoted decarboxylative alkylation of Baylis–Hillman acetates with N-(acyloxy) phthalimides
CN112047839B (zh) 一种1-碘-3-全氟烷基烯烃化合物及其制备方法
CN111072605B (zh) 一种氟烷基取代的苯并呋喃衍生物或吲哚衍生物的制备方法
CN109574906A (zh) 一种3,3’-二吲哚基乙酸酯的制备方法
CN112321553A (zh) 由芳基炔酸酯合成3位二氟甲基取代香豆素衍生物的方法
Liu et al. Synthesis of C3-functionalized indole derivatives via Brønsted acid-catalyzed regioselective arylation of 2-indolylmethanols with guaiazulene
CN106892826A (zh) 一种胺和亚胺氮甲基化的制备方法及应用
Duan et al. Palladium-Catalyzed Intramolecular Heck Dearomative Alkenylation of Indoles with N-Tosylhydrazones
CN105384715B (zh) 一种7-位取代的3-溴-4-苯基香豆素系列化合物制备方法
CN110317170B (zh) 一种3-菲啶基甲酸丙酯类化合物的绿色合成方法
CN104803907B (zh) 一种吲哚去芳构化合成取代环丙烷化合物的方法
CN108752213B (zh) 一种可见光激发二硫醚催化制备α-羟甲基-β-二羰基化合物的方法
Ouyang et al. Pd-catalyzed cyclodimerization of alkenyl and aryl dibromides: Construction of dibenzo [a, e] cyclooctatetraenes
EP3782977A1 (en) Cyclopropanation method and reagent
CN106905205B (zh) 一种一步构筑c-o和c-s键双官能化产物及其制备方法
CN106749315B (zh) 8-己基-噻吩并[3’,2’:3,4]苯并[1,2-c]咔唑类化合物及其合成方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20170627

Assignee: HUBEI HENDRY MEDICAL APPLIANCE Co.,Ltd.

Assignor: HUBEI ENGINEERING University

Contract record no.: X2023980048823

Denomination of invention: A Preparation Method and Application of Unactivated Olefin Hydrotrifluoromethylation

Granted publication date: 20200828

License type: Common License

Record date: 20231130