CN106881091A - 一种多孔金属/石墨烯复合物的制备方法 - Google Patents
一种多孔金属/石墨烯复合物的制备方法 Download PDFInfo
- Publication number
- CN106881091A CN106881091A CN201710027456.0A CN201710027456A CN106881091A CN 106881091 A CN106881091 A CN 106881091A CN 201710027456 A CN201710027456 A CN 201710027456A CN 106881091 A CN106881091 A CN 106881091A
- Authority
- CN
- China
- Prior art keywords
- graphene oxide
- graphene
- hydrogen
- preparation
- porous
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 38
- 229910021389 graphene Inorganic materials 0.000 title claims abstract description 32
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 19
- 239000002184 metal Substances 0.000 title claims abstract description 19
- 150000002739 metals Chemical class 0.000 title claims abstract description 13
- 238000002360 preparation method Methods 0.000 title claims abstract description 10
- 238000000034 method Methods 0.000 claims abstract description 9
- 239000000126 substance Substances 0.000 claims abstract description 5
- 239000012528 membrane Substances 0.000 claims abstract description 4
- 238000010008 shearing Methods 0.000 claims abstract description 4
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims abstract description 3
- 238000001035 drying Methods 0.000 claims abstract description 3
- 238000002791 soaking Methods 0.000 claims abstract description 3
- 238000010792 warming Methods 0.000 claims abstract description 3
- 229910002804 graphite Inorganic materials 0.000 claims description 5
- 239000010439 graphite Substances 0.000 claims description 5
- 150000003839 salts Chemical class 0.000 claims description 5
- 150000001336 alkenes Chemical class 0.000 claims description 2
- 229910052802 copper Inorganic materials 0.000 claims description 2
- 229910052737 gold Inorganic materials 0.000 claims description 2
- 229910052741 iridium Inorganic materials 0.000 claims description 2
- 229910052742 iron Inorganic materials 0.000 claims description 2
- 229910052759 nickel Inorganic materials 0.000 claims description 2
- 229910052762 osmium Inorganic materials 0.000 claims description 2
- 229910052763 palladium Inorganic materials 0.000 claims description 2
- 229910052697 platinum Inorganic materials 0.000 claims description 2
- 229910052703 rhodium Inorganic materials 0.000 claims description 2
- 229910052707 ruthenium Inorganic materials 0.000 claims description 2
- 229910052709 silver Inorganic materials 0.000 claims description 2
- 239000003292 glue Substances 0.000 claims 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 abstract description 32
- 229910052739 hydrogen Inorganic materials 0.000 abstract description 32
- 239000001257 hydrogen Substances 0.000 abstract description 32
- 150000001875 compounds Chemical class 0.000 abstract description 20
- 230000000694 effects Effects 0.000 abstract description 5
- 238000007146 photocatalysis Methods 0.000 abstract description 4
- 230000001699 photocatalysis Effects 0.000 abstract description 4
- 230000005611 electricity Effects 0.000 abstract description 3
- 239000007789 gas Substances 0.000 abstract description 3
- 239000000463 material Substances 0.000 abstract description 3
- -1 DSSC Substances 0.000 abstract description 2
- 239000011232 storage material Substances 0.000 abstract description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 18
- 230000005540 biological transmission Effects 0.000 description 11
- 239000000203 mixture Substances 0.000 description 11
- 229910052757 nitrogen Inorganic materials 0.000 description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 9
- 238000006243 chemical reaction Methods 0.000 description 5
- 239000002105 nanoparticle Substances 0.000 description 5
- 230000003647 oxidation Effects 0.000 description 5
- 238000007254 oxidation reaction Methods 0.000 description 5
- 206010070834 Sensitisation Diseases 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 230000008313 sensitization Effects 0.000 description 4
- 239000012153 distilled water Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- 239000003643 water by type Substances 0.000 description 3
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 238000006555 catalytic reaction Methods 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000002389 environmental scanning electron microscopy Methods 0.000 description 2
- 238000005286 illumination Methods 0.000 description 2
- 239000011229 interlayer Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 229910021645 metal ion Inorganic materials 0.000 description 2
- 239000002082 metal nanoparticle Substances 0.000 description 2
- VWDWKYIASSYTQR-UHFFFAOYSA-N sodium nitrate Chemical compound [Na+].[O-][N+]([O-])=O VWDWKYIASSYTQR-UHFFFAOYSA-N 0.000 description 2
- 239000004575 stone Substances 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N sulfuric acid group Chemical group S(O)(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- GETQZCLCWQTVFV-UHFFFAOYSA-N trimethylamine Chemical compound CN(C)C GETQZCLCWQTVFV-UHFFFAOYSA-N 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 229920000557 Nafion® Polymers 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 150000001721 carbon Chemical group 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- ZOMNIUBKTOKEHS-UHFFFAOYSA-L dimercury dichloride Chemical class Cl[Hg][Hg]Cl ZOMNIUBKTOKEHS-UHFFFAOYSA-L 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- YQGOJNYOYNNSMM-UHFFFAOYSA-N eosin Chemical compound [Na+].OC(=O)C1=CC=CC=C1C1=C2C=C(Br)C(=O)C(Br)=C2OC2=C(Br)C(O)=C(Br)C=C21 YQGOJNYOYNNSMM-UHFFFAOYSA-N 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 239000012286 potassium permanganate Substances 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 235000010344 sodium nitrate Nutrition 0.000 description 1
- 239000004317 sodium nitrate Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/74—Iron group metals
- B01J23/755—Nickel
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/30—Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
- B01J35/39—Photocatalytic properties
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B1/00—Electrolytic production of inorganic compounds or non-metals
- C25B1/01—Products
- C25B1/02—Hydrogen or oxygen
- C25B1/04—Hydrogen or oxygen by electrolysis of water
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B1/00—Electrolytic production of inorganic compounds or non-metals
- C25B1/50—Processes
- C25B1/55—Photoelectrolysis
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25B—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
- C25B11/00—Electrodes; Manufacture thereof not otherwise provided for
- C25B11/04—Electrodes; Manufacture thereof not otherwise provided for characterised by the material
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/36—Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Electrochemistry (AREA)
- Metallurgy (AREA)
- Inorganic Chemistry (AREA)
- Catalysts (AREA)
- Colloid Chemistry (AREA)
Abstract
一种多孔金属/石墨烯复合物的制备方法,包括步骤:(1)用化学法制备氧化石墨烯溶胶;(2)将步骤(1)的氧化石墨烯溶胶混合金属盐水溶液,干燥自组装成金属盐/氧化石墨烯膜;(3)将步骤(2)的金属盐/氧化石墨烯膜用机械剪切的方式破碎成小碎片;(4)在还原性气氛下,将步骤(3)的小碎片升温至300~600℃,保温时间为5~240 min,得到多孔金属/石墨烯复合物。本发明提供了一种安全、低成本氢还原制备多孔金属/RGO的方法。此方法操作简单,直接通过氢气还原和产生的气体的剥离作用,得到多孔的金属/RGO复合物,可应用于电、光催化析氢材料,染料敏化太阳能电池、储氢材料等。
Description
技术领域
本发明属于材料制备领域。
背景技术
为解决日益严重的能源危机和环境问题,开发绿色清洁,高效的氢能日益迫切。然而利用电解水、光催化、光电催化分解水制氢,都需要制氢催化剂。石墨烯由于其碳原子构成的单层片状特殊结构,具有优异的物理性质,如高的理论比表面积、优异的机械强度、良好的柔韧性和高的电导率等,在催化领域有着令人振奋的应用前景。
通过耦合石墨烯和金属,得到复合物具有高效的电催化和染料敏化析氢活性。在Scientific Reports,10589,2015报道,石墨烯/Ni复合物具有三明治结构,在0.5 mol/L的H2SO4 溶液中,在10 mA/cm2的电流密度时,过电位为-0.33(V vs 可逆氢电极)。染料敏化活性在470 nm处的量子效率AQY也高达30.3 %。然而由于石墨烯的层厚及Ni纳米颗粒的位阻影响了反应物水分子的扩散,从而抑制了析氢反应的进行。本发明在此基础上,采用氧化石墨烯溶胶(GO)作为原材料,提高了GO的分散性,使得金属离子能够充分进入到GO层间,从而在后续还原过程中能够形成多孔结构。得到的多孔金属/石墨烯复合物具有高效的电催化和染料敏化析氢活性。
发明内容
本发明的目的是提供一种多孔金属/石墨烯复合物的制备方法。
本发明是通过以下技术方案实现的。
本发明所述的一种多孔金属/石墨烯的制备方法,包括以下步骤。
(1)用化学法制备氧化石墨烯溶胶。
(2)将步骤(1)的氧化石墨烯溶胶混合金属盐水溶液,干燥自组装成金属盐/氧化石墨烯膜。
(3)将步骤(2)的金属盐/氧化石墨烯膜用机械剪切的方式破碎成小碎片。
(4)在还原性气氛下,将步骤(3)的小碎片升温至300 ~ 600 ℃,保温时间为5 ~240 min,得到多孔金属/石墨烯复合物。
本发明步骤(1)所述的化学法制备氧化石墨烯凝胶未经干燥直接超声分散成氧化石墨烯溶胶。
本发明步骤(2)所述的加入的金属盐为Fe、Co、Ni、Ru、Rh、Pd、Os、Ir、Pt、Cu、Ag、Au盐;以金属质量计的盐加入量是氧化石墨烯的3 %以上。
本发明步骤(3)所述的小碎片尺寸为0.001 ~ 1 mm × 0.001 ~ 1 mm。
本发明基于GO溶胶高分散性,使得金属离子能够充分进入GO的层间,利用热还原过程中GO释放的大量气体不仅剥离GO片成为RGO海绵体,且阻碍金属纳米颗粒的长大,从而形成多孔的金属纳米颗粒。本发明提供了一种安全、低成本氢还原制备多孔金属/RGO的方法。此方法操作简单,直接通过氢气还原和产生的气体的剥离作用,得到多孔的金属/RGO复合物,可应用于电、光催化析氢材料,染料敏化太阳能电池、储氢材料等。
附图说明
图1是本发明实施例1所制备的多孔Ni/RGO复合物的扫描电镜(SEM)图。
图2是本发明实施例1所制备的多孔Ni/RGO复合物的透射电镜(TEM)图。
图3是本发明实施例2所制备的多孔Ni/RGO复合物的透射电镜(TEM)图。
图4是本发明实施例3所制备的多孔Ni/RGO复合物的透射电镜(TEM)图。
图5是本发明实施例4所制备的多孔Ni/RGO复合物的透射电镜(TEM)图。
图6是本发明实施例1、2、3、4制备的多孔Ni/RGO复合物的线性伏安扫描图。
具体实施方式
本发明将通过以下实施例作进一步说明。
实施例1。
技术路线:石墨GO溶胶Ni盐/GO前驱体膜前驱体小碎片多孔金属Ni/RGO复合物。
(1)氧化石墨烯溶胶:称取纯度为99.9 %的石墨12 g,加入10 g过二硫酸钾(分析纯)、10 g五氧化二磷(分析纯)、48 mL浓硫酸(质量分数98 %)于圆底烧瓶中,80 ℃水浴搅拌反应4.5 h,反应完毕后加入500 mL去离子水,抽滤洗涤至中性,60 ℃干燥得到预氧化石墨。称取上述预氧化石墨2 g,加入1 g硝酸钠(分析纯),46 mL浓硫酸,冰浴下搅拌30 min,慢慢加入6 g高锰酸钾(分析纯),冰浴下反应45 min。接着将混合物加热至35 ℃,搅拌反应2 h,之后缓慢滴加90 mL去离子水。将混合物迅速加热至95 ℃,搅拌反应15 min。最后加入144 mL去离子水稀释,30 mL双氧水(质量分数30 %),搅拌30 min,对混合物进行离心洗涤至pH为6,得到氧化石墨凝胶。用蒸馏水稀释到1.0 L容量瓶中,超声分散4 h,得到GO溶胶,测其浓度为2.93 mg/mL。
(2)取200 mg上述溶胶,用蒸馏水稀释成1.0 mg/mL,加入10.2 mL的NiCl2溶液(浓度为10×10-3 mol/L),超声分散2 h,于80 ℃烘箱中烘干成膜。
(3)将步骤(2)得到的膜用机械剪切破碎成0. 001 ~ 1 mm × 0. 001 ~ 1 mm小碎片。
(4)取步骤(3)中小碎片于氮氢混合气流中,氢气体积浓度为5 %,流速50 mL/min,以10 ℃/min的升温速率升至500 ℃,保持120 min,最后在氮氢混合气(流速50 mL/min)中降温至室温,得到多孔Ni/石墨烯复合物。从图1扫描电镜图可以看出海绵状的Ni/RGO复合物,从图2可以看出多孔Ni纳米颗粒的存在。
请参阅图1,图1为实施例1得到的多孔Ni/RGO扫描电镜(SEM)图。
请参阅图2,图2为实施例1得到的多孔Ni/RGO透射电镜(TEM)图。
实施例2。
(1)与实施例1相同。
(2)加入20.4 mL的NiCl2溶液(浓度为10×10-3 mol/L),超声分散2 h,于80 ℃烘箱中烘干成膜。
(3)与实施例1相同。
(4)取步骤(3)中小碎片于氮氢混合气流中,氢气体积浓度为5 %,流速50 mL/min,以10 ℃/min的升温速率升至500 ℃,保持120 min,最后在氮氢混合气(流速50 mL/min)中降温至室温,得到多孔Ni/RGO复合物。图3透射电镜图可以看出多孔Ni纳米颗粒的存在。
请参阅图3,图3为实施例2得到的多孔Ni/RGO透射电镜(TEM)图。
实施例3。
(1)与实施例1相同。
(2)加入30.6 mL的NiCl2溶液(浓度为10×10-3 mol/L), 超声分散2 h,于80 ℃烘箱中烘干成膜。
(3)与实施例1相同。
(4)取步骤(3)中小碎片于氮氢混合气流中,氢气体积浓度为5 %,流速80 mL/min,以10 ℃/min的升温速率升至500 ℃,保持120 min,最后在氮氢混合气(流速80 mL/min)中降温至室温,得到多孔Ni/RGO复合物。图4透射电镜可以看出多孔Ni纳米颗粒的存在。
请参阅图4,图4为实施例3得到的多孔Ni/RGO透射电镜(TEM)图。
实施例4。
(1)与实施例1相同。
(2) 加入40.8 mL的NiCl2溶液(浓度为10×10-3 mol/L), 超声分散2 h,于80 ℃烘箱中烘干成膜。
(3)与实施例1相同。
(4)取步骤(3)中小碎片于氮氢混合气流中,氢气体积浓度为5 %,流速80 mL/min,以10 ℃/min的升温速率升至500 ℃,保持120 min,最后在氮氢混合气(流速80 mL/min)中降温至室温,得到多孔Ni/RGO复合物。图5透射电镜可以看出多孔Ni纳米颗粒的存在。
请参阅图5,图5为实施例4得到的多孔Ni/RGO透射电镜(TEM)图。
实施例5(应用实施例)。
将本发明制得的多孔Ni/RGO复合物用于电催化分解水制氢。称取 10 mg由实施例1,实施例2,实施例3和实施例4得到的多孔Ni/RGO复合物,加入2 mL蒸馏水,100 μL的Nafion溶液(5.0 wt%),超声分散4 h呈均匀的黑色分散液。取10 μL分散液于洁净的玻碳电极上,自然晾干。采用三电极体系(玻碳电极为工作电极,Pt丝电极为对电极,饱和甘汞电极为参比电极),在1.0 mol/L的KOH溶液中进行线性伏安扫描,扫描电压为-1.0 ~ -1.5 V,扫描速度为10 mV/s。结果显示,多孔Ni/RGO复合物具有高效的电催化析氢活性,实施例4得到的多孔Ni/RGO复合物在10 mA/cm2的析氢电流时,过电位为-0.215 V,图6为多孔Ni/石墨烯的线性伏安扫描曲线。
请参阅图6,图6为实施例1、2、3、4得到的多孔Ni/RGO复合物的线性伏安扫描图。
实施例6(应用实施例)。
将本发明制得的多孔Ni/RGO复合物用于染料敏化光催化制氢。称取5 mg由实施例3得到的Ni/RGO复合物,加入10 mmol/L的曙红(EY)2 mL,pH为11.0的三甲胺溶液98 mL,超声5 min,充氮气30 min,在400 W高压汞灯(滤去红外和紫外光,波长为400 - 700 nm),光强为248 μmol m-2 s-1,光照1 h,得到的氢气为125.5 μmol,表观量子效率为17.3 %。在470nm的单色光LED灯下照射(光强为,面积为0.8 cm2,光照2 h),表观量子效率为47.4 %。
Claims (4)
1.一种多孔金属/石墨烯复合物的制备方法,其特征是包括以下步骤:
(1)用化学法制备氧化石墨烯溶胶;
(2)将步骤(1)的氧化石墨烯溶胶混合金属盐水溶液,干燥自组装成金属盐/氧化石墨烯膜;
(3)将步骤(2)的金属盐/氧化石墨烯膜用机械剪切的方式破碎成小碎片;
(4)在还原性气氛下,将步骤(3)的小碎片升温至300 ~ 600 ℃,保温时间为5 ~ 240min,得到多孔金属/石墨烯复合物。
2.根据权利要求1所述的制备方法,其特征是步骤(1)所述的化学法制备氧化石墨烯凝胶未经干燥直接超声分散成氧化石墨烯溶胶。
3.根据权利要求1所述的制备方法,其特征是步骤(2)所述的加入的金属盐为Fe、Co、Ni、Ru、Rh、Pd、Os、Ir、Pt、Cu、Ag、Au盐;以金属质量计的盐加入量是氧化石墨烯的3 %以上。
4.根据权利要求1所述的制备方法,其特征是步骤(3)所述的小碎片尺寸为0.001 ~ 1mm × 0.001 ~ 1 mm。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710027456.0A CN106881091B (zh) | 2017-01-16 | 2017-01-16 | 一种多孔金属/石墨烯复合物的制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710027456.0A CN106881091B (zh) | 2017-01-16 | 2017-01-16 | 一种多孔金属/石墨烯复合物的制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106881091A true CN106881091A (zh) | 2017-06-23 |
CN106881091B CN106881091B (zh) | 2019-07-26 |
Family
ID=59176538
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710027456.0A Expired - Fee Related CN106881091B (zh) | 2017-01-16 | 2017-01-16 | 一种多孔金属/石墨烯复合物的制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106881091B (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109686580A (zh) * | 2019-01-07 | 2019-04-26 | 湖北文理学院 | 一种3D结构超薄Ni(OH)2纳米片/纳米Ni@rGO复合电极材料制备方法及应用 |
CN112619419A (zh) * | 2020-10-23 | 2021-04-09 | 深圳前海石墨烯产业有限公司 | 复合碳材料膜、复合碳材料纳滤膜及制备方法 |
US11629417B2 (en) | 2020-03-12 | 2023-04-18 | Honda Motor Co., Ltd. | Noble metal free catalyst for hydrogen generation |
CN116328769A (zh) * | 2023-03-08 | 2023-06-27 | 南昌大学 | 一种片-片结构RGO/Co(OH)2包裹Co纳米晶催化剂、制备方法及其应用 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103213980A (zh) * | 2013-05-13 | 2013-07-24 | 中国科学院苏州纳米技术与纳米仿生研究所 | 三维石墨烯或其复合体系的制备方法 |
CN103215469A (zh) * | 2012-01-19 | 2013-07-24 | 中国科学院上海硅酸盐研究所 | 多孔石墨烯、石墨烯/多孔金属复合材料以及它们的制备方法 |
CN103578796A (zh) * | 2013-11-15 | 2014-02-12 | 复旦大学 | 一种不含粘合剂超级电容器电极的制备方法 |
CN104022274A (zh) * | 2014-06-24 | 2014-09-03 | 常德力元新材料有限责任公司 | 用于制作电极的多孔金属复合材料及其制备方法 |
-
2017
- 2017-01-16 CN CN201710027456.0A patent/CN106881091B/zh not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103215469A (zh) * | 2012-01-19 | 2013-07-24 | 中国科学院上海硅酸盐研究所 | 多孔石墨烯、石墨烯/多孔金属复合材料以及它们的制备方法 |
CN103213980A (zh) * | 2013-05-13 | 2013-07-24 | 中国科学院苏州纳米技术与纳米仿生研究所 | 三维石墨烯或其复合体系的制备方法 |
CN103578796A (zh) * | 2013-11-15 | 2014-02-12 | 复旦大学 | 一种不含粘合剂超级电容器电极的制备方法 |
CN104022274A (zh) * | 2014-06-24 | 2014-09-03 | 常德力元新材料有限责任公司 | 用于制作电极的多孔金属复合材料及其制备方法 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109686580A (zh) * | 2019-01-07 | 2019-04-26 | 湖北文理学院 | 一种3D结构超薄Ni(OH)2纳米片/纳米Ni@rGO复合电极材料制备方法及应用 |
CN109686580B (zh) * | 2019-01-07 | 2020-08-07 | 湖北文理学院 | 一种3D结构超薄Ni(OH)2纳米片/纳米Ni@rGO复合电极材料制备方法及应用 |
US11629417B2 (en) | 2020-03-12 | 2023-04-18 | Honda Motor Co., Ltd. | Noble metal free catalyst for hydrogen generation |
CN112619419A (zh) * | 2020-10-23 | 2021-04-09 | 深圳前海石墨烯产业有限公司 | 复合碳材料膜、复合碳材料纳滤膜及制备方法 |
CN112619419B (zh) * | 2020-10-23 | 2022-07-26 | 深圳前海石墨烯产业有限公司 | 复合碳材料膜、复合碳材料纳滤膜及制备方法 |
CN116328769A (zh) * | 2023-03-08 | 2023-06-27 | 南昌大学 | 一种片-片结构RGO/Co(OH)2包裹Co纳米晶催化剂、制备方法及其应用 |
Also Published As
Publication number | Publication date |
---|---|
CN106881091B (zh) | 2019-07-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Yang et al. | Recent advances in MXene-based nanoarchitectures as electrode materials for future energy generation and conversion applications | |
Yang et al. | Ultrasonic-assisted synthesis of Pd–Pt/carbon nanotubes nanocomposites for enhanced electro-oxidation of ethanol and methanol in alkaline medium | |
Sirisomboonchai et al. | Fabrication of NiO microflake@ NiFe-LDH nanosheet heterostructure electrocatalysts for oxygen evolution reaction | |
Romeiro et al. | rGO-ZnO nanocomposites for high electrocatalytic effect on water oxidation obtained by microwave-hydrothermal method | |
Low et al. | Carbon-based two-dimensional layered materials for photocatalytic CO2 reduction to solar fuels | |
Yuan et al. | Laser patterned and bifunctional Ni@ N-doped carbon nanotubes as electrocatalyst and photothermal conversion layer for water splitting driven by thermoelectric device | |
Zhang et al. | Template-free synthesis of hollow Ni/reduced graphene oxide composite for efficient H 2 evolution | |
CN106881091B (zh) | 一种多孔金属/石墨烯复合物的制备方法 | |
Chen et al. | Insights on the dual role of two-dimensional materials as catalysts and supports for energy and environmental catalysis | |
Xiong et al. | An oxygen reduction catalyst derived from a robust Pd-reducing bacterium | |
Yang et al. | Silica nanosphere supported palladium nanoparticles encapsulated with graphene: high-performance electrocatalysts for methanol oxidation reaction | |
Ding et al. | Plasma-assisted nitrogen doping of graphene-encapsulated Pt nanocrystals as efficient fuel cell catalysts | |
Wang et al. | Pt nanoparticles supported on graphene three-dimensional network structure for effective methanol and ethanol oxidation | |
Li et al. | Platinum nano-catalysts deposited on reduced graphene oxides for alcohol oxidation | |
Patil et al. | Nitrogen and sulphur co-doped multiwalled carbon nanotubes as an efficient electrocatalyst for improved oxygen electroreduction | |
Huang et al. | Well-dispersive Pt nanoparticles grown on 3D nitrogen-and sulfur-codoped graphene nanoribbon architectures: highly active electrocatalysts for methanol oxidation | |
Wei et al. | Economical, green and rapid synthesis of CDs-Cu2O/CuO nanotube from the biomass waste reed as sensitive sensing platform for the electrochemical detection of hydrazine | |
KR101349912B1 (ko) | Pt/GR(Graphene) 나노복합체 및 그 제조방법 | |
Bai et al. | The effect of phosphate modification on the photocatalytic H2O2 production ability of g-C3N4 catalyst prepared via acid-hydrothermal post-treatment | |
Sahoo et al. | Platinum-decorated chemically modified reduced graphene oxide–multiwalled carbon nanotube sandwich composite as cathode catalyst for a proton exchange membrane fuel cell | |
Divya et al. | Platinum–graphene hybrid nanostructure as anode and cathode electrocatalysts in proton exchange membrane fuel cells | |
Liu et al. | Nitrogen-doped graphene/graphitic carbon nitride with enhanced charge separation and two-electron-transferring reaction activity for boosting photocatalytic hydrogen peroxide production | |
CN110117797B (zh) | 一种电解池及其在电解水制氢中的应用 | |
Wang et al. | A synergetic effect between photogenerated carriers and photothermally enhanced electrochemical urea-assisted hydrogen generation on the Ni-NiO/nickel foam catalyst | |
Al-Nafiey et al. | One step to synthesis (rGO/Ni NPs) nanocomposite and using to adsorption dyes from aqueous solution |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20190726 |