CN106866943B - 一种萘酰亚胺-氟化二噻吩乙烯共轭聚合物及其制备方法与应用 - Google Patents

一种萘酰亚胺-氟化二噻吩乙烯共轭聚合物及其制备方法与应用 Download PDF

Info

Publication number
CN106866943B
CN106866943B CN201710213187.7A CN201710213187A CN106866943B CN 106866943 B CN106866943 B CN 106866943B CN 201710213187 A CN201710213187 A CN 201710213187A CN 106866943 B CN106866943 B CN 106866943B
Authority
CN
China
Prior art keywords
polymer
naphthalimide
formula
fluorination
thiofuran ethylene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710213187.7A
Other languages
English (en)
Other versions
CN106866943A (zh
Inventor
张卫锋
陈智慧
魏聪源
于贵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Chemistry CAS
Original Assignee
Institute of Chemistry CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Chemistry CAS filed Critical Institute of Chemistry CAS
Priority to CN201710213187.7A priority Critical patent/CN106866943B/zh
Publication of CN106866943A publication Critical patent/CN106866943A/zh
Application granted granted Critical
Publication of CN106866943B publication Critical patent/CN106866943B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/126Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one sulfur atom in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/151Copolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/12Copolymers
    • C08G2261/124Copolymers alternating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/146Side-chains containing halogens
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/18Definition of the polymer structure conjugated
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3223Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more sulfur atoms as the only heteroatom, e.g. thiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/324Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed
    • C08G2261/3241Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed containing one or more nitrogen atoms as the only heteroatom, e.g. carbazole
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/34Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/34Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain
    • C08G2261/342Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain containing only carbon atoms
    • C08G2261/3422Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain containing only carbon atoms conjugated, e.g. PPV-type
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/50Physical properties
    • C08G2261/51Charge transport
    • C08G2261/514Electron transport
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • C08G2261/92TFT applications

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

本发明公开了一种萘酰亚胺‑氟化二噻吩乙烯共轭聚合物,其结构式如式(I)所示,该聚合物具有较宽的紫外‑可见吸收光谱和良好的热学稳定性,具有较低的前沿轨道能级,有利于电子注入,可以制备较高性能的场效应晶体管。本发明的萘酰亚胺‑氟化二噻吩乙烯共轭聚合物的合成路线简洁高效,聚合物分子量高,后处理简单,反应收率高,适合大规模工业合成。以本发明萘酰亚胺‑氟化二噻吩乙烯共轭聚合物半导体材料为半导体层制备的有机场效应晶体管具有很高的电子迁移率

Description

一种萘酰亚胺-氟化二噻吩乙烯共轭聚合物及其制备方法与 应用
技术领域
本发明属于有机半导体材料技术领域,具体涉及一种萘酰亚胺-氟化二噻吩乙烯共轭聚合物及其制备方法与应用。
背景技术
聚合物场效应晶体管是以聚合物半导体材料为载流子传输层,通过电场来控制材料导电能力的有源器件,在智能卡、传感器、电子射频标签、大屏幕显示器和集成电路等领域有着广阔的应用前景。聚合物半导体材料具有原料广泛、易合成、纯化工艺简单等优点,同时具有物理化学性质的可调控性、以及良好的柔韧性和成膜性,可用溶液法进行加工等,从而为大规模制造轻质、柔性电子器件提供了可能。因此,聚合物半导体材料及其器件研究已经成为有机电子学研究领域的热点。
聚合物场效应晶体管所用半导体层活性材料可以分成p-型、n-型以及双极性聚合物半导体材料。近年来,p-型聚合物材料发展迅速,其空穴迁移率已经接近40cm2V-1s-1(Back,J.;Yu,H.;Song,I.;Kang,I.;et al.Investigation of structure–propertyrelationships in diketopyrrolopyrrole-based polymer semiconductors via side-chain engineering.Chem.Mater.,2015,27,1732;Luo,C.;Kyaw,A.;Perez,L.;Patel,S.;et al.General strategy for self-assembly of highly oriented nanocrystallinesemiconducting polymers with high mobility.Nano Lett.,2014,14,2764).然而,n-型和双极性聚合物材料及器件的开发虽然也取得了一定的进展,但无论是在材料的种类、数量、迁移率还是在器件的稳定性等方面都无法与p-型聚合物材料相媲美。目前只有少数的聚合物材料给出的电子迁移率大于5cm2V-1s-1,而绝大数聚合物材料的电子迁移率仍然低于1cm2V-1s-1(Chen,H.Recent Advances in High-Mobility Polymeric SemiconductorMaterials.Chin.J.Org.Chem.,2016,36,460)。并且由于能级结构的原因,大多数具有高电子迁移的聚合物材料易受空气中氧气和水蒸气的影响,表现出较差的器件稳定性。但是,由于高电子迁移材料在构造双极性倒相器、p-n结、有机光伏电池、以及有机集成电路时不可或缺,因此开发具有高电子迁移率的聚合物材料及器件也成为本研究领域亟待解决的科学问题之一。
研究表明,氟原子往往能够降低材料的前沿轨道能级,能够调控材料分子的共轭骨架构象,形成紧密的分子堆积,产生较强的分子间π-π作用,从而更可能取得较高的电子迁移率,所以研究者们一直致力于发展含有氟原子取代的聚合物半导体材料并构筑了相应的场效应晶体管器件(Gao,Y.;Zhang,X.J.;Tian,H.K.;Zhang,J.D.;Yan,D.H.;Geng,Y.H.;et al.High Mobility Ambipolar Diketopyrrolopyrrole-Based Conjugated PolymerSynthesized Via Direct Arylation Polycondensation.Adv.Mater.,2015,27,6753-6759;Park,J.;Jung,E.;Jung,W.;Jo,W.A Fluorinated Phenylene Unit as a BuildingBlock for High-Performance n-Type Semiconducting Polymer.Adv.Mater.,2013,25,2583.)
鉴于以上原因,特提出本发明。
发明内容
本发明要解决的技术问题在于克服现有技术的不足,提供了一种萘酰亚胺-氟化二噻吩乙烯共轭聚合物,该聚合物具有较宽的紫外-可见吸收光谱和良好的热学稳定性,具有较低的前沿轨道能级,有利于电子注入,可以制备较高性能的场效应晶体管。
本发明的第一目的提供一种萘酰亚胺-氟化二噻吩乙烯共轭聚合物,所述的萘酰亚胺-氟化二噻吩乙烯共轭聚合物的结构式如式(Ⅰ)所示:
式(Ⅰ)中,R1、R2为C1-C100的直链或支链烷烃,优选为C10-C50、C10-C30、C20-C30的直链或支链烷烃,更优选为C20-C24的直链或支链烷烃,R1与R2相同或不同,n为聚合度,n=10-1000,优选n=20-100,更优选为25-50,具体可为32或37。
具体地,R1、R2均为2-辛基十二烷基或均为2-癸基十四烷基。
本发明所述的式(Ⅰ)所示的萘酰亚胺-氟化二噻吩乙烯共轭聚合物具有较宽的紫外-可见吸收光谱和良好的热学稳定性,具有较低的前沿轨道能级,有利于电子注入,可以制备较高性能的有机场效应晶体管。
本发明的第二目的在于提供一种制备上述萘酰亚胺-氟化二噻吩乙烯共轭聚合物的方法,所述方法包括如下步骤:
在惰性气体下,使式(Ⅱ)所示化合物、式(Ⅲ)所示化合物在钯催化剂以及配体作用下进行反应,得到萘酰亚胺-氟化二噻吩乙烯共轭聚合物,其反应化学方程式如图1所示:
式(Ⅱ)中,R3为C1-C3直链烷基,具体可为甲基。
式(Ⅲ)中,R1和R2的定义同式(I)中的R1和R2的定义。
上述方法中,所述钯催化剂具体可为三(二亚苄基丙酮)二钯或四(三苯基膦)钯;所述配体具体可为三(邻甲苯基)膦或三苯基膦。
上述方法中,式(Ⅱ)所示化合物、式(Ⅲ)所示化合物、钯催化剂和配体的摩尔比依次为1:0.95~1.05:0.01~0.10:0.02~0.60,优选的,1.0:1.0:0.05:0.4。
所述反应的反应温度可为60~150℃,具体可为110℃,反应时间可为24~96小时,具体可为72小时。
进一步的,所述反应在有机溶剂中进行,所述有机溶剂具体可为四氢呋喃、N,N-二甲基甲酰胺、甲苯或氯苯。
本发明的萘酰亚胺-氟化二噻吩乙烯共轭聚合物的合成路线简洁高效,聚合物分子量高,后处理简单,反应收率高,适合大规模工业合成。
本发明的第三目的在于提供上述萘酰亚胺-氟化二噻吩乙烯共轭聚合物在制备有机场效应晶体管中的应用。
本发明的再一个目的是提供一种有机场效应晶体管。
本发明所提供的有机场效应晶体管,其半导体层由式(Ⅰ)所示的萘酰亚胺-氟化二噻吩乙烯共轭聚合物制成。
以本发明萘酰亚胺-氟化二噻吩乙烯共轭聚合物半导体材料为半导体层制备的有机场效应晶体管具有很高的电子迁移率(μe)和开关比(μe最高为3.20cm2V-1s-1,开关比为103-104),具有广阔的应用前景。
采用上述技术方案,本发明的有益效果如下:
(1)本发明所述的萘酰亚胺-氟化二噻吩乙烯共轭聚合物具有较宽的紫外-可见吸收光谱和良好的热学稳定性,具有较低的前沿轨道能级,有利于电子注入,可以制备较高性能的场效应晶体管。
(2)本发明的萘酰亚胺-氟化二噻吩乙烯共轭聚合物的合成路线简洁高效,聚合物分子量高,后处理简单,反应收率高,适合大规模工业合成。
(3)以本发明萘酰亚胺-氟化二噻吩乙烯共轭聚合物半导体材料为半导体层制备的有机场效应晶体管具有很高的电子迁移率(μe)和开关比(μe最高为3.20cm2V-1s-1,开关比为103-104),具有广阔的应用前景。
附图说明
图1为制备萘酰亚胺-氟化二噻吩乙烯共轭聚合物的反应化学方程式;
图2为本发明中聚合物PNFDTE1和聚合物PNFDTE2合成路线图;
图3为本发明聚合物PNFDTE1和聚合物PNFDTE2在氯苯溶液的紫外-可见吸收光谱图;
图4为本发明聚合物PNFDTE1和聚合物PNFDTE2薄膜的紫外-可见吸收光谱图;
图5为本发明聚合物PNFDTE1和聚合物PNFDTE2的热重分析曲线图;
图6为本发明聚合物PNFDTE1和聚合物PNFDTE2循环伏安法曲线图;
图7为本发明聚合物PNFDTE1的原子力显微镜形貌图;
图8为本发明聚合物PNFDTE2的原子力显微镜形貌图;
图9为本发明聚合物PNFDTE1和聚合物PNFDTE2的晶体管结构示意图;
图10为本发明聚合物PNFDTE1场效应晶体管的转移曲线图;
图11为本发明聚合物PNFDTE1场效应晶体管的输出曲线图;
图12为本发明聚合物PNFDTE2场效应晶体管的转移曲线图;
图13为本发明聚合物PNFDTE2场效应晶体管的输出曲线图。
具体实施方式
下面通过具体实施例对本发明进行说明,但本发明并不局限于此。
下述实施例中所使用的实验方法如无特殊说明,均为常规方法;下述实施例中所用的试剂、材料等,如无特殊说明,均可从商业途径得到。
下述实施例中所采用的二溴-N,N-二(2-辛基十二烷基)-1,4,5,8-萘酰亚胺、2,6-二溴-N,N-二(2-癸基十四烷基)-1,4,5,8-萘酰亚胺参照文献:J.Am.Chem.Soc.,2009,131,8或者Macromolecules,2012,45,4115中的方法进行制备。
下述实施例中所采用的(反)-1,2-双(3-氟-5-三甲基锡基-噻吩-2-基)乙烯购自西安兆德光电科技有限公司。
实施例1
聚{N,N-二(2-辛基十二烷基)-1,4,5,8-萘酰亚胺-2,6-(反-1,2-双(3-氟噻吩-2-基)乙烯)-2,5-二基}以下简写为聚合物PNFDTE1,即式(I)中R1=R2=2-辛基十二烷基,合成路线如图2所示,制备方法如下:
将(反)-1,2-双(3-氟-5-三甲基锡基-噻吩-2-基)乙烯(110.8mg,0.20mmol)和2,6-二溴-N,N-二(2-辛基十二烷基)-1,4,5,8-萘酰亚胺(197.0mg,0.2mmol),三(二亚苄基丙酮)二钯(9mg)、三(邻甲苯基)膦(24.6mg)和氯苯(5.0mL)加入到反应瓶中,在氩气中进行三次冷冻-抽气-解冻循环除氧,后将反应混合物加热到110℃氩气保护反应72h。冷却后,加入200mL甲醇/6M盐酸混合物(v/v 20:1),室温下搅拌2h,过滤。所得固体用索氏提取器抽提。抽提溶剂为依次甲醇、丙酮、正己烷、各抽提24h,最后用氯苯提取得到目标聚合物179毫克,收率85%。
结构表征数据如下:
分子量:GPC:Mn=38.9kDa,Mw=90.3kDa,PDI=2.31。
元素分析:C64H90F2N2O4S2,计算值:C,72.96;H,8.61;N,2.66;探测值:C 72.94,H8.52,N 2.58。
通过上面的分析可知该化合物结构正确,为聚合物PNFDTE1,聚合度为37。
实施例2
聚{N,N-二(2-癸基十四烷基)-1,4,5,8-萘酰亚胺-2,6-(反-1,2-双(3-氟噻吩-2-基)乙烯)-2,5-二基}以下简写为聚合物PNFDTE2,即式(I)中R1=R2=2-癸基十四烷基,合成路线如图2所示,制备方法如下:
将(反)-1,2-双(3-氟-5-三甲基锡基-噻吩-2-基)乙烯(110.8mg,0.20mmol)和2,6-二溴-N,N-二(2-癸基十四烷基)-1,4,5,8-萘酰亚胺(219.5mg,0.20mmol),三(二亚苄基丙酮)二钯(9mg)、三(邻甲苯基)膦(24.6mg)和氯苯(5.0mL)加入到反应瓶中,在氩气中进行三次冷冻-抽气-解冻循环除氧,后将反应混合物加热到110℃氩气保护反应72h。冷却后,加入200mL甲醇/6M盐酸混合物(v/v 20:1),室温下搅拌2h,过滤。所得固体用索氏提取器抽提。抽提溶剂为依次甲醇、丙酮、正己烷、各抽提24h,最后用氯苯提取得到目标聚合物191毫克,收率82%。
结构表征数据如下:
分子量:GPC:Mn=38.2kDa,Mw=135.5kDa,PDI=3.54。
元素分析:C72H106F2N2O4S2,计算值:C,74.18;H,9.17;N,2.40;探测值:C 74.23,H9.04,N 2.32。
通过上面的分析可知该化合物结构正确,为聚合物PNFDTE2,聚合度为32。
实施例3
聚合物PNFDTE1和聚合物PNFDTE2的光谱性能实验
图3和图4分别为实施例1和实施例2制备的聚合物PNFDTE1和聚合物PNFDTE2氯苯溶液和薄膜的紫外-可见吸收光谱图,从图3可以看出,该类聚合物中存在两个吸收带,次要吸收带为高能带,其吸收在300至470纳米,主要吸收带为低能带,吸收为470至810纳米。较强的低能带吸收说明聚合物分子内有较强的分子内电荷转移。由图4可知,薄膜的吸收曲线较溶液中有着一定程度的红移,主要吸收带为低能带,吸收为470至850或870纳米。
实施例4
聚合物PNFDTE1和聚合物PNFDTE2的热学性能实验
图5为聚合物的热重分析曲线,由图5可以看出,聚合物PNFDTE1和聚合物PNFDTE2的热分解温度都大于400℃,说明聚合物PFDTE1和聚合物PFDTE2具有很好的热稳定性能。
实施例5
聚合物PNFDTE1和聚合物PNFDTE2的电化学性能实验
如图6所示为聚合物PNFDTE1和聚合物PNFDTE2的循环伏安曲线。
电解池采用三电极体系,其中铂、铂丝、银/氯化银分别为工作电极、对电极和参比电极,四丁基六氟磷酸铵为支持电解质。扫描范围为-1.0~1.7伏特(vs.Ag/AgCl),扫描速率为50毫伏每秒。曲线表明聚合物PNFDTE1和聚合物PNFDTE2的起始氧化电位约为1.06和1.07伏特,由此估算它们的HOMO能级约为-5.56和-5.57电子伏特,起始还原电位约为-0.46和-0.47伏特,由此估算它们的LUMO能级约为-3.96和-3.97电子伏特。
实施例6
如图7和图8所示为聚合物PNFDTE1和聚合物PNFDTE2的原子力显微镜形貌图,从图中可以看出,PNFDTE1能够形成致密的且相互交联的纤维状薄膜结构,PNFDTE2能够形成致密的且平滑的薄膜结构,表明聚合物分子间存在较强的相互作用力。
实施例7
聚合物PNFDTE1和聚合物PNFDTE2的场效应晶体管制备与性能。
图9为聚合物PNFDTE1和聚合物PNFDTE2的有机场效应晶体管结构示意图。
如图9所示,顶栅-底接触(TGBC)器件制备:采用光刻技术制备金源-漏电极,OFET器件的沟道宽度(W)为1400μm,沟道长度(L)为50μm。绝缘基底为聚对苯二甲酸乙二醇酯(PET)。半导体活性层通过旋涂5mg/mL的聚合物氯仿溶液制备。然后薄膜样品置于手套箱中120℃退火5分钟。随后,一层约900纳米的PMMA介电层通过旋涂60毫克/毫升的PMMA醋酸丁酯溶液制备,所选用的PMMA的重均分子量为1000KDa。然后,将整个器件置于80℃的真空干燥箱中烘烤3小时以除去醋酸丁酯溶剂。最后,在PMMA介电层上蒸镀一层厚度约80纳米的铝层作为栅电极,将整个器件置于90℃的真空干燥箱中烘烤20分钟。在空气中,所制备的TGBC器件在Keithley 4200SCS半导体测试仪上测试场效应性能。
图10-13为聚合物PNFDTE1和聚合物PNFDTE2所制备的场效应晶体管的转移曲线和输出曲线,载流子迁移率可由方程计算得出:
IDS=(W/2L)Ciμ(VG–VT)2(饱和区,VDS=VG–VT)
其中,IDS为漏极电流,μ为载流子迁移率,VG为栅极电压,VT为阈值电压,W为沟道宽度,L为沟道长度,Ci为绝缘体电容(Ci=7.5×10-9法每平方厘米)。利用(IDS,sat)1/2对VG作图,并作线性回归,可由此回归线的斜率推算出载流子迁移率(μ),由回归线与X轴的连接点求得VT。迁移率可以根据公式从转移曲线的斜率计算得出,开关比可由图10-13源漏电流的最大值与最小值之比得出。制备的聚合物场效应晶体管的器件性能如表1所示。
表1:基于聚合物PNFDTE1和聚合物PNFDTE2的场效应晶体管的器件性能
以聚合物PNFDTE1和聚合物PNFDTE2为半导体层构筑了多个有机场效应晶体管器件,其中PFDTE1电子迁移率(μe)和开关比(μe最高为3.20cm2V-1s-1,开关比为103-104)。
通过以上性能的实验结果分析可知,所述的萘酰亚胺-氟化二噻吩乙烯共轭聚合物是一类优良的聚合物半导体材料。本发明并不限于本实施例中列举的两个萘酰亚胺-氟化二噻吩乙烯共轭聚合物聚合物,可以是改变不同的取代基R1和R2得到一系列的新型聚合物,由于篇幅有限,不在此一一列出。
本发明给出的合成路线简洁高效,聚合物分子量高,后处理简单,反应收率高,适合大规模工业合成。研究结果对于研究聚合物半导体材料的结构与性能的关系以及设计、合成高性能聚合物半导体材料具有指导意义。

Claims (6)

1.式(Ⅰ)所示的萘酰亚胺-氟化二噻吩乙烯共轭聚合物:
式(Ⅰ)中,R1、R2均为2-辛基十二烷基,n为聚合度,n=25-50。
2.制备权利要求1中式(Ⅰ)所示的萘酰亚胺-氟化二噻吩乙烯共轭聚合物的方法,包括如下步骤:
在惰性气体下,使式(Ⅱ)所示化合物、式(Ⅲ)所示化合物在钯催化剂以及配体作用下进行反应,得到权利要求1中式(Ⅰ)所示的萘酰亚胺-氟化二噻吩乙烯共扼聚合物:
式(Ⅱ)中,R3为C1-C3直链烷基;
式(Ⅲ)中,R1和R2的定义同权利要求1式(I)中的R1和R2的定义。
3.根据权利要求2所述的方法,其特征在于:所述方法中,所述钯催化剂为三(二亚苄基丙酮)二钯或四(三苯基膦)钯;
所述配体为三(邻甲苯基)膦或三苯基膦;
式(Ⅱ)所示化合物、式(Ⅲ)所示化合物、钯催化剂和配体的摩尔比依次为1:0.95~1.05:0.01~0.10:0.02~0.60;
所述反应的反应温度为60~150℃,反应时间为24~96小时。
4.根据权利要求2或3所述的方法,其特征在于:所述方法中,所述反应在有机溶剂中进行,
所述有机溶剂为四氢呋喃、N,N-二甲基甲酰胺、甲苯或氯苯。
5.权利要求1中式(Ⅰ)所示的萘酰亚胺-氟化二噻吩乙烯共轭聚合物在制备有机场效应晶体管中的应用。
6.一种有机场效应晶体管,其半导体层由权利要求1中式(Ⅰ)所示的萘酰亚胺-氟化二噻吩乙烯共轭聚合物制成。
CN201710213187.7A 2017-04-01 2017-04-01 一种萘酰亚胺-氟化二噻吩乙烯共轭聚合物及其制备方法与应用 Active CN106866943B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710213187.7A CN106866943B (zh) 2017-04-01 2017-04-01 一种萘酰亚胺-氟化二噻吩乙烯共轭聚合物及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710213187.7A CN106866943B (zh) 2017-04-01 2017-04-01 一种萘酰亚胺-氟化二噻吩乙烯共轭聚合物及其制备方法与应用

Publications (2)

Publication Number Publication Date
CN106866943A CN106866943A (zh) 2017-06-20
CN106866943B true CN106866943B (zh) 2019-08-02

Family

ID=59160619

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710213187.7A Active CN106866943B (zh) 2017-04-01 2017-04-01 一种萘酰亚胺-氟化二噻吩乙烯共轭聚合物及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN106866943B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101878657B1 (ko) * 2016-06-02 2018-07-16 경상대학교산학협력단 신규한 삼원 공중합체 및 이를 이용한 유기 전자 소자
CN107602822A (zh) * 2017-08-01 2018-01-19 南昌大学 全氟烷基修饰的萘酰亚胺共轭聚合物及其制备方法
CN111285842B (zh) * 2020-02-18 2021-06-01 中国科学院化学研究所 三氟甲基噻吩乙烯噻吩给体及其聚合物与应用
CN113896865A (zh) * 2021-10-21 2022-01-07 福州大学 含多巴胺衍生侧链的萘酰亚胺聚合物半导体及其制备方法
CN114835731A (zh) * 2022-04-20 2022-08-02 南京邮电大学 基于二甲胺基取代萘酰亚胺-联噻吩的有机n型半导体材料及其制备方法与应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Naphthalenediimide-Based Copolymers Incorporating Vinyl-Linkages for High-Performance Ambipolar Field-Effect Transistors and Complementary-Like Inverters under Air;Huajie Chen et al;《Chem. Mater.》;20131231;第25卷;第3589-3596页 *
High Mobility Ambipolar Diketopyrrolopyrrole-Based Conjugated Polymer Synthesized Via Direct Arylation Polycondensation;Yao Gao et al;《Adv. Mater.》;20151231;第27卷;第6753–6759页 *

Also Published As

Publication number Publication date
CN106866943A (zh) 2017-06-20

Similar Documents

Publication Publication Date Title
CN106866943B (zh) 一种萘酰亚胺-氟化二噻吩乙烯共轭聚合物及其制备方法与应用
Li et al. A fused-ring based electron acceptor for efficient non-fullerene polymer solar cells with small HOMO offset
CN106589326B (zh) 二氟连二噻吩类聚合物及其制备方法与其在场效应晶体管中的应用
Feng et al. All-small-molecule organic solar cells based on an electron donor incorporating binary electron-deficient units
CN104725613B (zh) 含萘并二酰亚胺环的n‑型水醇溶共轭聚合物材料及制备方法和应用
CN109776766B (zh) 一种噻吩[3, 4-f]异苯并呋喃-4,8-二酮基聚合物、其制备方法及应用
CN109232604A (zh) 稠环非富勒烯受体材料及其制备方法、有机太阳能电池
CN106832230A (zh) 一种氟化二噻吩乙烯聚合物及其制备方法与应用
Li et al. Nonfullerene acceptor with strong near-infrared absorption for polymer solar cells
Opoku et al. Facile synthesis and optoelectronic properties of thienopyrroledione based conjugated polymer for organic field effect transistors
CN107814918B (zh) 一类氮杂吲哚酮苯并呋喃酮-噻吩苯并噻二唑共轭聚合物及其制备方法与应用
Park et al. Semiconducting π-extended porphyrin dimer and its characteristics in OFET and OPVC
CN105820316A (zh) 杂原子取代萘酰亚胺类聚合物半导体及其制备方法与应用
He et al. An N-oxide containing conjugated semiconducting polymer with enhanced electron mobility via direct (hetero) arylation polymerization
CN107189042B (zh) 二氟异靛青类三元聚合物及其制备方法与应用
WO2012083515A1 (zh) 一种有机半导体材料及其制备方法和应用
CN105837799B (zh) 一类二羰基桥连吡咯并吡咯二酮聚合物及其制备方法与应用
Wen et al. Conjugated polymers constructed by a novel pyrene-fused polycyclic building block and their applications as organic electronic materials
CN104761706A (zh) 吡咯并吡咯二酮-并二噻吩聚合物及其制备方法与应用
CN107698743A (zh) 一类含有氟代苯乙烯噻吩结构共轭聚合物及其在场效应晶体管中的应用
CN107141456A (zh) 一种萘酰亚胺噻吩氰基乙烯聚合物及其制备方法与应用
CN109897168A (zh) 一类基于二噻吩丙烯腈的不等规聚合物及其制备方法与应用
CN109880064B (zh) 一类基于二噻吩丙烯腈的等规聚合物及其制备方法与应用
CN106632410B (zh) 吡啶并噻吩基吡咯并吡咯二酮及其聚合物
CN114437315B (zh) 噻唑桥联异靛蓝类受体及聚合物以及它们的制备方法与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant