CN106865497B - 一种原位生长纳米氢化镁负载高比表面材料的制备方法 - Google Patents

一种原位生长纳米氢化镁负载高比表面材料的制备方法 Download PDF

Info

Publication number
CN106865497B
CN106865497B CN201710163650.1A CN201710163650A CN106865497B CN 106865497 B CN106865497 B CN 106865497B CN 201710163650 A CN201710163650 A CN 201710163650A CN 106865497 B CN106865497 B CN 106865497B
Authority
CN
China
Prior art keywords
magnesium
situ
preparation
growth
hydrogenates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201710163650.1A
Other languages
English (en)
Other versions
CN106865497A (zh
Inventor
王菁
王一菁
袁华堂
焦丽芳
张秋雨
黄可
黄一可
臧磊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nankai University
Original Assignee
Nankai University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nankai University filed Critical Nankai University
Priority to CN201710163650.1A priority Critical patent/CN106865497B/zh
Publication of CN106865497A publication Critical patent/CN106865497A/zh
Application granted granted Critical
Publication of CN106865497B publication Critical patent/CN106865497B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0005Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
    • C01B3/001Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
    • C01B3/0078Composite solid storage mediums, i.e. coherent or loose mixtures of different solid constituents, chemically or structurally heterogeneous solid masses, coated solids or solids having a chemically modified surface region
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B6/00Hydrides of metals including fully or partially hydrided metals, alloys or intermetallic compounds ; Compounds containing at least one metal-hydrogen bond, e.g. (GeH3)2S, SiH GeH; Monoborane or diborane; Addition complexes thereof
    • C01B6/04Hydrides of alkali metals, alkaline earth metals, beryllium or magnesium; Addition complexes thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Abstract

一种原位生长纳米氢化镁负载高比表面材料的制备方法,利用碱金属氢化物、卤化镁和支撑材料在球磨的条件下原位合成。本发明的技术效果是:本发明通过置换反应在支撑材料表面原位生成氢化镁,在温和条件下制备了具有较低操作温度、较快吸放氢速率的纳米复合储氢材料,解决了以往制备纳米氢化镁材料制备条件苛刻、产品粒径大等问题,提高氢化镁储氢材料的热力学、动力学性能。

Description

一种原位生长纳米氢化镁负载高比表面材料的制备方法
技术领域
本发明涉及一种原位生长纳米氢化镁(MgH2)负载高比表面材料的制备方法,属于储氢材料技术领域。
背景技术
氢能源具有资源丰富、热值高、绿色环保等优点,被认为是化石能源在未来的最佳替代物。然而,氢气是一种易燃易爆的气体,实现安全、高质量、体积密度的储氢是氢能源储存技术发展的当务之急。近年来,固态储氢的方法受到研究者们的广泛关注。镁基轻质储氢材料,具有密度小、储氢量大、产量丰富、价格低廉等优点。然而镁基材料操作温度高,吸放氢速度慢等缺点限制了其大规模应用。
将储氢材料纳米化,可以有效的降低操作温度,提升吸放氢速率。利用高比表面积的化工产品或工业废料搭载纳米储氢材料,可以稳定材料形貌,控制材料粒径分布。目前制备纳米氢化镁的方法主要为原位还原法和浸渍法,原位还原法获得的纳米颗粒粒径在30nm左右,对储氢性能并没有太大的改善。浸渍法获得的纳米颗粒粒径在3-5nm,但是需要较高的氢压和反应温度,生产存在一定的安全隐患。因此,研究开发在较为温和的条件下制备小粒径的纳米氢化镁复合材料具有很大的意义。
发明内容
本发明的目的在于针对上述存在问题,提供一种温和条件下原位生长纳米氢化镁负载高比表面材料的制备方法,该制备方法可以提高氢化镁储氢材料的热力学、动力学性能,从而降低操作温度,提高吸放氢速率。
本发明技术方案:
一种原位生长纳米氢化镁负载高比表面材料的制备方法,利用碱金属氢化物、卤化镁和支撑材料在球磨的条件下原位合成,具体步骤如下:
1)在氩气或氮气气氛下,将氯化镁与氢化锂以1:1-3的摩尔比混合,得到混合物放入球磨罐中,然后加入支撑材料,支撑材料的加入量为混合物质量的5-25%,混合均匀;
2)在0.5MPa氢压下,以200-600rpm的转速下球磨10-60h;
3)在氩气或氮气气氛下,用乙醚或四氢呋喃洗涤3次,离心或过滤分离,对不溶物在50Pa以下真空干燥或40-80℃温度下干燥至质量不再下降,得到目标产物,原位生长的氢化镁为球型或椭球型,粒径为2-8nm。
所述支撑材料为石墨烯、椰壳炭或粉煤灰高比表面积的化工产品或工业废料。
本发明的技术效果是:
本发明通过置换反应在支撑材料表面原位生成氢化镁,在温和条件下制备了具有较低操作温度、较快吸放氢速率的纳米复合储氢材料,解决了以往制备纳米氢化镁材料制备条件苛刻、产品粒径大等问题,提高氢化镁储氢材料的热力学、动力学性能。
附图说明
图1为实施例1和实施例2制备的石墨烯搭载氢化镁和椰壳炭搭载氢化镁纳米材料的XRD图谱。
图2为实施例1制备的石墨烯搭载氢化镁纳米材料的SEM图和TEM图。
图3为实施例1制备的石墨烯搭载氢化镁纳米材料的等温放氢曲线和等温吸氢曲线。
图4为实施例2制备的椰壳炭搭载氢化镁纳米材料的程序升温放氢曲线。
具体实施方式
下面结合实施例对本发明做进一步描述。
实施例1:
一种原位生长纳米氢化镁负载高比表面材料的制备方法,利用碱金属氢化物、卤化镁和支撑材料在球磨的条件下原位合成,具体步骤如下:
将0.4g的LiH、2.0g的MgCl2和0.07g还原石墨烯放入球磨罐中,混合均匀;在0.5MPa的氢压下450rpm的转速下球磨30个小时;将得到的混合物用40mL四氢呋喃作溶剂洗涤3次,离心分离,除去溶剂,50Pa以下真空干燥14个小时,得到目标产物。
制备的石墨烯搭载氢化镁和椰壳炭搭载氢化镁纳米材料的XRD图谱如图1所示,图中表明:所得产物为四方晶系MgH2,且无其他杂质。
图2为制备的石墨烯搭载氢化镁纳米材料的SEM图和TEM图,图中表明:MgH2纳米颗粒均匀分布在石墨烯纳米片上。
图3为制备的石墨烯搭载氢化镁纳米材料的等温放氢曲线和等温吸氢曲线,图中表明:石墨烯搭载氢化镁纳米材料的吸放氢动力学性能较优。该材料在325℃下20min内可释放出5.1wt%的氢气,在250℃下5min内吸收4.8wt%的氢气。
实施例2:
一种原位生长纳米氢化镁负载高比表面材料的制备方法,利用碱金属氢化物、卤化镁和支撑材料在球磨的条件下原位合成,具体步骤如下:
将0.4g的LiH、2.0g的MgCl2和0.10g椰壳炭放入球磨罐中,混合均匀。在0.5MPa的氢压下450rpm的转速下球磨30个小时;将得到的混合物用40mL四氢呋喃作溶剂洗涤3次,离心分离,除去溶剂;50Pa以下真空干燥14个小时,得到目标产物。
制备的石墨烯搭载氢化镁和椰壳炭搭载氢化镁纳米材料的XRD图谱如图1所示,图中表明:所得产物为四方晶系MgH2,且无其他杂质。
图4为实施例2制备的椰壳炭搭载氢化镁纳米材料的程序升温放氢曲线图中表明:椰壳炭搭载氢化镁纳米材料具有较低的起始放氢温度(245℃)和较高的储氢容量(6.3wt%)。
实施例3:
一种原位生长纳米氢化镁负载高比表面材料的制备方法,利用碱金属氢化物、卤化镁和支撑材料在球磨的条件下原位合成,具体步骤如下:
将0.4g的LiH、2.0g的MgCl2和0.10g粉煤灰放入球磨罐中,混合均匀;在0.5MPa的氢压下500rpm的转速下球磨40个小时;将得到的混合物用60mL四氢呋喃作溶剂洗涤3次,离心分离,除去溶剂;50Pa以下真空干燥14个小时,得到目标产物。

Claims (2)

1.一种原位生长纳米氢化镁负载高比表面材料的制备方法,其特征在于利用碱金属氢化物、卤化镁和支撑材料在球磨的条件下原位合成,具体步骤如下:
1)在氩气或氮气气氛下,将氯化镁与氢化锂以1:1-3的摩尔比混合,得到混合物放入球磨罐中,然后加入支撑材料,支撑材料的加入量为混合物质量的5-25%,混合均匀;
2)在0.5MPa氢压下,以200-600rpm的转速下球磨10-60h;
3)在氩气或氮气气氛下,用乙醚或四氢呋喃洗涤3次,离心或过滤分离,对不溶物在50Pa以下真空干燥或40-80℃温度下干燥至质量不再下降,得到目标产物,原位生长的氢化镁为球型或椭球型,粒径为2-8nm。
2.根据权利要求1所述原位生长纳米氢化镁负载高比表面材料的制备方法,其特征在于:所述支撑材料为石墨烯、椰壳炭或工业废料粉煤灰。
CN201710163650.1A 2017-03-17 2017-03-17 一种原位生长纳米氢化镁负载高比表面材料的制备方法 Expired - Fee Related CN106865497B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710163650.1A CN106865497B (zh) 2017-03-17 2017-03-17 一种原位生长纳米氢化镁负载高比表面材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710163650.1A CN106865497B (zh) 2017-03-17 2017-03-17 一种原位生长纳米氢化镁负载高比表面材料的制备方法

Publications (2)

Publication Number Publication Date
CN106865497A CN106865497A (zh) 2017-06-20
CN106865497B true CN106865497B (zh) 2018-12-18

Family

ID=59172192

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710163650.1A Expired - Fee Related CN106865497B (zh) 2017-03-17 2017-03-17 一种原位生长纳米氢化镁负载高比表面材料的制备方法

Country Status (1)

Country Link
CN (1) CN106865497B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6471211B2 (ja) * 2017-06-02 2019-02-13 株式会社エスイー 水素化マグネシウム等の製造方法、水素化マグネシウムを用いた発電方法及び水素化マグネシウム等の製造装置
TWI644858B (zh) * 2017-11-14 2018-12-21 大華學校財團法人大華科技大學 高溫水蒸氣催化氫化鎂微粒應需即生氫氣方法與裝置
CN109319732B (zh) * 2018-10-15 2020-09-01 浙江大学 一种二维负载型纳米镁氢化物储氢材料的制备方法
CN109665494A (zh) * 2019-01-14 2019-04-23 华南理工大学 一种纳米氢化镁储氢材料的制备方法
CN110116990B (zh) 2019-04-10 2020-10-23 浙江大学 一种纳米氢化镁的原位制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB879230A (en) * 1958-08-21 1961-10-11 Olin Mathieson Improvements in or relating to the production of magnesium hydride
CN1417878A (zh) * 2002-12-20 2003-05-14 南开大学 含锂复合储氢合金电极材料及制备方法
JP2008018420A (ja) * 2006-06-13 2008-01-31 Taiheiyo Cement Corp 水素貯蔵材料およびその製造方法
CN101970343A (zh) * 2007-12-10 2011-02-09 科学研究国家中心 氢化镁系储氢材料
CN106006552A (zh) * 2016-05-17 2016-10-12 武汉凯迪工程技术研究总院有限公司 氢化镁复合物粉末及其制备方法与其制氢储氢一体化装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB879230A (en) * 1958-08-21 1961-10-11 Olin Mathieson Improvements in or relating to the production of magnesium hydride
CN1417878A (zh) * 2002-12-20 2003-05-14 南开大学 含锂复合储氢合金电极材料及制备方法
JP2008018420A (ja) * 2006-06-13 2008-01-31 Taiheiyo Cement Corp 水素貯蔵材料およびその製造方法
CN101970343A (zh) * 2007-12-10 2011-02-09 科学研究国家中心 氢化镁系储氢材料
CN106006552A (zh) * 2016-05-17 2016-10-12 武汉凯迪工程技术研究总院有限公司 氢化镁复合物粉末及其制备方法与其制氢储氢一体化装置

Also Published As

Publication number Publication date
CN106865497A (zh) 2017-06-20

Similar Documents

Publication Publication Date Title
CN106865497B (zh) 一种原位生长纳米氢化镁负载高比表面材料的制备方法
Wang et al. Study on catalytic effect and mechanism of MOF (MOF= ZIF-8, ZIF-67, MOF-74) on hydrogen storage properties of magnesium
Seayad et al. Recent advances in hydrogen storage in metal‐containing inorganic nanostructures and related materials
de Jongh et al. Nanoconfined light metal hydrides for reversible hydrogen storage
Huang et al. Increased air stability and decreased dehydrogenation temperature of LiBH 4 via modification within poly (methylmethacrylate)
Wang et al. Direct and reversible hydrogen storage of lithium hydride (LiH) nanoconfined in high surface area graphite
CN108439403B (zh) 一种低温预热解、原料超细化制备生物质成型活性炭的方法
CN104649229A (zh) 一种制备纳米限域镁基储氢材料的方法
JP7061818B2 (ja) ナノ水素化マグネシウムの原位調製方法
Liu et al. Improved dehydrogenation performance of LiBH 4 by confinement into porous TiO 2 micro-tubes
Sun et al. Magnesium supported on nickel nanobelts for hydrogen storage: coupling nanosizing and catalysis
Chen et al. A novel aluminum/bismuth subcarbonate/salt composite for hydrogen generation from tap water
Qingyuan et al. Catalytic steam reforming of rice straw biomass to hydrogen-rich syngas over Ni-based catalysts
CN113908818A (zh) 过渡金属单原子催化剂及其制备方法和应用
CN102807191B (zh) 一种Li-Mg-B-H储氢材料的合成方法
CN109012664B (zh) 一种无定形碳负载纳米金属颗粒催化剂及其制备方法和应用
Feng et al. One-step and sustainable preparations of inert additive-doped CaO-based CO2 adsorbents by hydrogenation reduction of CaCO3
CN104386649A (zh) 一种利用过渡金属固溶掺杂降低镁基氢化物释氢温度的方法
Huang et al. Organic frameworks induce synthesis and growth mechanism of well-ordered dumbbell-shaped ZnO particles
Sun et al. Synthesis of magnesium nanofibers by electroless reduction and their hydrogen interaction properties
Sun et al. Confined synthesis of g-C3N4 modified porous carbons for efficient removal of Cd ions
CN111408343A (zh) 三维立体生物炭的制备方法及其在重金属吸附中的应用
CN112850640A (zh) 一种金属有机框架掺杂镁基氢化物的制备方法
CN105597779A (zh) 石墨烯负载纳米镍粒子和钯粒子的复合材料及其制备方法
Adam et al. Bio-template Synthesis of Silica-Ruthenium Catalyst for Benzylation of Toluene

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20181218

CF01 Termination of patent right due to non-payment of annual fee