CN106856191A - Semiconductor structure and forming method thereof - Google Patents
Semiconductor structure and forming method thereof Download PDFInfo
- Publication number
- CN106856191A CN106856191A CN201510906938.4A CN201510906938A CN106856191A CN 106856191 A CN106856191 A CN 106856191A CN 201510906938 A CN201510906938 A CN 201510906938A CN 106856191 A CN106856191 A CN 106856191A
- Authority
- CN
- China
- Prior art keywords
- layer
- germanium
- semiconductor substrate
- germanium silicon
- silicon germanium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 162
- 238000000034 method Methods 0.000 title claims abstract description 124
- LEVVHYCKPQWKOP-UHFFFAOYSA-N [Si].[Ge] Chemical compound [Si].[Ge] LEVVHYCKPQWKOP-UHFFFAOYSA-N 0.000 claims abstract description 334
- 239000000758 substrate Substances 0.000 claims abstract description 111
- 239000007790 solid phase Substances 0.000 claims abstract description 18
- 229910052732 germanium Inorganic materials 0.000 claims description 106
- 239000000463 material Substances 0.000 claims description 58
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 37
- 229910052710 silicon Inorganic materials 0.000 claims description 36
- 239000010703 silicon Substances 0.000 claims description 36
- VGRFVJMYCCLWPQ-UHFFFAOYSA-N germanium Chemical compound [Ge].[Ge] VGRFVJMYCCLWPQ-UHFFFAOYSA-N 0.000 claims description 17
- 229920002120 photoresistant polymer Polymers 0.000 claims description 15
- 238000000407 epitaxy Methods 0.000 claims description 13
- 239000000126 substance Substances 0.000 claims description 6
- 239000010410 layer Substances 0.000 claims 87
- 238000000926 separation method Methods 0.000 claims 18
- 238000009413 insulation Methods 0.000 claims 12
- 238000000151 deposition Methods 0.000 claims 4
- 239000012071 phase Substances 0.000 claims 4
- 229910003818 SiH2Cl2 Inorganic materials 0.000 claims 2
- QUZPNFFHZPRKJD-UHFFFAOYSA-N germane Chemical compound [GeH4] QUZPNFFHZPRKJD-UHFFFAOYSA-N 0.000 claims 2
- 229910052986 germanium hydride Inorganic materials 0.000 claims 2
- 239000002344 surface layer Substances 0.000 claims 1
- 229910000577 Silicon-germanium Inorganic materials 0.000 abstract description 263
- 238000002955 isolation Methods 0.000 abstract description 107
- 229910021417 amorphous silicon Inorganic materials 0.000 abstract description 39
- 238000005530 etching Methods 0.000 abstract description 24
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 93
- 239000007789 gas Substances 0.000 description 45
- 230000005669 field effect Effects 0.000 description 19
- 238000005229 chemical vapour deposition Methods 0.000 description 9
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 8
- 229910052581 Si3N4 Inorganic materials 0.000 description 8
- 230000007547 defect Effects 0.000 description 8
- 238000001312 dry etching Methods 0.000 description 8
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 8
- 238000001039 wet etching Methods 0.000 description 8
- 238000001020 plasma etching Methods 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical group O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 229910052814 silicon oxide Inorganic materials 0.000 description 4
- 229910003481 amorphous carbon Inorganic materials 0.000 description 3
- 238000000137 annealing Methods 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 239000013078 crystal Substances 0.000 description 2
- 238000005137 deposition process Methods 0.000 description 2
- 229910003460 diamond Inorganic materials 0.000 description 2
- 239000010432 diamond Substances 0.000 description 2
- 239000003989 dielectric material Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 238000007517 polishing process Methods 0.000 description 2
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 2
- 229910010271 silicon carbide Inorganic materials 0.000 description 2
- 238000000348 solid-phase epitaxy Methods 0.000 description 2
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- 239000013590 bulk material Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 1
- -1 silicon germanium Chemical compound 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D84/00—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
- H10D84/01—Manufacture or treatment
- H10D84/0123—Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs
- H10D84/0126—Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs the components including insulated gates, e.g. IGFETs
- H10D84/0158—Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs the components including insulated gates, e.g. IGFETs the components including FinFETs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D84/00—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
- H10D84/01—Manufacture or treatment
- H10D84/02—Manufacture or treatment characterised by using material-based technologies
- H10D84/03—Manufacture or treatment characterised by using material-based technologies using Group IV technology, e.g. silicon technology or silicon-carbide [SiC] technology
- H10D84/038—Manufacture or treatment characterised by using material-based technologies using Group IV technology, e.g. silicon technology or silicon-carbide [SiC] technology using silicon technology, e.g. SiGe
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D84/00—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
- H10D84/80—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs
- H10D84/82—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs of only field-effect components
- H10D84/83—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs of only field-effect components of only insulated-gate FETs [IGFET]
- H10D84/834—Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs of only field-effect components of only insulated-gate FETs [IGFET] comprising FinFETs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/80—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials
- H10D62/82—Heterojunctions
- H10D62/822—Heterojunctions comprising only Group IV materials heterojunctions, e.g. Si/Ge heterojunctions
Landscapes
- Insulated Gate Type Field-Effect Transistor (AREA)
- Recrystallisation Techniques (AREA)
Abstract
一种半导体结构及其形成方法,所述半导体结构的形成方法包括:提供半导体衬底;在半导衬底表面形成具有开口的掩膜层;沿所述开口刻蚀半导体衬底,形成第一凹槽;形成位于第一凹槽和开口内的隔离层,所述隔离层表面与掩膜层表面齐平;去除掩膜层,形成第二凹槽;在第二凹槽内形成表面低于隔离层表面的第一锗硅层;在第一锗硅层表面形成填充满第二凹槽且覆盖隔离层的无定形锗硅层;采用固相外延生长工艺,使第一锗硅层表面的部分无定形锗硅层转变为第三锗硅层;以隔离层作为停止层,对无定形锗硅层和第三锗硅层进行平坦化;回刻蚀所述隔离层,使隔离层表面低于第三锗硅层表面。上述方法可以提高半导体结构的性能。
A semiconductor structure and a method for forming the same, the method for forming the semiconductor structure includes: providing a semiconductor substrate; forming a mask layer with an opening on the surface of the semiconductor substrate; etching the semiconductor substrate along the opening to form a first groove; form an isolation layer located in the first groove and the opening, the surface of the isolation layer is flush with the surface of the mask layer; remove the mask layer to form a second groove; form a surface lower than The first silicon germanium layer on the surface of the isolation layer; an amorphous silicon germanium layer filling the second groove and covering the isolation layer is formed on the surface of the first silicon germanium layer; a solid phase epitaxial growth process is adopted to make the silicon germanium layer on the surface Part of the amorphous silicon germanium layer is transformed into a third silicon germanium layer; the amorphous silicon germanium layer and the third silicon germanium layer are planarized by using the isolation layer as a stop layer; the isolation layer is etched back to make the surface of the isolation layer lower on the surface of the third silicon germanium layer. The methods described above can improve the performance of semiconductor structures.
Description
技术领域technical field
本发明涉及半导体技术领域,特别涉及一种半导体结构及其形成方法。The invention relates to the technical field of semiconductors, in particular to a semiconductor structure and a forming method thereof.
背景技术Background technique
随着半导体工艺技术的不断发展,工艺节点逐渐减小,后栅(gate-last)工艺得到了广泛应用,来获得理想的阈值电压,改善器件性能。但是当器件的特征尺寸(CD,Critical Dimension)进一步下降时,即使采用后栅工艺,常规的MOS场效应管的结构也已经无法满足对器件性能的需求,鳍式场效应晶体管(Fin FET)作为常规器件的替代得到了广泛的关注。所述鳍式场效应晶体管通常包括鳍部,以及横跨鳍部的栅极结构和位于栅极结构两侧的鳍部内的源漏极。With the continuous development of semiconductor process technology, the process node is gradually reduced, and the gate-last (gate-last) process has been widely used to obtain an ideal threshold voltage and improve device performance. However, when the feature size (CD, Critical Dimension) of the device is further reduced, even if the gate-last process is adopted, the structure of the conventional MOS field effect transistor can no longer meet the requirements for device performance, and the fin field effect transistor (Fin FET) as Substitution of conventional devices has received extensive attention. The FinFET usually includes a fin, a gate structure across the fin, and source and drain electrodes located in the fin on both sides of the gate structure.
为了进一步提高半导体器件的性能,半导体材料锗也得到了广泛的应用。与硅相比,锗具有更高的电子和空穴迁移率,从而应用在半导体器件上,特别是作为晶体管的沟道区域材料,能够有效提高半导体器件的性能。采用含锗半导体材料,例如锗硅,形成鳍式场效应晶体管能够有效提高晶体管的性能。In order to further improve the performance of semiconductor devices, semiconductor material germanium has also been widely used. Compared with silicon, germanium has higher mobility of electrons and holes, so it can be used in semiconductor devices, especially as a channel region material of transistors, which can effectively improve the performance of semiconductor devices. Using semiconductor materials containing germanium, such as silicon germanium, to form a fin field effect transistor can effectively improve the performance of the transistor.
现有技术中用锗硅材料形成鳍式场效应晶体管的鳍部,鳍部不同位置处的锗浓度都相同,不能满足不同晶体管的需求,鳍式场效应晶体管的性能还有待进一步的提高。In the prior art, silicon germanium is used to form the fin portion of the fin field effect transistor, and the concentration of germanium at different positions of the fin portion is the same, which cannot meet the requirements of different transistors, and the performance of the fin field effect transistor needs to be further improved.
发明内容Contents of the invention
本发明解决的问题是提供一种半导体结构及其形成方法,提高所述半导体结构的性能,以提高在所述半导体结构基础上形成的鳍式场效应晶体管的性能。The problem solved by the present invention is to provide a semiconductor structure and its forming method, improve the performance of the semiconductor structure, so as to improve the performance of the fin field effect transistor formed on the basis of the semiconductor structure.
为解决上述问题,本发明的技术方案提供一种半导体结构的形成方法,包括:提供半导体衬底;在半导衬底表面形成具有开口的掩膜层,暴露出半导体衬底的部分表面;沿所述开口刻蚀半导体衬底,在半导体衬底内形成第一凹槽;形成位于第一凹槽和开口内的隔离层,所述隔离层表面与掩膜层表面齐平;去除所述掩膜层,形成第二凹槽;在第二凹槽内形成第一锗硅层,所述第一锗硅层表面低于隔离层表面;在第一锗硅层表面形成填充满第二凹槽且覆盖隔离层的无定形锗硅层;采用固相外延生长工艺,使第一锗硅层表面的部分无定形锗硅层转变为第三锗硅层,所述第三锗硅层表面高于隔离层表面;以隔离层作为停止层,对无定形锗硅层和第三锗硅层进行平坦化;回刻蚀所述隔离层,使隔离层表面低于第三锗硅层表面。In order to solve the above problems, the technical solution of the present invention provides a method for forming a semiconductor structure, including: providing a semiconductor substrate; forming a mask layer with openings on the surface of the semiconductor substrate to expose part of the surface of the semiconductor substrate; The opening etches the semiconductor substrate, forming a first groove in the semiconductor substrate; forming an isolation layer located in the first groove and the opening, and the surface of the isolation layer is flush with the surface of the mask layer; removing the mask film layer, forming a second groove; forming a first silicon germanium layer in the second groove, the surface of the first silicon germanium layer is lower than the surface of the isolation layer; forming a second groove on the surface of the first silicon germanium layer And cover the amorphous silicon germanium layer of the isolation layer; adopt the solid phase epitaxial growth process to transform part of the amorphous silicon germanium layer on the surface of the first silicon germanium layer into a third silicon germanium layer, the surface of the third silicon germanium layer is higher than The surface of the isolation layer: the amorphous silicon germanium layer and the third silicon germanium layer are planarized using the isolation layer as a stop layer; the isolation layer is etched back to make the surface of the isolation layer lower than the surface of the third silicon germanium layer.
可选的,所述第一锗硅层内的锗浓度与第三锗硅层内的锗浓度不同。Optionally, the germanium concentration in the first silicon germanium layer is different from that in the third silicon germanium layer.
可选的,所述第一锗硅层内的锗浓度范围为15%~45%,第三锗硅层内的锗浓度范围为25%~35%。Optionally, the concentration of germanium in the first silicon germanium layer ranges from 15% to 45%, and the concentration of germanium in the third silicon germanium layer ranges from 25% to 35%.
可选的,采用选择性外延工艺形成所述第一锗硅层。Optionally, the first silicon germanium layer is formed by using a selective epitaxy process.
可选的,所述第一锗硅层的高度为第二凹槽深度的1/3~1/2。Optionally, the height of the first silicon germanium layer is 1/3˜1/2 of the depth of the second groove.
可选的,采用化学气相沉积工艺形成所述无定形锗硅层。Optionally, the amorphous silicon germanium layer is formed by using a chemical vapor deposition process.
可选的,所述化学气相沉积工艺采用的硅源气体为SiH4或者SiH2Cl2,锗源气体为GeH4,温度为400℃~600℃,压强为5Torr~100Torr。Optionally, the silicon source gas used in the chemical vapor deposition process is SiH 4 or SiH 2 Cl 2 , the germanium source gas is GeH 4 , the temperature is 400° C.-600° C., and the pressure is 5 Torr-100 Torr.
可选的,所述固相外延生长工艺的生长温度为600℃~800℃。Optionally, the growth temperature of the solid phase epitaxial growth process is 600°C-800°C.
本发明的技术方案还提供一种采用上述方法形成的半导体结构,包括:半导体衬底;位于半导体衬底内的第一凹槽;位于第一凹槽内的隔离层,且所述隔离层表面高于半导体衬底表面;位于相邻隔离层之间的半导体衬底表面的第一锗硅层;位于第一锗硅层表面的第三锗硅层,所述第三锗硅层表面高于隔离层表面。The technical solution of the present invention also provides a semiconductor structure formed by the above method, including: a semiconductor substrate; a first groove located in the semiconductor substrate; an isolation layer located in the first groove, and the surface of the isolation layer Higher than the surface of the semiconductor substrate; the first silicon germanium layer on the surface of the semiconductor substrate between adjacent isolation layers; the third silicon germanium layer on the surface of the first silicon germanium layer, the surface of the third silicon germanium layer is higher than Isolation layer surface.
本发明的技术方案还提供另一种半导体结构的形成方法,包括:提供半导体衬底,所述半导体衬底包括第一区域和第二区域;在半导衬底表面形成具有开口的第一掩膜层,暴露出半导体衬底的第一区域和第二区域的部分表面;沿所述开口刻蚀半导体衬底,在半导体衬底的第一区域和第二区域内形成第一凹槽;形成位于第一凹槽和开口内的隔离层,所述隔离层表面与第一掩膜层表面齐平;去除第一掩膜层,在第一区域形成第二凹槽,在第二区域形成第三凹槽;形成覆盖半导体衬底第一区域的第二掩膜层;在第三凹槽内形成第一锗硅层,第一锗硅层表面低于隔离层表面;去除第二掩膜层后,形成覆盖半导体衬底第二区域的第三掩膜层;在第二凹槽内形成第二锗硅层,第二锗硅层表面低于隔离层表面;去除第三掩膜层,在所述第一锗硅层、第二锗硅层表面形成无定形锗硅层,所述无定形锗硅层填充满所述第二凹槽、第三凹槽,且覆盖所述隔离层;采用固相外延生长工艺,使第一锗硅层、第二锗硅层表面的部分无定形锗硅层转变为第三锗硅层,所述第三锗硅层表面高于隔离层表面;以隔离层作为停止层,对无定形锗硅层和第三锗硅层进行平坦化;回刻蚀所述隔离层,使隔离层表面低于第三锗硅层表面。The technical solution of the present invention also provides another method for forming a semiconductor structure, including: providing a semiconductor substrate, the semiconductor substrate including a first region and a second region; forming a first mask with an opening on the surface of the semiconductor substrate; The film layer exposes part of the surface of the first region and the second region of the semiconductor substrate; etching the semiconductor substrate along the opening to form a first groove in the first region and the second region of the semiconductor substrate; forming An isolation layer located in the first groove and the opening, the surface of the isolation layer is flush with the surface of the first mask layer; the first mask layer is removed, the second groove is formed in the first region, and the second groove is formed in the second region. Three grooves; forming a second mask layer covering the first region of the semiconductor substrate; forming a first silicon germanium layer in the third groove, the surface of the first silicon germanium layer being lower than the surface of the isolation layer; removing the second mask layer Finally, forming a third mask layer covering the second region of the semiconductor substrate; forming a second silicon germanium layer in the second groove, the surface of the second silicon germanium layer is lower than the surface of the isolation layer; removing the third mask layer, An amorphous silicon germanium layer is formed on the surface of the first silicon germanium layer and the second silicon germanium layer, and the amorphous silicon germanium layer fills the second groove and the third groove and covers the isolation layer; The solid phase epitaxial growth process transforms part of the amorphous silicon germanium layer on the surface of the first silicon germanium layer and the second silicon germanium layer into a third silicon germanium layer, and the surface of the third silicon germanium layer is higher than the surface of the isolation layer; As a stop layer, the amorphous silicon germanium layer and the third silicon germanium layer are planarized; the isolation layer is etched back so that the surface of the isolation layer is lower than the surface of the third silicon germanium layer.
可选的,所述第一锗硅层内的锗浓度高于第三锗硅层内的锗浓度,第二锗硅层内的锗浓度低于第三锗硅层内的锗浓度。Optionally, the germanium concentration in the first silicon germanium layer is higher than the germanium concentration in the third silicon germanium layer, and the germanium concentration in the second silicon germanium layer is lower than the germanium concentration in the third silicon germanium layer.
可选的,所述第一锗硅层内的锗浓度范围为35~45%,第二锗硅层内的锗浓度范围为15~25%,第三锗硅层内的锗浓度范围为25~35%。Optionally, the concentration range of germanium in the first silicon germanium layer is 35-45%, the concentration range of germanium in the second silicon germanium layer is 15-25%, and the concentration range of germanium in the third silicon germanium layer is 25%. ~35%.
可选的,采用选择性外延工艺形成所述第一锗硅层、第二锗硅层。Optionally, the first silicon germanium layer and the second silicon germanium layer are formed by using a selective epitaxy process.
可选的,所述第一锗硅层的高度为第三凹槽深度的1/3~1/2;所述第二锗硅层的高度为第二凹槽深度的1/3~1/2。Optionally, the height of the first silicon germanium layer is 1/3 to 1/2 of the depth of the third groove; the height of the second silicon germanium layer is 1/3 to 1/2 of the depth of the second groove. 2.
可选的,采用化学气相沉积工艺形成所述无定形锗硅层。Optionally, the amorphous silicon germanium layer is formed by using a chemical vapor deposition process.
可选的,所述化学气相沉积工艺采用的硅源气体为SiH4或者SiH2Cl2,锗源气体为GeH4,温度为400℃~600℃,压强为5Torr~100Torr。Optionally, the silicon source gas used in the chemical vapor deposition process is SiH 4 or SiH 2 Cl 2 , the germanium source gas is GeH 4 , the temperature is 400° C.-600° C., and the pressure is 5 Torr-100 Torr.
可选的,所述固相外延生长工艺的生长温度为600℃~800℃。Optionally, the growth temperature of the solid phase epitaxial growth process is 600°C-800°C.
可选的,所述第二掩膜层的形成方法包括:形成覆盖隔离层以及半导体衬底的第二掩膜材料层;在所述第二掩膜材料层表面形成图形化光刻胶层;以所述图形化光刻胶层为掩膜,刻蚀所述第二掩膜材料层,去除位于半导体衬底第二区域上的第二掩膜材料层,暴露出第二区域的隔离层和半导体衬底,形成覆盖第一区域的第二掩膜层。Optionally, the method for forming the second mask layer includes: forming a second mask material layer covering the isolation layer and the semiconductor substrate; forming a patterned photoresist layer on the surface of the second mask material layer; Using the patterned photoresist layer as a mask, etching the second mask material layer, removing the second mask material layer on the second region of the semiconductor substrate, exposing the isolation layer and the second region A second mask layer covering the first region is formed on the semiconductor substrate.
可选的,所述第三掩膜层的形成方法包括:形成覆盖隔离层以及半导体衬底的第三掩膜材料层;在所述第三掩膜材料层表面形成图形化光刻胶层;以所述图形化光刻胶层为掩膜,刻蚀所述第三掩膜材料层,去除位于半导体衬底第一区域上的第三掩膜材料层,暴露出第一区域的隔离层和半导体衬底,形成覆盖第二区域的第三掩膜层。Optionally, the method for forming the third mask layer includes: forming a third mask material layer covering the isolation layer and the semiconductor substrate; forming a patterned photoresist layer on the surface of the third mask material layer; Using the patterned photoresist layer as a mask, etching the third mask material layer, removing the third mask material layer on the first region of the semiconductor substrate, exposing the isolation layer and the first region A semiconductor substrate, forming a third mask layer covering the second region.
本发明的技术方案还提供另一种采用上述方法形成的半导体结构,包括:半导体衬底,所述半导体衬底包括第一区域和第二区域;位于半导体衬底的第一区域和第二区域内的第一凹槽;位于第一凹槽内的隔离层,所述隔离层表面高于半导体衬底表面;位于相邻隔离层之间的半导体衬底第一区域表面的第二锗硅层;位于相邻隔离层之间的半导体衬底第二区域表面的第一锗硅层;位于所述第一锗硅层和第二锗硅层表面的第三锗硅层,所述第三锗硅层表面高于隔离层表面。The technical solution of the present invention also provides another semiconductor structure formed by the above method, including: a semiconductor substrate, the semiconductor substrate includes a first region and a second region; The first groove in the first groove; the isolation layer located in the first groove, the surface of the isolation layer is higher than the surface of the semiconductor substrate; the second silicon germanium layer on the surface of the first region of the semiconductor substrate between the adjacent isolation layers The first silicon germanium layer on the surface of the second region of the semiconductor substrate between adjacent isolation layers; the third silicon germanium layer on the surface of the first silicon germanium layer and the second silicon germanium layer, the third silicon germanium layer The surface of the silicon layer is higher than the surface of the isolation layer.
与现有技术相比,本发明的技术方案具有以下优点:Compared with the prior art, the technical solution of the present invention has the following advantages:
本发明的技术方案中,在半导体衬底上形成在第一锗硅层,然后在所述第一锗硅层表面形成无定形锗硅层之后,再通过固相外延工艺使位于第一锗硅层表面的部分无定形锗硅层转变为第三锗硅层,所述第一锗硅层和第三锗硅层作为鳍部的一部分。固相外延生长过程中,位于无定形锗硅层内的原子首先会填补第一锗硅层表面的晶格缺陷位置,使得第一锗硅层顶部的尖角消失,形成平整的界面,界面上的缺陷较少,可以提高第一锗硅层和第三锗硅层内的载流子迁移率,进而提高所述半导体结构的性能。In the technical solution of the present invention, the first silicon germanium layer is formed on the semiconductor substrate, and then an amorphous silicon germanium layer is formed on the surface of the first silicon germanium layer, and then the silicon germanium layer located on the first silicon germanium layer is formed by a solid phase epitaxy process. Part of the amorphous silicon germanium layer on the surface of the layer is transformed into a third silicon germanium layer, and the first silicon germanium layer and the third silicon germanium layer are used as a part of the fin. During the solid phase epitaxial growth process, the atoms located in the amorphous silicon germanium layer will first fill the lattice defect positions on the surface of the first silicon germanium layer, so that the sharp corners on the top of the first silicon germanium layer disappear, forming a flat interface. There are fewer defects, which can increase the carrier mobility in the first silicon germanium layer and the third silicon germanium layer, thereby improving the performance of the semiconductor structure.
进一步,所述第一锗硅层与第三锗硅层的锗浓度不一样,通过调整所述第一锗硅层和第三锗硅层内的锗浓度,可以使得鳍部满足不同性能晶体管的需求,进一步提高在此基础上形成的鳍式场效应晶体管的性能。Further, the concentration of germanium in the first silicon-germanium layer is different from that in the third silicon-germanium layer. By adjusting the concentration of germanium in the first silicon-germanium layer and the third silicon-germanium layer, the fins can meet the requirements of transistors with different performances. In order to further improve the performance of the fin field effect transistor formed on this basis.
本发明的技术方案中,还提供一种半导体结构的形成方法,在半导体衬底的第一区域上形成第二锗硅层,第二区域上形成第一锗硅层,然后再在所述第一锗硅层、第二锗硅层表面形成无定形锗硅层,通过固相外延工艺,使得第一锗硅层和第二锗硅层表面的部分无定形锗硅层转变为第三锗硅层。所述第一区域上的第一锗硅层和第三锗硅层作为第一区域上的鳍部的一部分,第二锗硅层及其表面的第三锗硅层作为第二区域上的鳍部的一部分。固相外延生长过程中,位于无定形锗硅层内的原子首先会填补第一锗硅层、第二锗硅层表面的晶格缺陷位置,使得第一锗硅层、第二锗硅层顶部的尖角消失,形成平整的界面,界面上的缺陷较少,可以提高第一锗硅层、第二锗硅层和第三锗硅层内的载流子迁移率,进而提高所述半导体结构的性能。In the technical solution of the present invention, a method for forming a semiconductor structure is also provided, wherein a second silicon germanium layer is formed on the first region of the semiconductor substrate, a first silicon germanium layer is formed on the second region, and then the second silicon germanium layer is formed on the first region. An amorphous silicon germanium layer is formed on the surface of the silicon germanium layer and the second silicon germanium layer, and through a solid phase epitaxy process, part of the amorphous silicon germanium layer on the surface of the first silicon germanium layer and the second silicon germanium layer is transformed into a third silicon germanium layer Floor. The first silicon germanium layer and the third silicon germanium layer on the first region are used as part of the fins on the first region, and the second silicon germanium layer and the third silicon germanium layer on the surface are used as fins on the second region part of the department. During the solid phase epitaxial growth process, the atoms located in the amorphous silicon germanium layer will first fill the lattice defect positions on the surface of the first silicon germanium layer and the second silicon germanium layer, so that the top of the first silicon germanium layer and the second silicon germanium layer The sharp corners disappear, forming a smooth interface, and there are fewer defects on the interface, which can improve the carrier mobility in the first silicon germanium layer, the second silicon germanium layer and the third silicon germanium layer, and then improve the semiconductor structure. performance.
进一步,所述第三锗硅层和第一锗硅层作为第一区域上的鳍部的一部分,两者具有不同的锗浓度;第三锗硅层和第二锗硅层作为第二区域上的鳍部的一部分,两者也具有不同的锗浓度。并且,所述第三锗硅层的锗浓度小于第一锗硅层的锗浓度;第三锗硅层的锗浓度大于第二锗硅层的锗浓度;从而使得所述第一区域和第二区域分别适合形成不同性能或类型的鳍式场效应晶体管,可以提高不同类型鳍式场效应晶体管的性能。Further, the third silicon germanium layer and the first silicon germanium layer are used as part of the fin on the first region, both of which have different concentrations of germanium; the third silicon germanium layer and the second silicon germanium layer are used as the part of the fin, the two also have different germanium concentrations. Moreover, the germanium concentration of the third silicon germanium layer is lower than the germanium concentration of the first silicon germanium layer; the germanium concentration of the third silicon germanium layer is greater than the germanium concentration of the second silicon germanium layer; thus making the first region and the second The regions are respectively suitable for forming fin field effect transistors of different performances or types, which can improve the performance of different types of fin field effect transistors.
附图说明Description of drawings
图1至图10是本发明的一个实施例的半导体结构的形成过程的结构示意图;1 to 10 are structural schematic diagrams of the formation process of a semiconductor structure according to an embodiment of the present invention;
图11至图22是本发明的一个实施例的半导体结构的形成过程的结构示意图。11 to 22 are structural schematic diagrams of the formation process of the semiconductor structure according to an embodiment of the present invention.
具体实施方式detailed description
如背景技术中所述,现有技术采用锗硅材料形成的鳍部中,锗浓度在不同位置出的浓度一致,不能满足不同晶体管的需求,从而会影响在此基础上形成的鳍式场效应晶体管的性能。As mentioned in the background technology, in the prior art, the concentration of germanium in the fin formed by silicon germanium material is the same at different positions, which cannot meet the needs of different transistors, which will affect the fin field effect formed on this basis. Transistor performance.
本发明的其他实施例中,形成鳍部包括下部分和上部分,其中上部分和下部分的鳍部内的锗浓度不相同,以满足不同晶体管的需求。In other embodiments of the present invention, forming the fin includes a lower portion and an upper portion, wherein the concentrations of germanium in the upper portion and the lower portion of the fin are different to meet the requirements of different transistors.
为使本发明的上述目的、特征和优点能够更为明显易懂,下面结合附图对本发明的具体实施例做详细的说明。In order to make the above objects, features and advantages of the present invention more comprehensible, specific embodiments of the present invention will be described in detail below in conjunction with the accompanying drawings.
图1至图10为本发明的第一实施例的半导体结构的形成过程的示意图。1 to 10 are schematic views of the formation process of the semiconductor structure according to the first embodiment of the present invention.
请参考图1,提供半导体衬底100,在所述半导体衬底100表面形成掩膜材料层101。Referring to FIG. 1 , a semiconductor substrate 100 is provided, and a mask material layer 101 is formed on the surface of the semiconductor substrate 100 .
所述半导体衬底100的材料包括硅、锗、锗化硅、砷化镓等半导体材料,可以是体材料也可以是复合结构如绝缘体上硅。本领域的技术人员可以根据半导体衬底100上形成的半导体器件选择所述半导体衬底100的类型,因此所述半导体衬底100的类型不应限制本发明的保护范围。本实施例中,苏搜书半导体衬底100为单晶硅衬底。The material of the semiconductor substrate 100 includes semiconductor materials such as silicon, germanium, silicon germanium, and gallium arsenide, and may be a bulk material or a composite structure such as silicon-on-insulator. Those skilled in the art can select the type of the semiconductor substrate 100 according to the semiconductor devices formed on the semiconductor substrate 100 , so the type of the semiconductor substrate 100 should not limit the protection scope of the present invention. In this embodiment, Su Soushu's semiconductor substrate 100 is a single crystal silicon substrate.
可以采用化学气相沉积工艺在所述半导体衬底100表面形成所述掩膜材料层101,所述掩膜材料层101的材料可以包括:氮化硅、无定形碳或碳化硅等。本实施例中,所述掩膜材料层101的材料为氮化硅。所述掩膜材料层101后续用于形成位于半导体衬底100表面的掩膜层。The mask material layer 101 may be formed on the surface of the semiconductor substrate 100 by using a chemical vapor deposition process, and the material of the mask material layer 101 may include: silicon nitride, amorphous carbon or silicon carbide, and the like. In this embodiment, the material of the mask material layer 101 is silicon nitride. The mask material layer 101 is subsequently used to form a mask layer on the surface of the semiconductor substrate 100 .
请参考图2,在半导衬底100表面形成具有开口110的掩膜层101a,暴露出半导体衬底100的部分表面。Referring to FIG. 2 , a mask layer 101 a having an opening 110 is formed on the surface of the semiconductor substrate 100 to expose part of the surface of the semiconductor substrate 100 .
所述掩膜层101a的形成方法包括:在所述掩膜材料层101(请参考图1)表面形成图形化光刻胶层,所述图形化光刻胶层暴露出部分掩膜材料层101的表面;以所述图形化光刻胶层为掩膜,刻蚀所述掩膜材料层101至半导体衬底101表面,形成具有开口110的掩膜层101a,所述开口110暴露出部分半导体衬底100的表面。The forming method of the mask layer 101a includes: forming a patterned photoresist layer on the surface of the mask material layer 101 (please refer to FIG. 1 ), the patterned photoresist layer exposes part of the mask material layer 101 using the patterned photoresist layer as a mask, etch the mask material layer 101 to the surface of the semiconductor substrate 101 to form a mask layer 101a with an opening 110, and the opening 110 exposes a part of the semiconductor the surface of the substrate 100.
所述开口110的位置和尺寸,定义了后续形成的鳍部的位置和尺寸。The position and size of the opening 110 define the position and size of the subsequently formed fins.
请参考图3,沿所述开口110刻蚀半导体衬底100,在半导体衬底100内形成第一凹槽102。Referring to FIG. 3 , the semiconductor substrate 100 is etched along the opening 110 to form a first groove 102 in the semiconductor substrate 100 .
可以采用干法刻蚀工艺刻蚀所述半导体衬底100,所述干法刻蚀工艺可以是等离子体刻蚀工艺、反应离子刻蚀工艺等。本实施例中,采用反应离子刻蚀工艺对所述半导体衬底100进行刻蚀,具体的,所述反应离子刻蚀工艺采用HBr和Cl2的混合气体作为刻蚀气体,O2作为缓冲气体,其中HBr的流量为50sccm~1000sccm,Cl2的流量为50sccm~1000sccm,O2的流量为5sccm~20sccm,压强为5mTorr~50mTorr,功率为400W~750W,O2的气体流量为5sccm~20sccm,温度为40℃~80℃,偏置电压为100V~250V。The semiconductor substrate 100 may be etched using a dry etching process, and the dry etching process may be a plasma etching process, a reactive ion etching process, or the like. In this embodiment, the semiconductor substrate 100 is etched using a reactive ion etching process. Specifically, the reactive ion etching process uses a mixed gas of HBr and Cl2 as an etching gas, and O2 as a buffer gas , wherein the flow rate of HBr is 50sccm~1000sccm, the flow rate of Cl2 is 50sccm~1000sccm, the flow rate of O2 is 5sccm ~20sccm, the pressure is 5mTorr~50mTorr, the power is 400W~750W, the gas flow rate of O2 is 5sccm~20sccm, The temperature is 40°C-80°C, and the bias voltage is 100V-250V.
本实施例中,由于在第一凹槽102顶部的刻蚀气体交换速率较快,刻蚀速率较大,所以最终形成侧壁倾斜的第一凹槽102。In this embodiment, since the exchange rate of the etching gas at the top of the first groove 102 is faster and the etching rate is higher, the first groove 102 with inclined sidewalls is finally formed.
请参考图4,形成位于第一凹槽102(请参考图3)和开口110(请参考图3)内的隔离层103,所述隔离层103表面与掩膜层101a表面齐平。Referring to FIG. 4 , an isolation layer 103 is formed inside the first groove 102 (please refer to FIG. 3 ) and the opening 110 (please refer to FIG. 3 ), and the surface of the isolation layer 103 is flush with the surface of the mask layer 101a.
所述隔离层103的形成方法包括:形成填充满所述第一凹槽102、开口110且覆盖掩膜层101a的隔离材料层;以所述掩膜层101a作为停止层,对所述隔离材料层进行平坦化,形成与所述掩膜层101a表面齐平的隔离层103。The method for forming the isolation layer 103 includes: forming an isolation material layer that fills the first groove 102 and the opening 110 and covers the mask layer 101a; using the mask layer 101a as a stop layer, Layers are planarized to form an isolation layer 103 flush with the surface of the mask layer 101a.
本实施例中,所述隔离材料层的材料为氧化硅,在本发明的其他实施例中,所述隔离层的材料还可以是氮氧化硅等绝缘介质材料。可以采用化学气相沉积工艺、高密度等离子体沉积工艺或高深宽比沉积工艺形成所述隔离材料层。在本发明的其他实施例中,在形成所述隔离层103之前,可以在所述第一凹槽102的内壁表面形成垫氧化层,提高形成的隔离层103的质量。In this embodiment, the material of the isolation material layer is silicon oxide, and in other embodiments of the present invention, the material of the isolation layer may also be an insulating dielectric material such as silicon oxynitride. The isolation material layer can be formed by chemical vapor deposition process, high density plasma deposition process or high aspect ratio deposition process. In other embodiments of the present invention, before forming the isolation layer 103 , a pad oxide layer may be formed on the inner wall surface of the first groove 102 to improve the quality of the formed isolation layer 103 .
请参考图5,去除所述掩膜层101a(请参考图4),形成第二凹槽104。Referring to FIG. 5 , the mask layer 101 a (please refer to FIG. 4 ) is removed to form a second groove 104 .
本实施例中,采用湿法刻蚀工艺去除所述掩膜层101a。本实施例中,所述掩膜层101a的材料为氮化硅,采用磷酸溶液作为刻蚀溶液去除所述掩膜层101a。在本发明的其他实施例中,还可以采用对掩膜层101a具有较高刻蚀选择性的干法刻蚀工艺。In this embodiment, the mask layer 101a is removed by a wet etching process. In this embodiment, the material of the mask layer 101a is silicon nitride, and a phosphoric acid solution is used as an etching solution to remove the mask layer 101a. In other embodiments of the present invention, a dry etching process with higher etching selectivity to the mask layer 101a may also be used.
去除所述掩膜层101a之后,在相邻隔离层103之间形成第二凹槽104,所述第二凹槽104暴露出部分半导体衬底100的表面。After the mask layer 101 a is removed, a second groove 104 is formed between adjacent isolation layers 103 , and the second groove 104 exposes part of the surface of the semiconductor substrate 100 .
请参考图6,在第二凹槽104内形成第一锗硅层105,所述第一锗硅层105表面低于隔离层103表面。Referring to FIG. 6 , a first SiGe layer 105 is formed in the second groove 104 , and the surface of the first SiGe layer 105 is lower than the surface of the isolation layer 103 .
采用选择性外延工艺形成所述第一锗硅层105,所述第一锗硅层105在第二凹槽104底部的半导体衬底100表面向上生长,由于所述第一锗硅层105具有金刚石型晶体结构,形成的第一锗硅层105表面具有尖角。The first silicon germanium layer 105 is formed by a selective epitaxial process, and the first silicon germanium layer 105 grows upward on the surface of the semiconductor substrate 100 at the bottom of the second groove 104, because the first silicon germanium layer 105 has diamond type crystal structure, the surface of the formed first silicon germanium layer 105 has sharp corners.
所述选择性外延工艺采用的反应气体包括:锗源气体、硅源气体、HCl和H2,其中,锗源气体为GeH4,硅源气体包括SiH4或SiH2Cl2等含硅气体,锗源气体、硅源气体和HCl的气体流量为1sccm~1000sccm,H2的流量为0.1slm~50slm,所述选择性外延工艺的温度为300℃~700℃,压强为1Torr~100Torr。The reaction gases used in the selective epitaxy process include: germanium source gas, silicon source gas, HCl and H 2 , wherein the germanium source gas is GeH 4 , and the silicon source gas includes silicon-containing gases such as SiH 4 or SiH 2 Cl 2 , The gas flow rate of germanium source gas, silicon source gas and HCl is 1sccm-1000sccm, the flow rate of H2 is 0.1slm-50slm, the temperature of the selective epitaxy process is 300°C-700°C, and the pressure is 1Torr-100Torr.
所述第一锗硅层105作为最终形成的鳍部的一部分,侧壁被隔离层103所覆盖,所述第一锗硅层105的高度为第二凹槽104深度的1/3~1/2,例如使得后续对隔离层103进行回刻蚀之后,所述第一锗硅层105依旧能被回刻蚀后的隔离层103覆盖。本实施例中,所述第一锗硅层105的高度为第二凹槽104深度的1/2。在本发明的其他实施例中,所述第一锗硅层105的高度可以根据最终待形成的鳍部高度进行调整。The first SiGe layer 105 is a part of the finally formed fin, and the sidewall is covered by the isolation layer 103. The height of the first SiGe layer 105 is 1/3˜1/3 of the depth of the second groove 104. 2. For example, after etching back the isolation layer 103 subsequently, the first SiGe layer 105 can still be covered by the isolation layer 103 after etching back. In this embodiment, the height of the first silicon germanium layer 105 is 1/2 of the depth of the second groove 104 . In other embodiments of the present invention, the height of the first silicon germanium layer 105 can be adjusted according to the final height of the fin to be formed.
所述第一锗硅层105内的锗浓度范围为15%~45%,通过调整选择性外延过程中锗源气体和硅源气体的流量可以调整所述第一锗硅层105内的锗浓度。The germanium concentration in the first silicon germanium layer 105 ranges from 15% to 45%, and the germanium concentration in the first silicon germanium layer 105 can be adjusted by adjusting the flow rates of germanium source gas and silicon source gas during the selective epitaxy process. .
请参考图7,在第一锗硅层105表面形成填充满第二凹槽104(请参考图6)且覆盖隔离层103的无定形锗硅层106。Referring to FIG. 7 , an amorphous SiGe layer 106 filling the second groove 104 (please refer to FIG. 6 ) and covering the isolation layer 103 is formed on the surface of the first SiGe layer 105 .
采用化学气相沉积工艺形成所述无定形锗硅层。所述化学气相沉积工艺采用的硅源气体为SiH4或SiH2Cl2等含硅气体,锗源气体为GeH4,温度为400℃~600℃,压强为5Torr~100Torr。The amorphous silicon germanium layer is formed by chemical vapor deposition process. The silicon source gas used in the chemical vapor deposition process is silicon-containing gas such as SiH 4 or SiH 2 Cl 2 , the germanium source gas is GeH 4 , the temperature is 400°C-600°C, and the pressure is 5 Torr-100 Torr.
所述无定形锗硅层106中,锗浓度为25~35%。In the amorphous silicon germanium layer 106, the concentration of germanium is 25-35%.
请参考图8,采用固相外延生长工艺,使第一锗硅层105表面的部分无定形锗硅层106转变为第三锗硅层107,所述第三锗硅层107表面高于隔离层103表面。Please refer to FIG. 8 , a solid phase epitaxial growth process is used to transform part of the amorphous silicon germanium layer 106 on the surface of the first silicon germanium layer 105 into a third silicon germanium layer 107, and the surface of the third silicon germanium layer 107 is higher than the isolation layer. 103 surfaces.
所述固相外延生长工艺采用退火处理,退火温度低于所述无定形锗硅层106的熔点,使得所述无定形锗硅层106内的锗原子和硅原子获得足够的能量能够进行迁移。由于部分无定形锗硅层106位于第一锗硅层105表面,而所述第一锗硅层105表面的锗硅原子按着晶格结构排列,所以,与第一锗硅层105直接接触的部分无定形锗硅层106内的原子,在所述第一锗硅层105表面沿着第一锗硅层105的晶格结构规则化生长,形成位于第一锗硅层105表面的第三锗硅层107。所述退火温度可以接近无定形锗硅层106的熔点的1/2,例如600℃~800℃,本实施例中,所述固相外延生长工艺采用的生长温度为700℃。The solid phase epitaxial growth process adopts annealing treatment, and the annealing temperature is lower than the melting point of the amorphous silicon germanium layer 106, so that the germanium atoms and silicon atoms in the amorphous silicon germanium layer 106 obtain enough energy to migrate. Since part of the amorphous silicon-germanium layer 106 is located on the surface of the first silicon-germanium layer 105, and the silicon-germanium atoms on the surface of the first silicon-germanium layer 105 are arranged in a lattice structure, so the parts directly in contact with the first silicon-germanium layer 105 Atoms in part of the amorphous silicon germanium layer 106 grow regularly on the surface of the first silicon germanium layer 105 along the lattice structure of the first silicon germanium layer 105 to form a third germanium layer located on the surface of the first silicon germanium layer 105 Silicon layer 107 . The annealing temperature may be close to 1/2 of the melting point of the amorphous silicon germanium layer 106 , for example, 600° C. to 800° C. In this embodiment, the growth temperature used in the solid phase epitaxial growth process is 700° C.
所述第三锗硅层107内的锗浓度由无定形锗硅层106的锗浓度决定,所述第三锗硅层107内的锗浓度与第一锗硅层105内的锗浓度不同。本实施例中,所述第三锗硅层107内的锗浓度为25~35%。The concentration of germanium in the third silicon germanium layer 107 is determined by the concentration of germanium in the amorphous silicon germanium layer 106 , and the concentration of germanium in the third silicon germanium layer 107 is different from that in the first silicon germanium layer 105 . In this embodiment, the germanium concentration in the third silicon germanium layer 107 is 25-35%.
在进行固相外延生长过程中,由于第一锗硅层105与无定形锗硅层106的锗浓度不同,在第一锗硅层105与无定形硅层106的界面上,会出现锗原子的扩散现象,使得形成的第一锗硅层105与第三锗硅层107界面上的锗浓度位于第一锗硅层105与第三锗硅层107的锗浓度之间。并且,固相外延生长过程中,位于无定形锗硅层106内的原子首先会填补第一锗硅层105表面的晶格缺陷位置,使得第一锗硅层105顶部的尖角消失,形成平整的界面,界面上的缺陷较少,可以提高第一锗硅层106和第三锗硅层107内的载流子迁移率。而如果直接在第一锗硅层105表面采用外延工艺形成第三锗硅层,则所述第一锗硅层105表面依旧不平整,导致第一锗硅层105与第三锗硅层的界面缺陷较多。During the solid phase epitaxial growth process, since the germanium concentrations of the first silicon germanium layer 105 and the amorphous silicon germanium layer 106 are different, on the interface between the first silicon germanium layer 105 and the amorphous silicon layer 106, germanium atoms will appear. Due to the diffusion phenomenon, the concentration of germanium on the interface between the formed first silicon germanium layer 105 and the third silicon germanium layer 107 is between that of the first silicon germanium layer 105 and the third silicon germanium layer 107 . Moreover, during the solid phase epitaxial growth process, the atoms located in the amorphous silicon germanium layer 106 will first fill the lattice defect positions on the surface of the first silicon germanium layer 105, so that the sharp corners at the top of the first silicon germanium layer 105 disappear, forming a flat surface. The interface has fewer defects, which can improve the carrier mobility in the first silicon germanium layer 106 and the third silicon germanium layer 107 . However, if the third silicon germanium layer is formed directly on the surface of the first silicon germanium layer 105 by epitaxial process, the surface of the first silicon germanium layer 105 is still uneven, resulting in the interface between the first silicon germanium layer 105 and the third silicon germanium layer There are many defects.
请参考图9,以所述隔离层103作为停止层,对无定形锗硅层106(请参考图8)和第三锗硅层107(请参考图8)进行平坦化。Referring to FIG. 9 , the amorphous silicon germanium layer 106 (please refer to FIG. 8 ) and the third silicon germanium layer 107 (please refer to FIG. 8 ) are planarized by using the isolation layer 103 as a stop layer.
采用化学研磨工艺,对所述无定形锗硅层103和第三锗硅层107进行平坦化,去除剩余的无定形锗硅层106以及高于隔离层103表面的部分第三锗硅层107,使剩余的第三锗硅层107a表面平坦,且与隔离层103表面齐平。Using a chemical polishing process, the amorphous silicon germanium layer 103 and the third silicon germanium layer 107 are planarized, and the remaining amorphous silicon germanium layer 106 and part of the third silicon germanium layer 107 higher than the surface of the isolation layer 103 are removed, Make the surface of the remaining third SiGe layer 107 a flat and flush with the surface of the isolation layer 103 .
请参考图10,回刻蚀所述隔离层103,使隔离层103表面低于第三锗硅层107a表面。Referring to FIG. 10, the isolation layer 103 is etched back so that the surface of the isolation layer 103 is lower than the surface of the third SiGe layer 107a.
可以采用干法或湿法刻蚀工艺对所述隔离层103进行回刻蚀,使所述隔离层103的高度下降,暴露出第三锗硅层107a的侧壁。The isolation layer 103 may be etched back by using a dry or wet etching process to reduce the height of the isolation layer 103 and expose the sidewall of the third silicon germanium layer 107a.
本实施例中,回刻蚀后的隔离层103的表面与第一锗硅层105表面齐平,使得第三锗硅层107a的侧壁完全暴露。在本发明的其他实施例中,所述隔离层103的表面还可以高于或低于所述第一锗硅层105表面。In this embodiment, the surface of the isolation layer 103 after etching back is flush with the surface of the first SiGe layer 105 , so that the sidewall of the third SiGe layer 107 a is completely exposed. In other embodiments of the present invention, the surface of the isolation layer 103 may be higher or lower than the surface of the first silicon germanium layer 105 .
后续可以形成横跨所述第三锗硅层107a的栅极结构,然后在所述栅极结构两侧的第三锗硅层107a内形成源漏极,从而形成鳍式场效应晶体管。Subsequently, a gate structure may be formed across the third silicon germanium layer 107a, and then source and drain electrodes may be formed in the third silicon germanium layer 107a on both sides of the gate structure, thereby forming a fin field effect transistor.
本实施例中,所述第三锗硅层107a以及第一锗硅层105作为鳍部的一部分,两者具有不同的锗浓度。通过调整所述第一锗硅层105和第三锗硅层107a内的锗浓度,可以使得鳍部满足不同性能晶体管的需求,进一步提高在此基础上形成的鳍式场效应晶体管的性能。例如,当第三锗硅层107a的锗浓度大于第一锗硅层105的锗浓度时,适合在此基础上形成P型鳍式场效应晶体管,进一步提高P型鳍式场效应晶体管的性能;当第三锗硅层107a的锗浓度小于第一锗硅层105的锗浓度时,适合在此基础上形成N型鳍式场效应晶体管,进一步提高N型鳍式场效应晶体管的性能。In this embodiment, the third SiGe layer 107 a and the first SiGe layer 105 are part of the fin, and both have different germanium concentrations. By adjusting the concentration of germanium in the first silicon germanium layer 105 and the third silicon germanium layer 107a, the fins can meet the requirements of transistors with different performances, and further improve the performance of fin field effect transistors formed on this basis. For example, when the germanium concentration of the third silicon germanium layer 107a is greater than the germanium concentration of the first silicon germanium layer 105, it is suitable to form a P-type fin field effect transistor on this basis, and further improve the performance of the P-type fin field effect transistor; When the germanium concentration of the third silicon germanium layer 107 a is lower than that of the first silicon germanium layer 105 , it is suitable to form an N-type fin field effect transistor on this basis, and further improve the performance of the N-type fin field effect transistor.
本发明的实施例还提供一种采用上述方法形成的半导体结构。An embodiment of the present invention also provides a semiconductor structure formed by the above method.
请参考图10,所述半导体结构包括:半导体衬底100;位于半导体衬底100内的第一凹槽;位于第一凹槽内的隔离层103,且所述隔离层103表面高于半导体衬底100表面,相邻隔离层103之间具有位于半导体衬底100表面的第一锗硅层105;位于第一锗硅层105表面的第三锗硅层107a,所述第三锗硅层107a表面高于隔离层103表面。Please refer to FIG. 10, the semiconductor structure includes: a semiconductor substrate 100; a first groove located in the semiconductor substrate 100; an isolation layer 103 located in the first groove, and the surface of the isolation layer 103 is higher than the semiconductor substrate On the surface of the bottom 100, there is a first silicon germanium layer 105 located on the surface of the semiconductor substrate 100 between adjacent isolation layers 103; a third silicon germanium layer 107a located on the surface of the first silicon germanium layer 105, the third silicon germanium layer 107a The surface is higher than the surface of the isolation layer 103 .
本实施例中,所述隔离层103的表面与第一锗硅层105表面齐平,使得第三锗硅层107a的侧壁完全暴露。在本发明的其他实施例中,所述隔离层103的表面还可以高于或低于所述第一锗硅层105表面。所述隔离层103的材料为氧化硅。In this embodiment, the surface of the isolation layer 103 is flush with the surface of the first SiGe layer 105, so that the sidewall of the third SiGe layer 107a is completely exposed. In other embodiments of the present invention, the surface of the isolation layer 103 may be higher or lower than the surface of the first silicon germanium layer 105 . The material of the isolation layer 103 is silicon oxide.
所述第三锗硅层107a的锗浓度与第一锗硅层105的锗浓度不同。本实施例中,所述第三锗硅层107a的锗浓度为25~35%,第一锗硅层105的锗浓度为为15~45%。通过调整所述第一锗硅层105和第三锗硅层107a内的锗浓度,可以使得鳍部满足不同性能晶体管的需求,进一步提高在此基础上形成的鳍式场效应晶体管的性能。The germanium concentration of the third silicon germanium layer 107 a is different from that of the first silicon germanium layer 105 . In this embodiment, the germanium concentration of the third silicon germanium layer 107a is 25-35%, and the germanium concentration of the first silicon germanium layer 105 is 15-45%. By adjusting the concentration of germanium in the first silicon germanium layer 105 and the third silicon germanium layer 107a, the fins can meet the requirements of transistors with different performances, and further improve the performance of fin field effect transistors formed on this basis.
图11至图22为本发明的另一实施例的半导体结构的形成过程示意图。11 to 22 are schematic diagrams of the formation process of the semiconductor structure according to another embodiment of the present invention.
请参考图11,提供半导体衬底200,所述半导体衬底200包括第一区域I和第二区域II;在半导衬底200表面形成具有开口210的第一掩膜层201,暴露出半导体衬底100的第一区域I和第二区域II的部分表面。Please refer to FIG. 11 , a semiconductor substrate 200 is provided, and the semiconductor substrate 200 includes a first region I and a second region II; a first mask layer 201 having an opening 210 is formed on the surface of the semiconductor substrate 200 to expose the semiconductor Partial surfaces of the first region I and the second region II of the substrate 100 .
所述第一区域I和第二区域II用于形成不同的晶体管。The first region I and the second region II are used to form different transistors.
所述第一掩膜层201的形成方法与前一实施例相同,在此不作赘述。The method for forming the first mask layer 201 is the same as that of the previous embodiment, and will not be repeated here.
请参考图12,沿所述开口210刻蚀半导体衬底200,在半导体衬底200的第一区域I和第二区域II内形成第一凹槽202。Referring to FIG. 12 , the semiconductor substrate 200 is etched along the opening 210 to form a first groove 202 in the first region I and the second region II of the semiconductor substrate 200 .
可以采用干法刻蚀工艺刻蚀所述半导体衬底200,所述干法刻蚀工艺可以是等离子体刻蚀工艺、反应离子刻蚀工艺等。本实施例中,形成所述第一凹槽202的方法与前一实施例相同,在此不作赘述。The semiconductor substrate 200 may be etched using a dry etching process, and the dry etching process may be a plasma etching process, a reactive ion etching process, or the like. In this embodiment, the method for forming the first groove 202 is the same as that of the previous embodiment, and will not be repeated here.
请参考图13,形成位于第一凹槽202(请参考图12)和开口210(请参考图12)内的隔离层203,所述隔离层203表面与第一掩膜层201表面齐平。Referring to FIG. 13 , an isolation layer 203 is formed inside the first groove 202 (please refer to FIG. 12 ) and the opening 210 (please refer to FIG. 12 ), and the surface of the isolation layer 203 is flush with the surface of the first mask layer 201 .
所述隔离层203的形成方法包括:形成填充满所述第一凹槽202、开口210且覆盖第一掩膜层201的隔离材料层;以所述第一掩膜层201作为停止层,对所述隔离材料层进行平坦化,形成与所述第一掩膜层201表面齐平的隔离层203。The method for forming the isolation layer 203 includes: forming an isolation material layer that fills the first groove 202 and the opening 210 and covers the first mask layer 201; using the first mask layer 201 as a stop layer, The isolation material layer is planarized to form an isolation layer 203 flush with the surface of the first mask layer 201 .
所述隔离层203的材料为氧化硅,在本发明的其他实施例中,所述隔离层的材料还可以是氮氧化硅等绝缘介质材料。The material of the isolation layer 203 is silicon oxide, and in other embodiments of the present invention, the material of the isolation layer may also be an insulating dielectric material such as silicon oxynitride.
请参考图14,去除第一掩膜层201(请参考图13),在第一区域I形成第二凹槽204,在第二区域II形成第三凹槽205。Referring to FIG. 14 , the first mask layer 201 is removed (please refer to FIG. 13 ), a second groove 204 is formed in the first region I, and a third groove 205 is formed in the second region II.
本实施例中,采用湿法刻蚀工艺去除所述第一掩膜层201。本实施例中,所述第一掩膜层201的材料为氮化硅,采用磷酸溶液作为刻蚀溶液去除所述第一掩膜层201。在本发明的其他实施例中,还可以采用对第一掩膜层201具有较高刻蚀选择性的干法刻蚀工艺。In this embodiment, the first mask layer 201 is removed by using a wet etching process. In this embodiment, the material of the first mask layer 201 is silicon nitride, and a phosphoric acid solution is used as an etching solution to remove the first mask layer 201 . In other embodiments of the present invention, a dry etching process with higher etching selectivity to the first mask layer 201 may also be used.
请参考图15,形成覆盖半导体衬底200第一区域I的第二掩膜层301。Referring to FIG. 15 , a second mask layer 301 covering the first region I of the semiconductor substrate 200 is formed.
所述第二掩膜层301的形成方法包括:形成覆盖隔离层203以及半导体衬底200的第二掩膜材料层;在所述第二掩膜材料层表面形成图形化光刻胶层,以所述图形化光刻胶层为掩膜,刻蚀所述第二掩膜材料层,去除位于半导体衬底200第二区域II上的第二掩膜材料层,暴露出第二区域II的隔离层203和半导体衬底200,形成覆盖第一区域I的第二掩膜层301。The method for forming the second mask layer 301 includes: forming a second mask material layer covering the isolation layer 203 and the semiconductor substrate 200; forming a patterned photoresist layer on the surface of the second mask material layer to The patterned photoresist layer is a mask, and the second mask material layer is etched to remove the second mask material layer on the second region II of the semiconductor substrate 200, exposing the isolation of the second region II layer 203 and the semiconductor substrate 200 to form a second mask layer 301 covering the first region I.
所述第二掩膜层301的材料易于刻蚀去除。而且,由于后续在第三凹槽205内需要采用外延工艺形成锗硅层,而所述外延工艺需要采用较高的温度,所以,所述第二掩膜层301能够耐高温。具体的,所述第二掩膜层301的材料可以是氮化硅、无定形碳或碳化硅等。The material of the second mask layer 301 is easy to be removed by etching. Moreover, since the silicon germanium layer needs to be formed in the third groove 205 subsequently by adopting an epitaxial process, and the epitaxial process needs to adopt a relatively high temperature, the second mask layer 301 can withstand high temperature. Specifically, the material of the second mask layer 301 may be silicon nitride, amorphous carbon, or silicon carbide.
本实施例中,所述第二掩膜层301的材料为氮化硅,采用湿法刻蚀工艺刻蚀所述第二掩膜材料层,形成第二掩膜层301,所述湿法刻蚀工艺采用磷酸溶液作为刻蚀溶液,对第二掩膜材料层具有较高的刻蚀选择性,避免对隔离层203和半导体衬底200造成损伤。In this embodiment, the material of the second mask layer 301 is silicon nitride, and the second mask material layer is etched by a wet etching process to form the second mask layer 301. The wet etching process The etching process uses a phosphoric acid solution as the etching solution, which has a high etching selectivity for the second mask material layer and avoids damage to the isolation layer 203 and the semiconductor substrate 200 .
请参考图16,在第三凹槽205内形成第一锗硅层206,第一锗硅层206表面低于隔离层203表面。Referring to FIG. 16 , a first SiGe layer 206 is formed in the third groove 205 , and the surface of the first SiGe layer 206 is lower than the surface of the isolation layer 203 .
采用选择性外延工艺形成所述第一锗硅层206,所述第一锗硅层206在第三凹槽205底部的半导体衬底200表面向上生长,由于所述第一锗硅层206具有金刚石型晶体结构,形成的第一锗硅层206表面具有尖角。The first silicon germanium layer 206 is formed by a selective epitaxial process, and the first silicon germanium layer 206 grows upward on the surface of the semiconductor substrate 200 at the bottom of the third groove 205, because the first silicon germanium layer 206 has diamond type crystal structure, the surface of the formed first silicon germanium layer 206 has sharp corners.
所述选择性外延工艺采用的反应气体包括:锗源气体、硅源气体、HCl和H2,其中,锗源气体为GeH4,硅源气体包括SiH4或SiH2Cl2等含硅气体,锗源气体、硅源气体和HCl的气体流量为1sccm~1000sccm,H2的流量为0.1slm~50slm,所述选择性外延工艺的温度为300℃~700℃,压强为1Torr~100Torr。The reaction gases used in the selective epitaxy process include: germanium source gas, silicon source gas, HCl and H 2 , wherein the germanium source gas is GeH 4 , and the silicon source gas includes silicon-containing gases such as SiH 4 or SiH 2 Cl 2 , The gas flow rate of germanium source gas, silicon source gas and HCl is 1sccm-1000sccm, the flow rate of H2 is 0.1slm-50slm, the temperature of the selective epitaxy process is 300°C-700°C, and the pressure is 1Torr-100Torr.
由于所述半导体衬底200的第一区域I上覆盖有第二掩膜层301,所以,所述第一锗硅层206仅能形成在第二区域II的第三凹槽205底部的半导体衬底200表面。Since the first region I of the semiconductor substrate 200 is covered with the second mask layer 301, the first silicon germanium layer 206 can only be formed on the semiconductor substrate at the bottom of the third groove 205 in the second region II. Bottom 200 surface.
所述第一锗硅层206作为最终形成的鳍部的一部分,侧壁被隔离层203所覆盖,所述第一锗硅层206的高度为第三凹槽205深度的1/3~2/3,例如使得后续对隔离层203进行回刻蚀之后,所述第一锗硅层206依旧能被回刻蚀后的隔离层203覆盖。本实施例中,所述第一锗硅层206的高度为第三凹槽205深度的1/2。在本发明的其他实施例中,所述第一锗硅层206的高度可以根据最终待形成的鳍部高度进行调整。The first silicon germanium layer 206 is a part of the finally formed fin, and the sidewall is covered by the isolation layer 203. The height of the first silicon germanium layer 206 is 1/3˜2/3 of the depth of the third groove 205. 3. For example, after etching back the isolation layer 203 subsequently, the first SiGe layer 206 can still be covered by the isolation layer 203 after etching back. In this embodiment, the height of the first silicon germanium layer 206 is 1/2 of the depth of the third groove 205 . In other embodiments of the present invention, the height of the first silicon germanium layer 206 can be adjusted according to the final height of the fin to be formed.
所述第一锗硅层206内的锗浓度范围为35~45%,通过调整选择性外延过程中锗源气体和硅源气体的流量可以调整所述第一锗硅层206内的锗浓度。The germanium concentration in the first silicon germanium layer 206 ranges from 35% to 45%, and the germanium concentration in the first silicon germanium layer 206 can be adjusted by adjusting the flow rates of germanium source gas and silicon source gas during the selective epitaxy process.
请参考图17,去除第二掩膜层301(请参考图16)后,形成覆盖半导体衬底200第二区域II的第三掩膜层302。Referring to FIG. 17 , after removing the second mask layer 301 (please refer to FIG. 16 ), a third mask layer 302 covering the second region II of the semiconductor substrate 200 is formed.
所述第三掩膜层302的形成方法包括:形成覆盖隔离层203以及半导体衬底200的第三掩膜材料层;在所述第三掩膜材料层表面形成图形化光刻胶层,以所述图形化光刻胶层为掩膜,刻蚀所述第三掩膜材料层,去除位于半导体衬底200第一区域I上的第三掩膜材料层,暴露出第一区域I的隔离层203和半导体衬底200,形成覆盖第二区域II的第三掩膜层302。The method for forming the third mask layer 302 includes: forming a third mask material layer covering the isolation layer 203 and the semiconductor substrate 200; forming a patterned photoresist layer on the surface of the third mask material layer to The patterned photoresist layer is a mask, and the third mask material layer is etched to remove the third mask material layer on the first region I of the semiconductor substrate 200, exposing the isolation of the first region I layer 203 and the semiconductor substrate 200 to form a third mask layer 302 covering the second region II.
与第二掩膜层301的材料相同,所述第三掩膜层302的材料同样需要易于刻蚀去除且能够耐高温。具体的,所述第三掩膜层302的材料可以是氮化硅或无定形碳等。本实施例中,所述第三掩膜层302的材料为氮化硅,采用湿法刻蚀工艺刻蚀所述第三掩膜材料层,形成第三掩膜层302,所述湿法刻蚀工艺采用磷酸溶液作为刻蚀溶液,对第三掩膜材料层具有较高的刻蚀选择性,避免对隔离层203和半导体衬底200造成损伤。Same as the material of the second mask layer 301 , the material of the third mask layer 302 also needs to be easy to be etched and removed and capable of high temperature resistance. Specifically, the material of the third mask layer 302 may be silicon nitride or amorphous carbon. In this embodiment, the material of the third mask layer 302 is silicon nitride, and the third mask material layer is etched by a wet etching process to form the third mask layer 302. The wet etching process The etching process uses a phosphoric acid solution as the etching solution, which has a high etching selectivity for the third mask material layer and avoids damage to the isolation layer 203 and the semiconductor substrate 200 .
请参考图18,在第二凹槽204内形成第二锗硅层207,第二锗硅层207表面低于隔离层203表面。Referring to FIG. 18 , a second SiGe layer 207 is formed in the second groove 204 , and the surface of the second SiGe layer 207 is lower than the surface of the isolation layer 203 .
采用与形成第一锗硅层206相同的方法,即选择性外延工艺形成所述第二锗硅层207,形成的第二锗硅层207表面也具有尖角。The second silicon germanium layer 207 is formed by the same method as that of the first silicon germanium layer 206 , that is, a selective epitaxial process, and the surface of the second silicon germanium layer 207 also has sharp corners.
所述选择性外延工艺采用的反应气体包括:锗源气体、硅源气体、HCl和H2,其中,锗源气体为GeH4,硅源气体包括SiH4或SiH2Cl2等含硅气体,锗源气体、硅源气体和HCl的气体流量为1sccm~1000sccm,H2的流量为0.1slm~50slm,所述选择性外延工艺的温度为300℃~700℃,压强为1Torr~100Torr。The reaction gases used in the selective epitaxy process include: germanium source gas, silicon source gas, HCl and H 2 , wherein the germanium source gas is GeH 4 , and the silicon source gas includes silicon-containing gases such as SiH 4 or SiH 2 Cl 2 , The gas flow rate of germanium source gas, silicon source gas and HCl is 1sccm-1000sccm, the flow rate of H2 is 0.1slm-50slm, the temperature of the selective epitaxy process is 300°C-700°C, and the pressure is 1Torr-100Torr.
由于所述半导体衬底100的第二区域II上覆盖有第三掩膜层302,所以,所述第二锗硅层207仅能形成在第一区域I的第二凹槽204底部的半导体衬底200表面。Since the second region II of the semiconductor substrate 100 is covered with the third mask layer 302, the second silicon germanium layer 207 can only be formed on the semiconductor substrate at the bottom of the second groove 204 in the first region I. Bottom 200 surface.
通过调整选择性外延过程中锗源气体和硅源气体的流量可以调整所述第二锗硅层207内的锗浓度,使得所述第二锗硅层207的锗浓度与第一锗硅层206的锗浓度不同。本实施例中,所述第二锗硅层207的锗浓度小于第一锗硅层206的锗浓度。所述第二锗硅层207的锗浓度为15~25%。在本发明的其他实施例中,所述第二锗硅层207的锗浓度还可以大于所述第一锗硅层206的锗浓度。The concentration of germanium in the second silicon germanium layer 207 can be adjusted by adjusting the flow rates of germanium source gas and silicon source gas in the selective epitaxy process, so that the germanium concentration of the second silicon germanium layer 207 is the same as that of the first silicon germanium layer 206 The concentration of germanium varies. In this embodiment, the germanium concentration of the second silicon germanium layer 207 is lower than the germanium concentration of the first silicon germanium layer 206 . The germanium concentration of the second silicon germanium layer 207 is 15-25%. In other embodiments of the present invention, the germanium concentration of the second silicon germanium layer 207 may also be greater than the germanium concentration of the first silicon germanium layer 206 .
所述第二锗硅层207的高度为第二凹槽204深度的1/3~1/2,本实施例中,所述第二锗硅层207的高度与第一锗硅层206的高度相同,为第二凹槽204深度的1/2。在本发明的其他实施例中,所述第二锗硅层207的高度可以根据最终待形成的鳍部高度进行调整,可以与第一锗硅层206的高度不同。The height of the second silicon germanium layer 207 is 1/3 to 1/2 of the depth of the second groove 204. In this embodiment, the height of the second silicon germanium layer 207 is the same as the height of the first silicon germanium layer 206. Same, it is 1/2 of the depth of the second groove 204 . In other embodiments of the present invention, the height of the second silicon germanium layer 207 can be adjusted according to the final height of the fin to be formed, and can be different from the height of the first silicon germanium layer 206 .
请参考图19,去除第三掩膜层302,在所述第一锗硅层206、第二锗硅层207表面形成无定形锗硅层208,所述无定形锗硅层208填充满所述第二凹槽204、第三凹槽205,且覆盖所述隔离层203。Please refer to FIG. 19, the third mask layer 302 is removed, and an amorphous silicon germanium layer 208 is formed on the surface of the first silicon germanium layer 206 and the second silicon germanium layer 207, and the amorphous silicon germanium layer 208 is filled with the The second groove 204 and the third groove 205 cover the isolation layer 203 .
采用化学气相沉积工艺形成所述无定形锗硅层208,具体不再赘述。The amorphous silicon germanium layer 208 is formed by chemical vapor deposition process, and details are not repeated here.
所述无定形锗硅层208中,锗浓度为25~35%。In the amorphous silicon germanium layer 208, the concentration of germanium is 25-35%.
请参考图20,采用固相外延生长工艺,使第一锗硅层206、第二锗硅层207表面的部分无定形锗硅层208转变为第三锗硅层209,所述第三锗硅层209表面高于隔离层203表面。Please refer to FIG. 20 , the solid phase epitaxial growth process is used to transform part of the amorphous silicon germanium layer 208 on the surface of the first silicon germanium layer 206 and the second silicon germanium layer 207 into a third silicon germanium layer 209, and the third silicon germanium layer 209 The surface of layer 209 is higher than the surface of isolation layer 203 .
所述第三锗硅层209内的锗浓度由无定形锗硅层208的锗浓度决定,所述第三锗硅层209内的锗浓度与第一锗硅层206、第二锗硅层207内的锗浓度不同。本实施例中,所述第一锗硅层206内的锗浓度高于第三锗硅层209内的锗浓度,第二锗硅层207内的锗浓度低于第三锗硅层209内的锗浓度。具体的所述第三锗硅层209内的锗浓度范围为25~35%。The concentration of germanium in the third silicon germanium layer 209 is determined by the concentration of germanium in the amorphous silicon germanium layer 208, and the concentration of germanium in the third silicon germanium layer 209 is the same as that of the first silicon germanium layer 206 and the second silicon germanium layer 207. Concentrations of germanium vary. In this embodiment, the germanium concentration in the first silicon germanium layer 206 is higher than the germanium concentration in the third silicon germanium layer 209, and the germanium concentration in the second silicon germanium layer 207 is lower than that in the third silicon germanium layer 209. germanium concentration. Specifically, the germanium concentration in the third silicon germanium layer 209 ranges from 25% to 35%.
所述固相外延生长工艺的生长温度为600℃~800℃,且所述第一锗硅层206与第三锗硅层209具有平整的界面,所述第二锗硅层207与第三锗硅层209也具有平整界面,缺陷较少。The growth temperature of the solid phase epitaxial growth process is 600° C. to 800° C., and the first silicon germanium layer 206 and the third silicon germanium layer 209 have a flat interface, and the second silicon germanium layer 207 and the third silicon germanium layer 207 The silicon layer 209 also has a flat interface with fewer defects.
请参考图21,以隔离层203作为停止层,对无定形锗硅层208和第三锗硅层209进行平坦化。Referring to FIG. 21 , the amorphous silicon germanium layer 208 and the third silicon germanium layer 209 are planarized by using the isolation layer 203 as a stop layer.
采用化学研磨工艺,对第一区域I和第二区域II上的无定形锗硅层208和第三锗硅层209进行平坦化,去除剩余的无定形锗硅层208以及高于隔离层203表面的部分第三锗硅层209,使剩余的第三锗硅层209a表面平坦,且与隔离层203表面齐平。The amorphous germanium silicon layer 208 and the third germanium silicon layer 209 on the first region I and the second region II are planarized by using a chemical polishing process, and the remaining amorphous germanium silicon layer 208 and the surface higher than the isolation layer 203 are removed part of the third silicon germanium layer 209 , so that the surface of the remaining third silicon germanium layer 209 a is flat and flush with the surface of the isolation layer 203 .
请参考图22,回刻蚀所述隔离层203,使隔离层203表面低于第三锗硅层209a表面。Referring to FIG. 22, the isolation layer 203 is etched back so that the surface of the isolation layer 203 is lower than the surface of the third SiGe layer 209a.
可以采用干法或湿法刻蚀工艺对所述隔离层203进行回刻蚀,使所述隔离层203的高度下降,暴露出第三锗硅层209a的侧壁。The isolation layer 203 may be etched back by using a dry or wet etching process to reduce the height of the isolation layer 203 and expose the sidewall of the third silicon germanium layer 209a.
本实施例中,回刻蚀后的隔离层203的表面与第一锗硅层206、第二锗硅层207表面齐平,使得第三锗硅层209a的侧壁完全暴露。在本发明的其他实施例中,所述隔离层203的表面还可以高于或低于所述第一锗硅层206、第二锗硅层207表面。In this embodiment, the surface of the isolation layer 203 after etching back is flush with the surfaces of the first SiGe layer 206 and the second SiGe layer 207 , so that the sidewall of the third SiGe layer 209 a is completely exposed. In other embodiments of the present invention, the surface of the isolation layer 203 may be higher or lower than the surface of the first silicon germanium layer 206 and the second silicon germanium layer 207 .
后续可以形成横跨所述第三锗硅层209a的栅极结构,然后在所述栅极结构两侧的第三锗硅层209内形成源漏极,从而分别在第一区域I和第二区域II上形成鳍式场效应晶体管。Subsequently, a gate structure can be formed across the third silicon germanium layer 209a, and then source and drain electrodes can be formed in the third silicon germanium layer 209 on both sides of the gate structure, so that the first region I and the second FinFETs are formed on the region II.
本实施例中,所述第三锗硅层209a和第一锗硅层206作为第一区域I上的鳍部的一部分,两者具有不同的锗浓度;第三锗硅层209a和第二锗硅层207作为第二区域II上的鳍部的一部分,两者也具有不同的锗浓度。并且,所述第三锗硅层209a的锗浓度小于第一锗硅层206的锗浓度;第三锗硅层209a的锗浓度大于第二锗硅层207的锗浓度;从而使得所述第一区域I和第二区域II分别适合形成不同性能或类型的鳍式场效应晶体管。例如,在第一区域I上形成P型鳍式场效应晶体管,在第二区域II上形成N型鳍式场效应晶体管,有效提高不同类型的鳍式场效应晶体管的性能。In this embodiment, the third silicon germanium layer 209a and the first silicon germanium layer 206 are part of the fin portion on the first region I, and both have different germanium concentrations; the third silicon germanium layer 209a and the second silicon germanium layer 209a The silicon layer 207 acts as a part of the fin on the second region II, both of which also have different germanium concentrations. And, the germanium concentration of the third silicon germanium layer 209a is less than the germanium concentration of the first silicon germanium layer 206; the germanium concentration of the third silicon germanium layer 209a is greater than the germanium concentration of the second silicon germanium layer 207; thus making the first The region I and the second region II are respectively suitable for forming fin field effect transistors of different performances or types. For example, a P-type FinFET is formed on the first region I, and an N-type FinFET is formed on the second region II, so as to effectively improve the performance of different types of FinFETs.
本发明的实施例还提供一种采用上述方法形成的半导体结构。An embodiment of the present invention also provides a semiconductor structure formed by the above method.
请参考图22,所述半导体结构包括:半导体衬底200,所述半导体衬底200包括第一区域I和第二区域II;位于半导体衬底200的第一区域I和第二区域II内的第一凹槽;位于第一凹槽内的隔离层203,所述隔离层203表面高于半导体衬底200表面;位于相邻隔离层203之间的半导体衬底200第一区域I表面的第二锗硅层207;位于相邻隔离层203之间的半导体衬底200第二区域II表面的第一锗硅层206;位于所述第一锗硅层206和第二锗硅层207表面的第三锗硅层209a,所述第三锗硅层209a表面高于隔离层203表面。Please refer to FIG. 22, the semiconductor structure includes: a semiconductor substrate 200, the semiconductor substrate 200 includes a first region I and a second region II; The first groove; the isolation layer 203 located in the first groove, the surface of the isolation layer 203 is higher than the surface of the semiconductor substrate 200; the first region I surface of the semiconductor substrate 200 between adjacent isolation layers 203 Digermanium silicon layer 207; the first germanium silicon layer 206 on the surface of the second region II of the semiconductor substrate 200 between adjacent isolation layers 203; the first germanium silicon layer 206 and the second germanium silicon layer 207 on the surface The third silicon germanium layer 209 a, the surface of the third silicon germanium layer 209 a is higher than the surface of the isolation layer 203 .
所述隔离层203的表面与第一锗硅层206、第二锗硅层207表面齐平,使得第三锗硅层209a的侧壁完全暴露。在本发明的其他实施例中,所述隔离层203的表面还可以高于或低于所述第一锗硅层206、第二锗硅层207表面。所述隔离层203的材料为氧化硅。The surface of the isolation layer 203 is flush with the surfaces of the first silicon germanium layer 206 and the second silicon germanium layer 207 , so that the sidewall of the third silicon germanium layer 209 a is completely exposed. In other embodiments of the present invention, the surface of the isolation layer 203 may be higher or lower than the surface of the first silicon germanium layer 206 and the second silicon germanium layer 207 . The material of the isolation layer 203 is silicon oxide.
所述第三锗硅层209a和第一锗硅层206作为第一区域I上的鳍部的一部分,两者具有不同的锗浓度;第三锗硅层209a和第二锗硅层207作为第二区域II上的鳍部的一部分,两者也具有不同的锗浓度。并且,所述第三锗硅层209a的锗浓度小于第一锗硅层206的锗浓度;第三锗硅层209a的锗浓度大于第二锗硅层207的锗浓度;从而使得所述第一区域I和第二区域II分别适合形成不同性能或类型的鳍式场效应晶体管。例如,在第一区域I上适合形成P型鳍式场效应晶体管,在第二区域II上适合形成N型鳍式场效应晶体管,可以有效提高不同类型的鳍式场效应晶体管的性能。The third silicon germanium layer 209a and the first silicon germanium layer 206 are part of the fin portion on the first region I, both of which have different concentrations of germanium; the third silicon germanium layer 209a and the second silicon germanium layer 207 are used as the first Parts of the fins on the second region II also have different germanium concentrations. And, the germanium concentration of the third silicon germanium layer 209a is less than the germanium concentration of the first silicon germanium layer 206; the germanium concentration of the third silicon germanium layer 209a is greater than the germanium concentration of the second silicon germanium layer 207; thus making the first The region I and the second region II are respectively suitable for forming fin field effect transistors of different performances or types. For example, the first region I is suitable for forming P-type FinFETs, and the second region II is suitable for forming N-type FinFETs, which can effectively improve the performance of different types of FinFETs.
虽然本发明披露如上,但本发明并非限定于此。任何本领域技术人员,在不脱离本发明的精神和范围内,均可作各种更动与修改,因此本发明的保护范围应当以权利要求所限定的范围为准。Although the present invention is disclosed above, the present invention is not limited thereto. Any person skilled in the art can make various changes and modifications without departing from the spirit and scope of the present invention, so the protection scope of the present invention should be based on the scope defined in the claims.
Claims (20)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510906938.4A CN106856191B (en) | 2015-12-09 | 2015-12-09 | Semiconductor structure and forming method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510906938.4A CN106856191B (en) | 2015-12-09 | 2015-12-09 | Semiconductor structure and forming method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106856191A true CN106856191A (en) | 2017-06-16 |
CN106856191B CN106856191B (en) | 2019-11-01 |
Family
ID=59132608
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510906938.4A Active CN106856191B (en) | 2015-12-09 | 2015-12-09 | Semiconductor structure and forming method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106856191B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109786330A (en) * | 2017-11-15 | 2019-05-21 | 台湾积体电路制造股份有限公司 | Integrated circuit device fin, integrated circuit and forming method thereof |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130001591A1 (en) * | 2011-06-30 | 2013-01-03 | Taiwan Semiconductor Manufacturing Company, Ltd. | Finfet design and method of fabricating same |
EP2717316A1 (en) * | 2012-10-05 | 2014-04-09 | Imec | Method for producing strained germanium fin structures |
CN103811325A (en) * | 2012-11-13 | 2014-05-21 | 中芯国际集成电路制造(上海)有限公司 | Fin type field effect transistor forming method |
CN104218083A (en) * | 2013-05-30 | 2014-12-17 | 台湾积体电路制造股份有限公司 | Tuning Strain in Semiconductor Devices |
-
2015
- 2015-12-09 CN CN201510906938.4A patent/CN106856191B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20130001591A1 (en) * | 2011-06-30 | 2013-01-03 | Taiwan Semiconductor Manufacturing Company, Ltd. | Finfet design and method of fabricating same |
EP2717316A1 (en) * | 2012-10-05 | 2014-04-09 | Imec | Method for producing strained germanium fin structures |
CN103811325A (en) * | 2012-11-13 | 2014-05-21 | 中芯国际集成电路制造(上海)有限公司 | Fin type field effect transistor forming method |
CN104218083A (en) * | 2013-05-30 | 2014-12-17 | 台湾积体电路制造股份有限公司 | Tuning Strain in Semiconductor Devices |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109786330A (en) * | 2017-11-15 | 2019-05-21 | 台湾积体电路制造股份有限公司 | Integrated circuit device fin, integrated circuit and forming method thereof |
CN109786330B (en) * | 2017-11-15 | 2023-05-05 | 台湾积体电路制造股份有限公司 | Integrated circuit device fin, integrated circuit and method of forming the same |
Also Published As
Publication number | Publication date |
---|---|
CN106856191B (en) | 2019-11-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104576389B (en) | Fin field effect pipe and preparation method thereof | |
CN105448917B (en) | Semiconductor structure and forming method thereof | |
CN104900521B (en) | Fin formula field effect transistor and forming method thereof | |
CN104795332B (en) | The forming method of fin formula field effect transistor | |
CN105470132A (en) | Fin field-effect transistor formation method | |
CN103871894A (en) | Semiconductor device and forming method thereof | |
CN105448991A (en) | Transistor and method of forming same | |
CN107180784A (en) | Semiconductor structure and forming method thereof | |
CN104064468B (en) | Semiconductor devices and forming method thereof | |
CN104425275B (en) | The forming method of semiconductor structure | |
CN103258742B (en) | The formation method of transistor | |
CN106952819B (en) | Method for forming fin field effect transistor | |
CN106856191B (en) | Semiconductor structure and forming method thereof | |
CN104576388B (en) | Fin field effect pipe and preparation method thereof | |
CN103811338B (en) | A kind of semiconductor device and preparation method thereof | |
CN111834300A (en) | Semiconductor device and method of forming the same | |
CN112864017B (en) | Semiconductor device and method for forming the same | |
CN111128676B (en) | A kind of nano wire and its manufacturing method | |
CN104064465B (en) | The forming method of semiconductor devices | |
CN107045983B (en) | Transistor and method of forming the same | |
CN108074868B (en) | Semiconductor structure and method of forming the same | |
CN103531471B (en) | A kind of MOSFET and preparation method thereof | |
CN111627815B (en) | Methods for forming non-planar field effect transistors | |
CN111816563B (en) | Semiconductor device and method for forming the same | |
CN112151596B (en) | Semiconductor structure and forming method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |