CN106835183B - 一种WSe2基复合纳米片光电极的制备方法 - Google Patents

一种WSe2基复合纳米片光电极的制备方法 Download PDF

Info

Publication number
CN106835183B
CN106835183B CN201710060138.4A CN201710060138A CN106835183B CN 106835183 B CN106835183 B CN 106835183B CN 201710060138 A CN201710060138 A CN 201710060138A CN 106835183 B CN106835183 B CN 106835183B
Authority
CN
China
Prior art keywords
wse
optoelectronic pole
cds
pole
nanometer sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201710060138.4A
Other languages
English (en)
Other versions
CN106835183A (zh
Inventor
马德琨
姜子龙
马春艳
黄少铭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wenzhou University
Original Assignee
Wenzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wenzhou University filed Critical Wenzhou University
Priority to CN201710060138.4A priority Critical patent/CN106835183B/zh
Publication of CN106835183A publication Critical patent/CN106835183A/zh
Application granted granted Critical
Publication of CN106835183B publication Critical patent/CN106835183B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/075Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of a single catalytic element or catalytic compound
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Hybrid Cells (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种WSe2基复合纳米片光电极的制备方法,包括:合成WSe2纳米片光电极、构筑CdS‑WSe2异质结光电极和Pt‑In2S3‑CdS‑WSe2复合纳米片光电极。本发明有益效果在于:所需原料来源丰富、合成方法简单、重复性好,材料稳定性好;本发明制备的材料可用于光电催化分解水产氢,具有很好的实用价值和应用前景。

Description

一种WSe2基复合纳米片光电极的制备方法
技术领域
本发明涉及无机纳米材料技术领域,具体涉及一种WSe2基复合纳米片光电极的制备方法。
背景技术
随着人们对能源需求的不断增加以及环境污染问题的日益严重,探索新型能源取代化石燃料已经成为全人类的重大课题,而氢气作为最有前景的清洁能源,如何高效并且持续的生产已经成为科研界研究的热点。太阳能是最理想的可再生资源,利用太阳光驱动反应的光电化学技术,已成为清洁能源生产的重要手段。因此,制备出成本低、稳定性好的光电催化剂迫在眉睫。
1972年,Fujishima首次报道由TiO2半导体组成的光电化学池可将水分解成氢气和氧气,拉开了光电化学分解水研究的序幕,但TiO2只能吸收5%的太阳光,因此,开发高效的可见光响应的光催化剂变得至关重要。二硒化钨(1.2eV)作为一种半导体材料,由于其高光吸收系数、层状结构的各向异性和能量转换效率高达17%,在20世纪 80年代得到了广泛研究。而p型WSe2作为光电极产氢的理想材料具有如下优势:1、带隙窄,易于光电化学产氢2、高的载流子迁移率 3、光电转换效率仅次于硅,但光稳定性高于硅。
目前,文献报道的p型WSe2作为光电极产氢的文献并不是很多,而且大多提高WSe2光电催化活性的方法主要是负载是铂、钌一类贵金属及其相应复合物,由于其价格昂贵且地球含量低,极大地限制该类材料在光电催化分解水方面的实际应用。利用非贵金属组成的半导体与WSe2复合构筑p-n异质结是提高WSe2光电催化分解水的主要手段之一,在此基础上为了进一步提高材料的光电活性,可通过负载贵金属。
发明内容
针对现有技术的不足,本发明旨在提供一种WSe2基复合纳米片光电极的制备方法,研发了由高丰度且廉价元素W、Se组成的WSe2纳米片光电极,然后通过水浴沉积的方法构筑了CdS-WSe2异质结,为了避免CdS光腐蚀、便于Pt沉积,在异质结的外面通过水浴沉积的方法沉积一层In2S3,最后通过光还原的方法得到Pt-In2S3-CdS-WSe2复合纳米片光电极。该材料在近中性条件下具有较好的光电催化活性,可应用于光电催化分解水制氢。
为了实现上述目的,本发明采用如下技术方案:
一种WSe2基复合纳米片光电极的制备方法,包括如下步骤:
S1合成WO3纳米片光电极;
S2合成WSe2纳米片光电极:
2.1)称取四氯化硒,平铺于瓷舟内,瓷舟上方放置WO3纳米片光电极,然后置于石英管内,石英管的两端用由锡纸包裹的石英塞子塞住,然后通氩气,之后关闭气体,煅烧;
2.2)待冷却至室温,从石英管中取出步骤2.1)中最终得到的产物,用蒸馏水和无水乙醇交替清洗,然后置于真空干燥箱中烘干,即可制得WSe2纳米片光电极;
S3合成CdS-WSe2异质结光电极:
3.1)将步骤S2制得的WSe2纳米片光电极置于浓氨水中,加入 CdSO4·8/3H2O,然后置于水浴锅中,在水浴条件下进行吸附,吸附完毕后,加入硫脲,水浴条件下沉积;
3.2)反应结束后,用镊子将步骤3.1)得到的产物取出,用蒸馏水冲洗,然后置于真空干燥箱中干燥,即可获得CdS-WSe2异质结光电极;
S4合成In2S3-CdS-WSe2光电极
4.1)将CdS-WSe2异质结光电极置于19mL水中,依次加入冰醋酸和In2(SO4)3,然后置于水浴锅中,在水浴条件下进行吸附,吸附完毕之后,加入硫代乙酰胺,水浴条件下沉积;
4.2)反应结束后,用镊子将步骤4.1)最终得到的产物取出,用蒸馏水冲洗然后置于真空干燥箱中烘干,即可获得In2S3-CdS-WSe2光电极;
S5合成Pt-In2S3-CdS-WSe2复合纳米片光电极
5.1)将Na2SO4溶于水,然后加入H2PtCl6·6H2O,不断搅拌下稀释,即可获得含有H2PtCl6·6H2O的硫酸钠溶液;
5.2)取步骤5.1)得到的H2PtCl6·6H2O的硫酸钠溶液置于光电化学池中,采用三电极系统,以Pt为对电极,饱和甘汞为参比电极,以In2S3-CdS-WSe2光电极为工作电极,使用时间电流曲线法,设定电压-0.1V,时间为600s,然后打开氙灯,点击运行系统;
5.3)反应结束后,用镊子将步骤5.2)最终得到的产物取出,用蒸馏水冲洗,然后置于干燥箱中烘干,即可得到Pt-In2S3-CdS-WSe2复合纳米片光电极。
需要说明的是,步骤S1具体为:
1.1)将W网依次置于氢氧化钠溶液、丙酮溶液中超声;
1.2)将浓硝酸和浓盐酸加入到反应釜中;然后往反应釜放入经过步骤1.1)处理的W网,80℃下溶剂热反应3h;
1.3)将步骤1.2)制得的产物依次用蒸馏水、无水乙醇冲洗,并用超声清洗仪超声1min,制得WO3·xH2O,烘干,500℃煅烧1h即可得WO3纳米片光电极。
上述制备方法制备得到的Pt-In2S3-CdS-WSe2复合纳米片光电极在光电催化分解水中的应用,具体在光电催化分解水中作为光电极。
本发明的有益效果在于:
1、研发了由高丰度且廉价元素W、Se组成的WSe2纳米片光电极,然后通过水浴沉积的方法构筑了CdS-WSe2异质结,为了避免CdS 光腐蚀、便于Pt沉积,在异质结的外面通过水浴沉积的方法沉积一层In2S3,最后通过光还原的方法得到Pt-In2S3-CdS-WSe2复合纳米片光电极。该材料在近中性条件下具有较好的光电催化活性,可应用于光电催化分解水制氢。
2、本发明所需原料来源丰富、路线简单、重复性好、材料稳定性高。
附图说明
图1为WSe2纳米片光电极的扫描电镜像。
图2为本发明制备的WSe2纳米片光电极的透射电镜像。
图3为本发明制备的WSe2纳米片光电极的EDX能谱
图4为本发明制备的WSe2纳米片光电极的X射线衍射花样。
图5为本发明制备的WSe2纳米片光电极的X射线光电子能谱。
图6为本发明制备的CdS-WSe2纳米片光电极的SEM图片。
图7为本发明制备的Pt-In2S3-CdS-WSe2纳米片光电极的SEM图片。
图8为本发明制备的WSe2、CdS-WSe2和Pt-In2S3-CdS-WSe2纳米片光电极的光电催化性能。
图9为本发明制备的WSe2和Pt-In2S3-CdS-WSe2纳米片光电极的交流阻抗谱。
具体实施方式
以下将结合附图对本发明作进一步的描述,需要说明的是,本实施例以本技术方案为前提,给出了详细的实施方式和具体的操作过程,但本发明的保护范围并不限于本实施例。
一种WSe2基复合纳米片光电极的制备方法,包括以下步骤:
S1合成WO3纳米片光电极:
1.1)将1.5*4cm的W网依次置于10%的氢氧化钠溶液、丙酮中超声30min;
1.2)将5mL浓硝酸,15mL浓盐酸加入到40mL反应釜中;然后放入洗干净的W网,80℃下溶剂热反应3h;
1.3)将制得的产物依次用蒸馏水、无水乙醇冲洗,并用超声清洗仪超声1min,可制得WO3·xH2O,60℃条件下烘干,500℃煅烧1h 即可得WO3纳米片光电极;
S2合成WSe2纳米片光电极:
2.1)准确称取220mg的四氯化硒,平铺于瓷舟内,瓷舟上方放置WO3纳米片光电极,然后置于内径为22mm,长度为80mm的石英管内,石英管的两端用由锡纸包裹的直径为20mm的石英塞子塞住,然后通氩气25min,氩气的流速为600mL/min,之后关闭气体, 750℃条件下煅烧1h;
2.2)待冷却至室温,从石英管中取出,用蒸馏水和无水乙醇清洗3次,然后置于60℃真空干燥箱中,即可制得WSe2纳米片光电极;
S3合成CdS-WSe2异质结光电极:
3.1)将WSe2纳米片光电极置于23mL浓氨水中,加入80mg 的CdSO4·8/3H2O,然后置于65℃水浴锅中,吸附10min,吸附完毕后,加入420mg的硫脲,65℃水浴条件下沉积7min;
3.2)反应结束后,用镊子将光电极取出,用蒸馏水冲洗3次,然后置于60℃真空干燥箱中,即可获得CdS-WSe2异质结光电极;
S4合成In2S3-CdS-WSe2光电极
4.1)将CdS-WSe2异质结光电极置于19mL水中,依次加入120 μL冰醋酸,258mg In2(SO4)3,然后置于80℃水浴锅中,吸附10min,吸附完毕之后,加入300mg硫代乙酰胺,80℃水浴条件下沉积13min;
4.2)反应结束后,用镊子将光电极取出,用蒸馏水冲洗3次,然后置于60℃真空干燥箱中,即可获得In2S3-CdS-WSe2光电极;
S5合成Pt-In2S3-CdS-WSe2复合纳米片光电极
5.1)将1.42g Na2SO4溶于50mL水,然后加入52mg H2PtCl6·6H2O,不断搅拌下,稀释到100mL,即可获得含有0.1mM H2PtCl6·6H2O的硫酸钠溶液;
5.2)取100mL上述电解质溶液置于光电化学池中,采用三电极系统,以Pt为对电极,饱和甘汞为参比电极,以In2S3-CdS-WSe2光电极为工作电极,确保插入电解质溶液的电极面积为3cm2,使用时间电流曲线法,设定电压-0.1V,时间为600s,然后打开300W氙灯,用直尺测量工作电极距离氙灯灯头的距离为10cm,点击运行;
5.3)反应结束后,用镊子将光电极取出,用蒸馏水冲洗3次,然后置于60℃的干燥箱中烘干,即可得到Pt-In2S3-CdS-WSe2复合纳米片光电极。
上述制备方法制备得到的Pt-In2S3-CdS-WSe2复合纳米片光电极在光电催化分解水中的应用,具体在光电催化分解水中作为光阴极。
步骤S2所获得WSe2纳米片光电极扫描电镜图像如图1所示,二维的纳米片均匀生长在一维的W线上,从而构筑了三维结构的光电极,其中纳米片的厚度为77nm。
步骤S2所获得WSe2纳米片光电极的透射电镜图像如图2所示。
步骤S2所获得WSe2纳米片光电极EDX图像如图3所示,其中 W和Se的原子的比值为1:1.83,基本接近理论比值1:2。
步骤S2所获得WSe2纳米片光电极的X射线衍射花样如图4所示,结果表明其是纯相的WSe2
步骤S2所获得WSe2纳米片光电极的X射线光电子能谱如图5 所示,在W的X射线光电子光谱中,在37.5eV附近的小峰归属于 WO3的W4f5/2,主要原因是样品制备和转移期间发生了氧化。
步骤S3所获得的CdS-WSe2异质结光电极的SEM图,如图6所示,颗粒状的CdS生长在WSe2纳米片上,其中CdS纳米颗粒的尺寸为57nm。
步骤S4所获得的Pt-In2S3-CdS-WSe2复合纳米片光电极的SEM 图,如图7所示,纳米片的厚度变大,材料表面不能观察到Pt纳米颗粒的存在。
步骤S2、S3和S4所获得的WSe2、CdS-WSe2和Pt-In2S3-CdS-WSe2纳米片光电极的光电催化性能如图8所示,修饰了CdS之后,形成了p-n异质结,同时增加了WSe2的亲水性,光电催化性能有所增加,而继续修饰了In2S3和Pt之后,减少了CdS的光腐蚀,光电催化性能进一步提升。
进一步的,步骤S2和S4所获得的WSe2和Pt-In2S3-CdS-WSe2纳米片光电极的交流阻抗谱,如图9所示,电阻的大小顺序为 WSe2>Pt-In2S3-CdS-WSe2
下面通过实验说明WSe2、CdS-WSe2和Pt-In2S3-CdS-WSe2复合纳米片光电极的光电性能:
取100mL 0.5M Na2SO4溶液置于光电化学池中,采用三电极系统,以Pt为对电极,饱和甘汞为参比电极,分别以WSe2、CdS-WSe2和Pt-In2S3-CdS-WSe2复合纳米片光电极为工作电极,确保插入电解质溶液的电极面积为3cm2,使用线性循环伏安法,设定电压范围为 -0.6V-0V,然后打开300W氙灯,用直尺测量工作电极距离氙灯灯头的距离为10cm,点击运行。通过上述实验方法,其光电催化性能如图8所示,结果表明,Pt-In2S3-CdS-WSe2复合纳米片光电极与裸的 WSe2和CdS-WSe2异质结光电极相比具有更好的光电催化性能。
对于本领域的技术人员来说,可以根据以上的技术方案和构思,作出各种相应的改变和变形,而所有的这些改变和变形都应该包括在本发明权利要求的保护范围之内。

Claims (3)

1.一种WSe2基复合纳米片光电极的制备方法,其特征在于,包括如下步骤:
S1合成WO3纳米片光电极;
S2合成WSe2纳米片光电极:
2.1)称取四氯化硒,平铺于瓷舟内,瓷舟上方放置WO3纳米片光电极,然后置于石英管内,石英管的两端用由锡纸包裹的石英塞子塞住,然后通氩气,之后关闭气体,煅烧;
2.2)待冷却至室温,从石英管中取出步骤2.1)中最终得到的产物,用蒸馏水和无水乙醇交替清洗,然后置于真空干燥箱中烘干,即可制得WSe2纳米片光电极;
S3合成CdS-WSe2异质结光电极:
3.1)将步骤S2制得的WSe2纳米片光电极置于浓氨水中,加入CdSO4·8/3H2O,然后置于水浴锅中,在水浴条件下进行吸附,吸附完毕后,加入硫脲,水浴条件下沉积;
3.2)反应结束后,用镊子将步骤3.1)最终得到的产物取出,用蒸馏水冲洗,然后置于真空干燥箱中干燥,即可获得CdS-WSe2异质结光电极;
S4合成In2S3-CdS-WSe2光电极
4.1)将CdS-WSe2异质结光电极置于19mL水中,依次加入冰醋酸和In2(SO4)3,然后置于水浴锅中,在水浴条件下进行吸附,吸附完毕之后,加入硫代乙酰胺,水浴条件下沉积;
4.2)反应结束后,用镊子将步骤4.1)最终得到的产物取出,用蒸馏水冲洗然后置于真空干燥箱中烘干,即可获得In2S3-CdS-WSe2光电极;
S5合成Pt-In2S3-CdS-WSe2复合纳米片光电极
5.1)将Na2SO4溶于水,然后加入H2PtCl6·6H2O,不断搅拌下稀释,即可获得含有H2PtCl6·6H2O的硫酸钠溶液;
5.2)取步骤5.1)得到的H2PtCl6·6H2O的硫酸钠溶液置于光电化学池中,采用三电极系统,以Pt为对电极,饱和甘汞为参比电极,以In2S3-CdS-WSe2光电极为工作电极,使用时间电流曲线法,设定电压-0.1V,时间为600s,然后打开氙灯,点击运行系统;
5.3)反应结束后,用镊子将步骤5.2)最终得到的产物取出,用蒸馏水冲洗,然后置于干燥箱中烘干,即可得到Pt-In2S3-CdS-WSe2复合纳米片光电极。
2.根据权利要求1所述的一种WSe2基复合纳米片光电极的制备方法,其特征在于,步骤S1具体为:
1.1)将W网依次置于氢氧化钠溶液、丙酮溶液中超声;
1.2)将浓硝酸和浓盐酸加入到反应釜中;然后往反应釜放入经过步骤1.1)处理的W网,80℃下溶剂热反应3h;
1.3)将步骤1.2)制得的产物依次用蒸馏水、无水乙醇冲洗,并用超声清洗仪超声1min,制得WO3·xH2O,烘干,500℃煅烧1h即可得WO3纳米片光电极。
3.一种如权利要求1-2任一所述的制备方法制备得到的Pt-In2S3-CdS-WSe2复合纳米片光电极在光电催化分解水中的应用。
CN201710060138.4A 2017-01-24 2017-01-24 一种WSe2基复合纳米片光电极的制备方法 Expired - Fee Related CN106835183B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710060138.4A CN106835183B (zh) 2017-01-24 2017-01-24 一种WSe2基复合纳米片光电极的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710060138.4A CN106835183B (zh) 2017-01-24 2017-01-24 一种WSe2基复合纳米片光电极的制备方法

Publications (2)

Publication Number Publication Date
CN106835183A CN106835183A (zh) 2017-06-13
CN106835183B true CN106835183B (zh) 2018-11-02

Family

ID=59122995

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710060138.4A Expired - Fee Related CN106835183B (zh) 2017-01-24 2017-01-24 一种WSe2基复合纳米片光电极的制备方法

Country Status (1)

Country Link
CN (1) CN106835183B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109234761B (zh) * 2018-10-09 2021-02-19 天津城建大学 一种用于光电催化产氢的Co3O4/Pt复合薄膜的制备方法
CN109839416B (zh) * 2019-03-12 2021-02-19 青岛科技大学 纳米二硒化钨修饰金电极光致电化学传感器检测多巴胺的方法
CN112588303B (zh) * 2020-11-23 2022-09-13 安徽大学 一种硒氧化铋纳米片的制备方法及基于其的异质结型光电极
CN113871515A (zh) * 2021-09-28 2021-12-31 湖南大学 一种波导集成的发光二极管

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104711528A (zh) * 2013-12-13 2015-06-17 中国科学院大连化学物理研究所 一种片状三氧化钨光电极及其制备方法
CN105384358A (zh) * 2015-10-29 2016-03-09 上海交通大学 一种wo3纳米片阵列薄膜制备方法及其应用研究

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7527902B2 (en) * 2005-07-28 2009-05-05 Xerox Corporation Photoreceptor layer having solid and liquid lubricants
JP5580837B2 (ja) * 2009-01-29 2014-08-27 プリンストン ユニバーシティー 二酸化炭素の有機生成物への変換

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104711528A (zh) * 2013-12-13 2015-06-17 中国科学院大连化学物理研究所 一种片状三氧化钨光电极及其制备方法
CN105384358A (zh) * 2015-10-29 2016-03-09 上海交通大学 一种wo3纳米片阵列薄膜制备方法及其应用研究

Also Published As

Publication number Publication date
CN106835183A (zh) 2017-06-13

Similar Documents

Publication Publication Date Title
Zeng et al. A low-cost photoelectrochemical tandem cell for highly-stable and efficient solar water splitting
Zheng et al. Enhanced plasmon-driven photoelectrocatalytic methanol oxidation on Au decorated α-Fe 2 O 3 nanotube arrays
John et al. CuO/Cu2O nanoflake/nanowire heterostructure photocathode with enhanced surface area for photoelectrochemical solar energy conversion
CN106435635B (zh) 一种高效光电催化分解水产氧电极的制备方法及应用
Tang et al. CdS/Cu2S co-sensitized TiO2 branched nanorod arrays of enhanced photoelectrochemical properties by forming nanoscale heterostructure
Ye et al. 3D cross-linked BiOI decorated ZnO/CdS nanorod arrays: A cost-effective hydrogen evolution photoanode with high photoelectrocatalytic activity
Li et al. ZnO/CuInS2 core/shell heterojunction nanoarray for photoelectrochemical water splitting
Hsu et al. Photoresponse and stability improvement of ZnO nanorod array thin film as a single layer of photoelectrode for photoelectrochemical water splitting
CN106835183B (zh) 一种WSe2基复合纳米片光电极的制备方法
Guo et al. Fabrication of TiO2 nano-branched arrays/Cu2S composite structure and its photoelectric performance
Hu et al. Large-scale patterned ZnO nanorod arrays for efficient photoelectrochemical water splitting
Zhang et al. Enhancing hydrogen evolution by photoelectrocatalysis of water splitting over a CdS flowers-loaded TiO2 nanotube array film on the Ti foil substrate
CN104362412A (zh) 一种ZnO/g-C3N4纳米复合材料及其制备方法
CN102125863A (zh) 一种石墨相氮化碳/金红石单晶二氧化钛纳米线阵列的制备方法
CN106512985B (zh) 一种ZnO/WO3异质结阵列的合成方法
Hsu et al. Decoration of PbS nanoparticles on Al-doped ZnO nanorod array thin film with hydrogen treatment as a photoelectrode for solar water splitting
CN108103525A (zh) 氮掺杂碳点修饰三氧化钨复合光电极及其制备方法、和在光电催化分解水中的应用
CN111617781A (zh) 硫铟锌包裹氢化钼青铜z型复合光催化剂及其制备方法和应用
CN110252352A (zh) 一种碳量子点修饰钨酸铋/有序大孔氟掺杂氧化锡复合光催化剂及其制备方法和应用
CN109289890A (zh) 高效自支撑氮化钛/氮掺杂二氧化钛光电催化电极材料及制备方法
CN105140597A (zh) 通过半导体纳米材料复合制备光电化学电池异质结光电极的方法
Karuturi et al. CdS/TiO2 photoanodes via solution ion transfer method for highly efficient solar hydrogen generation
Qiao et al. Molybdenum disulfide/silver/p-silicon nanowire heterostructure with enhanced photoelectrocatalytic activity for hydrogen evolution
CN110965073B (zh) 一种含缺陷的wo3光电极的制备方法
Wannapop et al. Enhanced visible light absorption of TiO2 nanorod photoanode by NiTiO3 decoration for high-performance photoelectrochemical cells

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20181102

CF01 Termination of patent right due to non-payment of annual fee