CN106831364A - 一类宽带隙萘类有机半导体材料及其制备方法和应用 - Google Patents

一类宽带隙萘类有机半导体材料及其制备方法和应用 Download PDF

Info

Publication number
CN106831364A
CN106831364A CN201710098010.7A CN201710098010A CN106831364A CN 106831364 A CN106831364 A CN 106831364A CN 201710098010 A CN201710098010 A CN 201710098010A CN 106831364 A CN106831364 A CN 106831364A
Authority
CN
China
Prior art keywords
organic
band gap
naphthalenes
semiconducting materials
broad
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710098010.7A
Other languages
English (en)
Other versions
CN106831364B (zh
Inventor
孟鸿
闫丽佳
赵亮
黄维
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Tech University
Original Assignee
Nanjing Tech University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Tech University filed Critical Nanjing Tech University
Priority to CN201710098010.7A priority Critical patent/CN106831364B/zh
Publication of CN106831364A publication Critical patent/CN106831364A/zh
Application granted granted Critical
Publication of CN106831364B publication Critical patent/CN106831364B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C41/00Preparation of ethers; Preparation of compounds having groups, groups or groups
    • C07C41/01Preparation of ethers
    • C07C41/18Preparation of ethers by reactions not forming ether-oxygen bonds
    • C07C41/30Preparation of ethers by reactions not forming ether-oxygen bonds by increasing the number of carbon atoms, e.g. by oligomerisation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/32Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from compounds containing hetero-atoms other than or in addition to oxygen or halogen
    • C07C1/321Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from compounds containing hetero-atoms other than or in addition to oxygen or halogen the hetero-atom being a non-metal atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C15/00Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts
    • C07C15/20Polycyclic condensed hydrocarbons
    • C07C15/24Polycyclic condensed hydrocarbons containing two rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C319/00Preparation of thiols, sulfides, hydropolysulfides or polysulfides
    • C07C319/14Preparation of thiols, sulfides, hydropolysulfides or polysulfides of sulfides
    • C07C319/20Preparation of thiols, sulfides, hydropolysulfides or polysulfides of sulfides by reactions not involving the formation of sulfide groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C321/00Thiols, sulfides, hydropolysulfides or polysulfides
    • C07C321/24Thiols, sulfides, hydropolysulfides, or polysulfides having thio groups bound to carbon atoms of six-membered aromatic rings
    • C07C321/28Sulfides, hydropolysulfides, or polysulfides having thio groups bound to carbon atoms of six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C43/00Ethers; Compounds having groups, groups or groups
    • C07C43/02Ethers
    • C07C43/20Ethers having an ether-oxygen atom bound to a carbon atom of a six-membered aromatic ring
    • C07C43/205Ethers having an ether-oxygen atom bound to a carbon atom of a six-membered aromatic ring the aromatic ring being a non-condensed ring
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Thin Film Transistor (AREA)

Abstract

本发明涉及一类宽带隙萘类有机半导体材料及其制备方法和应用,该宽带隙有机半导体材料的结构通式为

Description

一类宽带隙萘类有机半导体材料及其制备方法和应用
技术领域
本发明涉及光电材料领域,具体涉及一类宽带隙萘类有机半导体材料及其制备方法和应用。
背景技术
随着电子科技的迅速发展,有机场效应晶体管由于其成本低,制备工艺简单,可与柔性生物基底兼容,可化学修饰等特性,可广泛应用在大面积柔性显示,智能卡,传感器和射频标签等等领域。随着现代电子设备的发展,对透明电子设备的需要也越来越广泛,透明薄膜晶体管成了科研工作者的研究热点。到目前,应用到透明晶体管中的半导体材料绝大部分是无机氧化半导体材料,如氧化锌(ZnO),锡的氧化物(SnOx),氧化铟(In2O3)或者是它们的混合物。对于光学透明半导体材料的来讲,其带隙需要大于3.3eV。在目前报道中,没有报道过带隙大于3.3eV的有机半导体材料,目前报道的用于有机透明晶体管中,其半导体材料(并噻吩衍生物和并苯噻吩衍生物)不具备真正的光学透明特性,而是超薄的浅色有机层薄膜。由于无机半导体材料的制备工艺复杂,温度高,不能与柔性基底兼容,而且无机氧化物半导体材料表现为n型的半导体材料特征。因此,开发宽带隙的透明有机半导体材料是目前现代柔性电子设备发展的需求。
目前小分子有机半导体材料在晶体管中的应用已基本达到实用化的要求,其中并苯类小分子半导体由于具有平面共轭性成为关注的热点。并苯系列中,并五苯和红荧烯都表现出了较高的空穴迁移率,但是它们在空气中都极不稳定,真空和避光技术都大大提高了成本。随着并苯环数量的减少,材料的带隙变大,并五苯、并四苯、蒽和萘的带隙分别为1.8eV、3.1eV、4.1eV和4.8eV。相比蒽和萘都表现出了较宽的带隙,较高的热稳定性和光稳定性,同时其衍生物材料在有机场效应晶体管中也有较好的表现。
发明内容
本发明的目的是提供一类宽带隙萘类有机半导体材料,该类材料具有较宽的带隙(部分材料带隙高达3.35eV),其薄膜具有光学透明性,良好的热稳定性和光稳定性,较高的寿命,并表现出了较高的空穴迁移率(大于1.3cm2/Vs);同时,该类材料的制备方法简单,成本低,产率高;该类材料可广泛的应用到透明薄膜场效应晶体管中。
为了达到上述技术目的,本发明的技术方案具体为,一类宽带隙萘类有机半导体材料,其结构通式为结构I,
其中,Ar1和Ar2独立的选自芳香基;R1和R2独立的选自烷基、芳基、硫烷基、氧烷基、硫芳基、氧芳基和硅烷基,R1和R2相同或者不相同。所述的芳香基为苯基、噻吩基、含氧杂环基、含氮杂环基和含硅杂环基,所述烷基为碳原子数为1~16的直链或者支链烷基。
一类宽带隙萘类有机半导体材料(如上述权利要求1-2中任意一项)制备方法,其特征在于,制备步骤为:将2,6-二溴萘和烷基取代芳香基硼酸,按一定比例溶于含有催化剂和碱性溶液的有机溶剂中,在无氧条件下,加入至100~120℃,进行Suzuki偶联反应,反应18h~48h后,得到宽带隙萘类有机半导体材料
a.当2,6-二溴蒽和烷基取代芳香基硼酸的摩尔比1∶2.0~2.5,得到有机半导体材料为
b.当2,6-二溴萘和烷基取代芳香基硼酸的摩尔比为1∶1时,得到的有机半导体材料为中间产物将该中间产物与另一种或相同烷基取代芳香基硼酸,按摩尔比1∶1溶于含有催化剂和碱性溶液的有机溶剂中,在无氧条件下,加热90~120℃,进行Suzuki偶联反应,反应18小时~48小时后,得到宽带隙萘类有机半导体材料
进一步地,所述的苯基为苯基、并苯基或联苯基;噻吩基为苯并噻吩基;含氧杂环基为苯并呋喃,含氮杂环基为苯并吡咯基、苯并咔唑基、苯并吡啶基、并苯咪唑基或苯并哌啶基;含硅杂环基为苯并噻咯基。
一类应用于有机场效应晶体管、有机透明场效应薄膜晶体管的宽带隙萘类有机半导体材料,包含萘类化合物部分化合物材料的带隙大于3.3eV,具有光学透明特性,在薄膜场效应晶体管的有机半导体层中,空穴迁移率大于0.9cm2/V.s。
进一步地,所述的该材料的薄膜通过真空蒸镀得到,所述的薄膜的厚度在50-80nm左右。
进一步地,该类材料薄膜的紫外吸收波长在200-400nm左右,属于不可见光区域。
进一步地,所述的薄膜场效应晶体管器件,其依次包括栅极、位于栅极上的绝缘层、位于绝缘层上的有机半导体层、位于有机半导体层上的源电极和漏电极。其中有机半导体层中包含蒽类化合物栅极的材料为掺杂硅片,绝缘层的材料为二氧化硅、聚甲基丙烯酸甲酯、苯乙烯、聚乙烯基苯酚、聚乙烯醇、聚碳酸乙烯酯、聚氯乙烯、聚对二甲苯中任何一种,源电极和漏电极的材料为金。
本发明的有益效果:首次合成了宽带隙蒽类有机半导体材料,部分材料的带隙大于3.3eV,具有光学透明特性,良好的热稳定性和光稳定性,且拥有较高的空穴迁移率(1.3cm2/V.s),可广泛的应用到透明光学器件中。该类有机半导体材料的制备方法简单,成本低,产率高,适合大规模生产。
附图说明
图1:宽带隙萘类有机半导体材料做为有机层的有机场效应晶体管的结构示意图。
图2:宽带隙萘类有机半导体材料2,6-二(4-甲氧基苯)萘(命名为BOPNA)做为有机层的有机场效应晶体管器件在黑暗环境下的输出曲线。
图3:宽带隙萘类有机半导体材料2,6-二(4-甲氧基苯)萘(命名为BOPNA)做为有机层的有机场效应晶体管器件在LED灯照射下的输出曲线。
图4:宽带隙萘类有机半导体材料材料2,6-二(4-乙基苯)萘(命名为BCPNA)做为有机层的有机场效应晶体管器件在黑暗环境下的输出曲线。
图5:宽带隙萘类有机半导体材料2,6-二(4-乙基苯)萘(命名为BCPNA)做为有机层的有机场效应晶体管器件在LED灯照射下的输出曲线。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。应当理解,此处所描述的具体实施例仅仅用于解释本发明,并不用于限定本发明。所述方法如无特别说明均为常规方法。所述原料如无特别说明均能从公开商业途径而得。
实施例1
一种宽带隙萘类有机半导体材料2,6-二(4-甲氧基苯)萘(命名为BOPNA),其结构式为:
上述有机半导体材料BOPNA的制备方法,包括如下步骤:
向反应容器中,依次加入2,6-二溴萘(5.76g,20mmol),4-甲氧基苯硼酸(9.18g,60mmol)和150ml甲苯,混合均匀。再加入饱和碳酸钠水溶液(60ml),四三苯基磷钯(0.46g,0.4mmol),向反应液中通氮气20分钟,加热使反应液升温至105℃,回流反应24小时,关闭加热,停止反应。得到的反应液依次用甲醇、稀盐酸溶液、丙酮清洗,过滤后得到白色粗产物6.11g(产率90%),粗产物经过真空管式炉提纯三次后,得到白色结晶状固体,即为BOPNA。
实施例2
一种宽带隙萘类有机半导体材料2,6-二(4-甲硫基苯)萘(命名为BSPNA),其结构式为:
上述有机半导体材料BSPNA的制备方法,包括如下步骤:
向反应容器中,依次加入2,6-二溴萘(5.76g,20mmol),4-甲硫基苯硼酸(10.08g,60mmol)和150ml甲苯,混合均匀。再加入饱和碳酸钠水溶液(60ml),四三苯基磷钯(0.46g,0.4mmol),向反应液中通氮气20分钟,加热使反应液升温至105℃,回流反应24小时,关闭加热,停止反应。得到的反应液依次用甲醇、稀盐酸溶液、丙酮清洗,过滤后得到白色粗产物6.53g(产率88%),粗产物经过真空管式炉提纯三次后,得到淡黄色结晶状粉体,即为BSPNA。
实施例3
一种宽带隙萘类有机半导体材料2,6-二(4-乙基苯)萘(命名为BCPNA),其结构式为:
上述有机半导体材料BCPNA的制备方法,包括如下步骤:
向反应容器中,依次加入2,6-二溴萘(5.76g,20mmol),4-乙基苯硼酸(9.00g,60mmol)和150ml甲苯,混合均匀。再加入饱和碳酸钠水溶液(60ml),四三苯基磷钯(0.46g,0.4mmol),向反应液中通氮气20分钟,加热使反应液升温至105℃,回流反应24小时,关闭加热,停止反应。得到的反应液依次用甲醇、稀盐酸溶液、丙酮清洗,过滤后得到白色粗产物6.18g(产率92%),粗产物经过真空管式炉提纯三次后,得到白色结粉体,即为BCPNA。
通过热重分析仪(TGA)进行检查,分析条件为氮气气氛,扫描速度为10℃/min,得到实施例1-3中三种有机半导体材料的分解温度,如表1所示,其热分解温度高达335℃(5%热失重)以上,说明此类材料具有较好的热稳定性。
表1:有机半导体材料的热稳定性能
化合物 热分解温度(5%)/℃
BOPNA 351
BSPNA 379
BCPNA 335
实施例4
实施例1-3中三种有机半导体材料薄膜的紫外吸收光谱测试
步骤一:分别用去离子水和丙酮超声清洗石英片15分钟,氮气吹干。通过真空热蒸镀法将实施例1-3中的有机半导体材料沉积在清洗干净的石英片上。制备时蒸镀腔内的真空度为1~6×10-4帕斯卡,沉积速率为左右,有机半导体薄膜的厚度约为60nm。
步骤二:通过紫外吸收光谱仪(日本岛津UV-2450)测试实施例1-3中的有机半导体薄膜,其光学性能如表2所示。
表2:有机半导体材料的光学性能
化合物 紫外吸收起始波长(nm) 带隙(eV)
BOPNA 370 3.35
BSPNA 405 3.06
BCPNA 369 3.36
实施例5
BOPNA材料有机场效应晶体管的制备
步骤一:硅片清洗
准备30mm×30mm的一面带二氧化硅无机绝缘层的硅片若干片,依次用去离子水、丙酮、异丙醇超声清洗15分钟,氮气吹干。在3∶7比例(体积比)配制的双氧水和浓硫酸混合溶液中,90℃加热30分钟,去离子水清洗硅片,用氮气吹干。
步骤二:器件制备
取清洗后的硅片,采用真空热蒸镀法沉积实施例l中制备的有机半导体材料BOPNA薄膜,制备时蒸镀腔内的真空度为1~6×10-4帕斯卡,薄膜沉积速率为有机半导体的厚度约为60nm。同样通过真空热蒸镀的方法沉积源/漏电极,源/漏电极为金电极,制备事蒸镀腔内真空度为1~6×10-4帕斯卡,电极沉积速率为厚度为80nm,制备出的有机场效应晶体管器件结构如图1所示。
实施例6
将实施例5制备的有机场效应晶体管器件进行性能测试。
器件性能测试:将实施例5得到的有机场效应晶体管器件放置在装有Keithley4200微操作探针台上,分别测试转移曲线和输出曲线。其中,所述源漏电流输出曲线(简称输出曲线)是指在一定的栅压VG,源漏电流ISD随源漏电压VSD的变化曲线;其中,所述源漏电流转移曲线(简称转移曲线)是指在一定的源漏电压VSD下,源漏电流ISD随栅压VG的变化曲线。阈值电压为诱导晶体管产生导电沟道的最小电压,可以由(ISD)1/2对VG作图所拟合直线外延至电流为0时的电压所得。测试结果如表3所示。
表3有机场效应晶体管的场效应性能
开关比
含BOPNA器件 1.3
实施例7
将实施例5制备的有机场效应晶体管器件进行光稳定性测试。
具体的,在对器件性能测试的同时,分别在黑暗和LED灯闪烁模式照射下对电流输出性能做了比较。LED灯光通量为240流明,闪烁频率为0.2秒/次,照射距离为10厘米。在LED等闪烁模式的照射下,器件的电流输出几乎没有变化,如图2、图3、图4、图5所示。
对比实施例7
作为对比实验,本实施例中制备了2,6-(4-氧甲基苯)蒽(BOPAnt)(No.201610343450.X)化合物的有机场效应晶体管的光稳定性。
步骤一:硅片清洗
准备30mm×30mm的一面带二氧化硅无机绝缘层的硅片若干片,依次用去离子水、丙酮、异丙醇超声清洗15分钟,氮气吹干。在3∶7比例(体积比)配制的双氧水和浓硫酸混合溶液中,90℃加热30分钟,去离子水清洗硅片,用氮气吹干。
步骤二:器件制备
取清洗后的硅片,采用真空热蒸镀法沉积实施例1中制备的有机半导体材料BOPAnt薄膜,制备时蒸镀腔内的真空度为1~6×10-4帕斯卡,薄膜沉积速率为有机半导体的厚度约为60nm。同样通过真空热蒸镀的方法沉积源/漏电极,源/漏电极为金电极,制备事蒸镀腔内真空度为1~6×10-4帕斯卡,电极沉积速率为厚度为80nm,制备出的有机场效应晶体管器件结构如图1所示。
器件的光稳定性测试:
测试方法同实施例7中方法相同,分别在黑暗和LED灯闪烁模式照射下对电流输出性能做了比较。LED灯光通量为240流明,闪烁频率为0.2秒/次,照射距离为10厘米。在LED等闪烁模式的照射下,器件的电流输出随LED灯的开关而增加和降低,器件表现出了对光的敏感性,如图2所示。
由以上结果可以看出,三种材料的带隙都大于3.0eV,具有较好的材料稳定性。同时,BOPNA的有机场效应晶体管的空穴迁移率为1.3cm2/Vs,由于其较宽的带隙(3.35eV),其薄膜具有光学透明性,同时其具有良好的热稳定性和光稳定性,可应用到有机透明场效应三极管等光学器件中。
此类宽带隙萘类材料的合成原料广泛且价格低廉,合成工艺简单高效,因此此类材料具有较高的应用价值。
以上对本发明实施例所提供的宽带隙萘类有机半导体材料及其制备方法和应用进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想,本说明书内容不应理解为对本发明的限制。

Claims (6)

1.一类宽带隙萘类有机半导体材料,其结构通式为结构式I:
其中:
Ar1和Ar2独立的选自芳香基,Ar1和Ar2相同或者不相同;R1和R2独立的选自烷基、芳基、硫烷基、氧烷基、硫芳基、氧芳基和硅烷基,R1和R2相同或者不相同;所述的芳香基为苯基、噻吩基、含氧杂环基、含氮杂环基和含硅杂环基,所述烷基为碳原子数为1~16的直链或者支链烷基。
2.根据权利要求1所述的宽带隙有机半导体材料制备方法,其特征在于,所述的苯基为苯基、并苯基或联苯基;所述的噻吩基为苯并噻吩基;所述的含氧杂环基为苯并呋喃,所述的含氮杂环基为苯并吡咯基、苯并咔唑基、苯并吡啶基、并苯咪唑基或苯并哌啶基;所述的含硅杂环基为苯并噻咯基。
3.一种制备如权利要求1-2中任意一项所述化合物的方法,其特征在于,制备步骤为:将2,6-二溴萘和烷基取代芳香基硼酸,按一定比例溶于含有催化剂或者碱性溶液的有机溶剂中,在无氧的条件下,加热到一定反应温度,使体系进行Suzuki偶联反应,反应一段时间后,得到有机半导体材料
a.当2,6-二溴萘和芳香基硼酸或硼酸酯的摩尔比1∶2.0~2.5,得到有机半导体材料为
b.当2,6-二溴萘和烷基取代芳香基硼酸的摩尔比为1∶1时,得到有机半导体材料为中间产物将该中间产物与另一种或相同烷基取代芳香基硼酸,按摩尔比1∶1溶于含有催化剂和碱性溶液的有机溶剂中,在无氧条件下,加热至一定温度,进行Suzuki偶联反应,反应一段时间后,得到宽带隙萘类有机半导体材料
4.一类应用于有机电致发光器件、有机场效应晶体管器件的宽带隙有机半导体材料,其特征在于包含权利要求1中的萘类有机半导体材料该类材料,带隙较宽,热稳定性和光稳定性良好。
5.根据权利要求4中的宽带隙萘类有机半导体材料,其特征在于,当化合物的带隙大于3.3eV,其热稳定性和光稳定性优良,且可以实现光学透明性,可广泛应用在透明电子元件中。
6.根据权利要求4所述的宽带隙萘类有机半导体材料,其特征在于,其作为有机场效应晶体管中的有机半导体层,其具有1.3cm2/V.s以上的空穴载流子迁移率。
CN201710098010.7A 2017-02-20 2017-02-20 一类宽带隙萘类有机半导体材料及其制备方法和应用 Active CN106831364B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710098010.7A CN106831364B (zh) 2017-02-20 2017-02-20 一类宽带隙萘类有机半导体材料及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710098010.7A CN106831364B (zh) 2017-02-20 2017-02-20 一类宽带隙萘类有机半导体材料及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN106831364A true CN106831364A (zh) 2017-06-13
CN106831364B CN106831364B (zh) 2021-01-05

Family

ID=59133416

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710098010.7A Active CN106831364B (zh) 2017-02-20 2017-02-20 一类宽带隙萘类有机半导体材料及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN106831364B (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006101016A1 (en) * 2005-03-23 2006-09-28 Semiconductor Energy Laboratory Co., Ltd. Composite material, light emitting element and light emitting device
WO2007086695A1 (en) * 2006-01-27 2007-08-02 Lg Chem. Ltd. New anthracene derivatives, preparation method thereof and organic light emitting diode using the same
KR20120051598A (ko) * 2010-11-12 2012-05-22 주식회사 엘지화학 신규한 화합물 및 이를 이용한 유기 전자 소자
KR20130022071A (ko) * 2011-08-24 2013-03-06 덕산하이메탈(주) 유기전기소자용 신규 화합물, 이를 이용하는 유기전기소자 및 그 전자 장치
CN104119311A (zh) * 2014-05-15 2014-10-29 杭州师范大学 一种2,6-二芳基萘类化合物及其制备方法
US20160046864A1 (en) * 2014-08-06 2016-02-18 Jnc Petrochemical Corporation Liquid crystal compound, liquid crystal composition and liquid crystal display device
KR20160034804A (ko) * 2014-09-22 2016-03-30 주식회사 엘지화학 헤테로환 화합물 및 이를 포함하는 유기 발광 소자
KR20160111780A (ko) * 2015-03-17 2016-09-27 주식회사 엘지화학 유기 발광 소자
WO2016171406A2 (ko) * 2015-04-24 2016-10-27 주식회사 엘지화학 유기 발광 소자

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006101016A1 (en) * 2005-03-23 2006-09-28 Semiconductor Energy Laboratory Co., Ltd. Composite material, light emitting element and light emitting device
WO2007086695A1 (en) * 2006-01-27 2007-08-02 Lg Chem. Ltd. New anthracene derivatives, preparation method thereof and organic light emitting diode using the same
KR20120051598A (ko) * 2010-11-12 2012-05-22 주식회사 엘지화학 신규한 화합물 및 이를 이용한 유기 전자 소자
KR20130022071A (ko) * 2011-08-24 2013-03-06 덕산하이메탈(주) 유기전기소자용 신규 화합물, 이를 이용하는 유기전기소자 및 그 전자 장치
CN104119311A (zh) * 2014-05-15 2014-10-29 杭州师范大学 一种2,6-二芳基萘类化合物及其制备方法
US20160046864A1 (en) * 2014-08-06 2016-02-18 Jnc Petrochemical Corporation Liquid crystal compound, liquid crystal composition and liquid crystal display device
KR20160034804A (ko) * 2014-09-22 2016-03-30 주식회사 엘지화학 헤테로환 화합물 및 이를 포함하는 유기 발광 소자
KR20160111780A (ko) * 2015-03-17 2016-09-27 주식회사 엘지화학 유기 발광 소자
WO2016171406A2 (ko) * 2015-04-24 2016-10-27 주식회사 엘지화학 유기 발광 소자

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
VITA, FRANCESCO等: "Molecular ordering in the high-temperature nematic phase of an all-aromatic liquid crystal", 《SOFT MATTER》 *
ZHANG, JIE等: "Mixed NHC/Phosphine Ni(II) Complexes: Synthesis and Their Applications as Versatile Catalysts for Selective Cross-Couplings of ArMgX with Aryl Chlorides, Fluorides, and Methyl Ethers", 《ORGANOMETALLICS》 *

Also Published As

Publication number Publication date
CN106831364B (zh) 2021-01-05

Similar Documents

Publication Publication Date Title
US8022214B2 (en) Organic semiconductor materials and precursors thereof
US7605225B2 (en) Silole-based polymers and semiconductor materials prepared from the same
EP2519523A1 (en) Thionated aromatic bisimides as organic semiconductors and devices incorporating them
EP2683718B1 (en) Thiocyanato substituted naphthalene diimide compounds and their use as n-type semiconductors
WO2007050049A1 (en) Carbonyl-functionalized thiophene compounds and related device structures
Chen et al. Asymmetric fused thiophenes for field-effect transistors: crystal structure–film microstructure–transistor performance correlations
WO2008063583A1 (en) Acene-based organic semiconductor materials and methods of preparing and using the same
CA2713083A1 (en) Semiconductor materials prepared from rylene-(.pi.-acceptor) copolymers
CN101952988A (zh) 苝半导体及其制备方法和用途
KR20110028578A (ko) 반도체 재료 및 이의 제조 방법 및 사용
CN103408570B (zh) 含有1,3-二硫-2-叶立德烯共轭单元的萘二酰亚胺衍生物、制备方法和应用
JP5438363B2 (ja) バンドギャップが広いことを特徴とする有機半導体材料
Kwon et al. Pyrene end-capped oligothiophene derivatives for organic thin-film transistors and organic solar cells
JP5416282B2 (ja) 硫黄含有複素環が縮合したナフタレンテトラカルボン酸ジイミド誘導体及びその製造方法と応用
Ho et al. Solution-processable dithieno [3, 2-b: 2′, 3′-d] thiophene derivatives for organic thin-film transistors and complementary-like inverters
KR101430945B1 (ko) 퍼릴렌 기재 반도체 및 그의 제조 방법 및 용도
WO2013078407A1 (en) Compounds having semiconducting properties and related compositions and devices
Duan et al. Organic field-effect transistors based on two phenylene–thiophene oligomer derivatives with a biphenyl or fluorene core
Kwon et al. A multifunctional material based on triphenylamine and a naphthyl unit for organic light-emitting diodes, organic solar cells, and organic thin-film transistors
CN106831364A (zh) 一类宽带隙萘类有机半导体材料及其制备方法和应用
WO2012030662A2 (en) Semiconducting compounds and related compositions and devices
Kim et al. Synthesis, stability and electrical properties of new soluble pentacenes with unsaturated side groups
CN105949041A (zh) 一种各向同性的氧原子取代基团的蒽基化合物、制备方法和应用
CN114685534A (zh) 一种吲哚并[3,2,1-kl]吩噻嗪衍生物光电材料及其应用和电子器件
CN114685533A (zh) 一种吲哚[3,2,1-kl]吩噻嗪5,5-二氧化物衍生物及其应用和电子器件

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant