CN106827991A - 一种水空两栖飞行器双稳态机翼 - Google Patents

一种水空两栖飞行器双稳态机翼 Download PDF

Info

Publication number
CN106827991A
CN106827991A CN201710074308.4A CN201710074308A CN106827991A CN 106827991 A CN106827991 A CN 106827991A CN 201710074308 A CN201710074308 A CN 201710074308A CN 106827991 A CN106827991 A CN 106827991A
Authority
CN
China
Prior art keywords
wing
pneumatic muscle
connecting rod
trailing edge
rod mechanism
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710074308.4A
Other languages
English (en)
Other versions
CN106827991B (zh
Inventor
刘彦菊
管清华
杜林喆
孙健
曹鹏宇
冷劲松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology
Original Assignee
Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology filed Critical Harbin Institute of Technology
Priority to CN201710074308.4A priority Critical patent/CN106827991B/zh
Publication of CN106827991A publication Critical patent/CN106827991A/zh
Application granted granted Critical
Publication of CN106827991B publication Critical patent/CN106827991B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60FVEHICLES FOR USE BOTH ON RAIL AND ON ROAD; AMPHIBIOUS OR LIKE VEHICLES; CONVERTIBLE VEHICLES
    • B60F5/00Other convertible vehicles, i.e. vehicles capable of travelling in or on different media
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60FVEHICLES FOR USE BOTH ON RAIL AND ON ROAD; AMPHIBIOUS OR LIKE VEHICLES; CONVERTIBLE VEHICLES
    • B60F5/00Other convertible vehicles, i.e. vehicles capable of travelling in or on different media
    • B60F5/02Other convertible vehicles, i.e. vehicles capable of travelling in or on different media convertible into aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C3/00Wings
    • B64C3/36Structures adapted to reduce effects of aerodynamic or other external heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C3/00Wings
    • B64C3/38Adjustment of complete wings or parts thereof
    • B64C3/44Varying camber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C3/00Wings
    • B64C3/38Adjustment of complete wings or parts thereof
    • B64C3/44Varying camber
    • B64C2003/445Varying camber by changing shape according to the speed, e.g. by morphing

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Transportation (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Toys (AREA)

Abstract

一种水空两栖飞行器双稳态机翼,它涉及一种飞行器机翼,以解决现有飞行器在低速和高速情况下面对不同的气动环境条件,单一形态的翼型往往无法改善在整个飞行包线下气动性能,并满足在高速和低速条件下的飞行需求的问题,它包括机翼翼肋和双稳态结构;机翼翼肋的纵剖面采用NACA超临界机翼翼型,所述机翼翼肋的前缘和后缘之间连接有弹性杆;所述双稳态结构包括四边形连杆机构和两个气动肌肉驱动器;四边形连杆机构相对的两角之间安装有一个气动肌肉驱动器,四边形连杆机构的一个顶点安装在机翼翼肋上,四边形连杆机构的另一个顶点安装在弹性杆上,两个气动肌肉驱动器位于同一个竖直平面内并相垂直布置。本发明用于水空两栖飞行器。

Description

一种水空两栖飞行器双稳态机翼
技术领域
本发明涉及一种飞行器机翼,具体涉及一种水空两栖飞行器双稳态机翼,属于飞行器技术领域。
背景技术
反潜飞机大致可以分为反潜直升机、舰载固定翼反潜飞机、水上反潜飞机和岸基固定翼反潜飞机,反潜直升机广泛装备海军护卫舰以上的各类战斗舰艇,是应用最广、作用较大的一种反潜兵力,其优点是起降方便,能够悬停持续工作。目前,各国装备的反潜直升机主要有:美国的“海鹰”、英国的“海王”、法国的“超黄蜂”、前苏联的“卡—27”等,但是,直升机飞行速度较慢,续航时间短,难以适应如今复杂多变的战况。而固定翼反潜机具有航程长覆盖面积大,速度快等优点,但是对起飞降落的要求比较高,只能在一些大型航母上部署,并且无法在同一地点进行悬停,因此对潜艇的追踪能力有限。反潜水上飞机能停泊在水面上,悬放声纳,由于船身阻力大,航程短,只能在近海执行反潜任务。岸基固定翼反潜机由于陆机基地和航程限制无法为舰艇编队特别是走向深海的中国舰艇提供有效防护。由于我国目前航母发展的限制对于总重约20吨舰载固定翼反潜机无法满足其起飞降落的要求。因此航空反潜的能力短板成为战斗力形成的一个重大障碍,因此研发一种能够弥补我国反潜能力短板的舰载航空反潜装备显得尤为必要。
无论是飞行动物还是人造飞行器,为了执行不同任务(如巡航、盘旋、攻击或逃生等),或为了满足飞行环境(如高度、速度和气候等)的不同要求,往往需要相应的调整形态,以达到高效能、安全以及任务要求等目的。由于飞行器在低速和高速情况下面对不同的气动环境条件,单一形态的翼型往往无法改善在整个飞行包线下气动性能,并满足在高速和低速条件下的飞行需求。
发明内容
本发明是为解决现有飞行器在低速和高速情况下面对不同的气动环境条件,单一形态的翼型往往无法改善在整个飞行包线下气动性能,并满足在高速和低速条件下的飞行需求的问题,进而提供一种水空两栖飞行器双稳态机翼。
本发明为解决上述问题采取的技术方案是:一种水空两栖飞行器双稳态机翼包括机翼翼肋和双稳态结构;
机翼翼肋的纵剖面采用NACA超临界机翼翼型,所述机翼翼肋的前缘和后缘之间连接有弹性杆;所述双稳态结构包括四边形连杆机构和两个气动肌肉驱动器;四边形连杆机构相对的两角之间安装有一个气动肌肉驱动器,四边形连杆机构的一个顶点安装在机翼翼肋上,四边形连杆机构的另一个顶点安装在弹性杆上,两个气动肌肉驱动器位于同一个竖直平面内并相垂直布置。
本发明的有益效果是:飞机的飞行速度较大情况下,当气流绕过普通翼型前缘时,上表面流速增加较快。当飞行速度接近高亚音速时,翼型上表面的局部流速可以达到音速,此时的马赫数称为临界马赫数。当速度继续增加,增加到一定程度后,阻力就会开始大幅增加,阻力大幅增加时的马赫数就是阻力发散马赫数。这时如果继续增加速度,发动机的功率会被大量消耗,甚至会发生飞行事故。因此,提高飞行速度就需要提高机翼的阻力发散马赫数。超临界翼型就是为了推迟阻力发散马赫数的到来。超临界翼型有利于防止出现激波和减小附面层分离的程度,进而提高临界马赫数。它还有利于减轻飞机的结构重量,同时改善低速飞行的性能。但它由于上表面平坦,在减缓气流加速的同时,也会减小升力,为克服这一缺点,本发明的机翼翼肋选用NACA-SC(2)-0518超临界机翼翼型,在高速下具有较好的气动性能,同时,采用气动肌肉驱动器驱动的双稳态结构,以实现低速机翼形态和超临界机翼形态切换,达到双稳态运行。当水平方向的气动肌肉驱动器收缩时四边形连杆机构输出推力使低速翼型转换为超临界翼型,当垂直方向气动肌肉驱动器收缩时四边形连杆机构输出拉力使超临界翼型转换为低速翼型。
附图说明
图1为本发明一种水空两栖飞行器双稳态机翼在低速形态时的结构示意图;
图2为本发明一种水空两栖飞行器双稳态机翼在超临界形态时的结构示意图;
图3为一个实施例的一种水空两栖飞行器双稳态机翼在低速形态和后缘向上弯曲时的结构示意图;
图4为另一个实施例的一种水空两栖飞行器双稳态机翼在超临界形态和后缘向下弯曲时的结构示意图。
具体实施方式
下面结合附图及具体实施方式对本发明的技术方案作进一步地说明。
参见图1和图2说明,一种水空两栖飞行器双稳态机翼包括机翼翼肋1和双稳态结构;机翼翼肋1的纵剖面采用NACA超临界机翼翼型,所述机翼翼肋1的前缘和后缘之间连接有弹性杆3;所述双稳态结构包括四边形连杆机构2-1和两个气动肌肉驱动器2-2;四边形连杆机构2-1相对的两角之间安装有一个气动肌肉驱动器2-2,四边形连杆机构2-1的一个顶点安装在机翼翼肋1上,四边形连杆机构2-1的与所述一个顶点相对的另一个顶点安装在弹性杆3上,两个气动肌肉驱动器2-2位于同一个竖直平面内并相垂直布置。
气动肌肉驱动器的结构具有很好的可设计性,可以通过设计其编织网套的编织角可以得到充气伸长或者收缩的气动人工肌肉。当收缩率为正时气动肌肉充气收缩,伸长率为正时气动肌肉充气伸长。收缩式气动肌肉,由于自身结构的特性当发生弯曲变形体积变化率较大从而使其充气后弯曲刚度剧烈增大。气动肌肉驱动器的软管外径为2mm-5mm,这样体积小,还具有与人工肌肉相似的充气变刚度和能够输出收缩力或伸长力的特点。
参见图1-图4说明,四边形连杆机构2-1为菱形连杆机构。如此设置,菱形四边形连杆机构稳定性好,低速机翼形态和超临界机翼形态切换有利于飞行器空气动力学性能稳定可靠,满足飞行任务。
参见图1-图4说明,四边形连杆机构2-1的四个连杆中位于竖直布置的气动肌肉驱动器2-2的一侧面的两个连杆长度相等,而位于竖直布置的气动肌肉驱动器2-2的另一侧面的两个连杆长度相等。如此设置,低速机翼形态和超临界机翼形态切换有利于飞行器空气动力学性能稳定可靠,满足飞行任务。
参见图1-图4说明,为了进一步改善机翼变形结构的空气动力学性能,适应飞行任务,提高飞行速度,降低飞行阻力,所述一种水空两栖飞行器双稳态机翼还包括一号后缘气动肌肉驱动器4-1和二号后缘气动肌肉驱动器4-2;所述机翼翼肋1的后缘上安装有一号后缘气动肌肉驱动器4-1和二号后缘气动肌肉驱动器4-2,所述二号后缘气动肌肉驱动器4-2布置在所述一号后缘气动肌肉驱动器4-1的下方且二者呈V形布置。V形开口斜向上设置。
如图3所示,在一个实施例中布置在上方的一号后缘气动肌肉驱动器4-1收缩时机翼翼肋1的后缘向上弯曲,此时,飞行器在低速机翼形态下实现后缘弯曲的空中航行或水面航行,如图4所述,在一个实施例中布置在上方的一号后缘气动肌肉驱动器4-1收缩时机翼翼肋1的后缘向上弯曲,此时,飞行器在超临界机翼形态下实现后缘弯曲的空中航行或水面航行。
在另一个实施例中布置在上方的一号后缘气动肌肉驱动器4-1收缩时机翼翼肋1的后缘向上弯曲,此时,飞行器在低速机翼形态和超临界形态之间转换的任一形态实现空中航行或水面航行。
在另一个实施例中布置在下方的二号后缘气动肌肉驱动器4-2收缩时机翼翼肋1的后缘向下弯曲。此时,飞行器在低速机翼形态和超临界形态之间转换的任一形态实现空中航行或水面航行。上述机翼翼肋的后缘的连续弯曲变形,进一步改善气动性能,弥补升力的不足。
参见图1-图2说明,机翼翼肋1的翼型的最大弯度所在的位置占弦长范围的35%。如此设置,会减小翼型的迎风面积从而降低压差阻力;防止翼型上的气流在流经上表面时出现过早分离,造成升力损失。
本发明已以较佳实施案例揭示如上,然而并非用以限定本发明,任何熟悉本专业的技术人员,在不脱离本发明技术方案范围内,当可以利用上述揭示的结构及技术内容做出些许的更动或修饰为等同变化的等效实施案例,但是凡是未脱离本发明技术方案的内容,依据本发明的技术实质对以上实施案例所做的任何简单修改、等同变化与修饰,均仍属本发明技术方案范围。

Claims (5)

1.一种水空两栖飞行器双稳态机翼,其特征在于:它包括机翼翼肋(1)和双稳态结构;机翼翼肋(1)的纵剖面采用NACA超临界机翼翼型,所述机翼翼肋(1)的前缘和后缘之间连接有弹性杆(3);所述双稳态结构包括四边形连杆机构(2-1)和两个气动肌肉驱动器(2-2);四边形连杆机构(2-1)相对的两角之间安装有一个气动肌肉驱动器(2-2),四边形连杆机构(2-1)的一个顶点安装在机翼翼肋(1)上,四边形连杆机构(2-1)的与所述一个顶点相对的另一个顶点安装在弹性杆(3)上,两个气动肌肉驱动器(2-2)位于同一个竖直平面内并相垂直布置。
2.根据权利要求1所述一种水空两栖飞行器双稳态机翼,其特征在于:四边形连杆机构(2-1)为菱形连杆机构。
3.根据权利要求1所述一种水空两栖飞行器双稳态机翼,其特征在于:四边形连杆机构(2-1)的四个连杆中位于竖直布置的气动肌肉驱动器(2-2)的一侧面的两个连杆长度相等,而位于竖直布置的气动肌肉驱动器(2-2)的另一侧面的两个连杆长度相等。
4.根据权利要求1、2或3所述一种水空两栖飞行器双稳态机翼,其特征在于:所述一种水空两栖飞行器双稳态机翼还包括一号后缘气动肌肉驱动器(4-1)和二号后缘气动肌肉驱动器(4-2);所述机翼翼肋(1)的后缘上安装有一号后缘气动肌肉驱动器(4-1)和二号后缘气动肌肉驱动器(4-2),所述二号后缘气动肌肉驱动器(4-2)布置在所述一号后缘气动肌肉驱动器(4-1)的下方且二者呈V形布置。
5.根据权利要求4所述一种水空两栖飞行器双稳态机翼,其特征在于:机翼翼肋(1)的翼型的最大弯度所在的位置占弦长范围的35%。
CN201710074308.4A 2017-02-10 2017-02-10 一种水空两栖飞行器双稳态机翼 Active CN106827991B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710074308.4A CN106827991B (zh) 2017-02-10 2017-02-10 一种水空两栖飞行器双稳态机翼

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710074308.4A CN106827991B (zh) 2017-02-10 2017-02-10 一种水空两栖飞行器双稳态机翼

Publications (2)

Publication Number Publication Date
CN106827991A true CN106827991A (zh) 2017-06-13
CN106827991B CN106827991B (zh) 2019-09-13

Family

ID=59127315

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710074308.4A Active CN106827991B (zh) 2017-02-10 2017-02-10 一种水空两栖飞行器双稳态机翼

Country Status (1)

Country Link
CN (1) CN106827991B (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108044997A (zh) * 2017-11-20 2018-05-18 浙江工业大学 一种具有双稳态特性的折纸变形结构
CN108116657A (zh) * 2017-11-27 2018-06-05 西北工业大学 一种基于形状记忆弹簧变形结构的机翼减振机构
CN111422346A (zh) * 2019-01-09 2020-07-17 浙江工业大学 一种基于多稳态特性的可折叠无人机机翼
CN111924086A (zh) * 2020-07-07 2020-11-13 北京机电工程研究所 一种记忆合金驱动的可变形机构
CN112278237A (zh) * 2019-07-26 2021-01-29 香港城市大学深圳研究院 一种可变形的机翼及飞行器
CN112550663A (zh) * 2020-12-08 2021-03-26 中国空气动力研究与发展中心设备设计及测试技术研究所 一种基于智能驱动装置的变形机翼
CN113665794A (zh) * 2021-09-24 2021-11-19 肇庆市海特复合材料技术研究院 一种复合材料无人机机翼
CN114408087A (zh) * 2022-01-13 2022-04-29 河北汉光重工有限责任公司 一种适用于水下全速度的新型舵
WO2022104775A1 (zh) * 2020-11-23 2022-05-27 西湖大学 一种用于航行器的翼片结构、机翼结构以及航行器
CN115723939A (zh) * 2022-12-05 2023-03-03 北京理工大学 一种基于双稳态超结构的变体机翼
WO2023180449A1 (de) * 2022-03-24 2023-09-28 Johannes Kepler Universität Linz Fahrzeug

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006032453A1 (de) * 2005-07-16 2007-01-18 Klaus Kellner Strömungselement, insbesondere Tragfläche
US20090224108A1 (en) * 2008-03-05 2009-09-10 The Boeing Company Pneumatic control system for aerodynamic surfaces
CN103387048A (zh) * 2013-07-27 2013-11-13 哈尔滨工业大学 一种基于仿生概念的变体柔性后缘结构
US8746626B1 (en) * 2009-11-13 2014-06-10 The Boeing Company Adaptive structural core for morphing panel structures
CN103879556A (zh) * 2014-03-31 2014-06-25 冯加伟 宽飞行包线变体飞行器
CN203740118U (zh) * 2014-03-31 2014-07-30 冯加伟 宽飞行包线飞行器的折叠机翼式变体结构
CN104443354A (zh) * 2014-11-21 2015-03-25 南京航空航天大学 一种具有自适应变弯度后缘的机翼
US20150251747A1 (en) * 2014-03-05 2015-09-10 Toyota Motor Engineering & Manufacturing North America, Inc. Smart material trailing edge variable chord morphing wing

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006032453A1 (de) * 2005-07-16 2007-01-18 Klaus Kellner Strömungselement, insbesondere Tragfläche
US20090224108A1 (en) * 2008-03-05 2009-09-10 The Boeing Company Pneumatic control system for aerodynamic surfaces
US8746626B1 (en) * 2009-11-13 2014-06-10 The Boeing Company Adaptive structural core for morphing panel structures
CN103387048A (zh) * 2013-07-27 2013-11-13 哈尔滨工业大学 一种基于仿生概念的变体柔性后缘结构
US20150251747A1 (en) * 2014-03-05 2015-09-10 Toyota Motor Engineering & Manufacturing North America, Inc. Smart material trailing edge variable chord morphing wing
CN103879556A (zh) * 2014-03-31 2014-06-25 冯加伟 宽飞行包线变体飞行器
CN203740118U (zh) * 2014-03-31 2014-07-30 冯加伟 宽飞行包线飞行器的折叠机翼式变体结构
CN104443354A (zh) * 2014-11-21 2015-03-25 南京航空航天大学 一种具有自适应变弯度后缘的机翼

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108044997A (zh) * 2017-11-20 2018-05-18 浙江工业大学 一种具有双稳态特性的折纸变形结构
CN108044997B (zh) * 2017-11-20 2023-07-14 浙江工业大学 一种具有双稳态特性的折纸变形结构
CN108116657A (zh) * 2017-11-27 2018-06-05 西北工业大学 一种基于形状记忆弹簧变形结构的机翼减振机构
CN111422346A (zh) * 2019-01-09 2020-07-17 浙江工业大学 一种基于多稳态特性的可折叠无人机机翼
CN112278237A (zh) * 2019-07-26 2021-01-29 香港城市大学深圳研究院 一种可变形的机翼及飞行器
CN111924086A (zh) * 2020-07-07 2020-11-13 北京机电工程研究所 一种记忆合金驱动的可变形机构
WO2022104775A1 (zh) * 2020-11-23 2022-05-27 西湖大学 一种用于航行器的翼片结构、机翼结构以及航行器
CN112550663A (zh) * 2020-12-08 2021-03-26 中国空气动力研究与发展中心设备设计及测试技术研究所 一种基于智能驱动装置的变形机翼
CN113665794A (zh) * 2021-09-24 2021-11-19 肇庆市海特复合材料技术研究院 一种复合材料无人机机翼
CN114408087A (zh) * 2022-01-13 2022-04-29 河北汉光重工有限责任公司 一种适用于水下全速度的新型舵
WO2023180449A1 (de) * 2022-03-24 2023-09-28 Johannes Kepler Universität Linz Fahrzeug
CN115723939A (zh) * 2022-12-05 2023-03-03 北京理工大学 一种基于双稳态超结构的变体机翼

Also Published As

Publication number Publication date
CN106827991B (zh) 2019-09-13

Similar Documents

Publication Publication Date Title
CN106827991B (zh) 一种水空两栖飞行器双稳态机翼
CN106741845B (zh) 一种水空两栖飞行器机翼变形结构
CN101595027B (zh) 具有悬浮系统的串式/鸭式地效飞行器
CN103359277B (zh) 性能增强的小翼系统和方法
CN108100212B (zh) 一种小展弦比自适应变体飞翼布局战斗机
CN108583875B (zh) 一种潜空通用飞行器布局
US4030688A (en) Aircraft structures
CN104494814A (zh) 一种可大幅度减阻的减阻外套
JPH01257663A (ja) 航洋乗物
CN113232832B (zh) 一种水陆两栖飞机
CN103231795A (zh) 一种公务机的发动机上置及前掠翼鸭式布局
CN110588977B (zh) 一种固体火箭飞行器
CN106516109A (zh) 一种微喷溅高性能双体水陆两栖飞机
CN106428410A (zh) 带有菱形翼的新型水下航行器
CN108082471B (zh) 一种变体超音速飞机
CN100475649C (zh) 地效飞行器
CN201010045Y (zh) 地效飞行器
CN201023656Y (zh) 地效飞行器
CN200985092Y (zh) 地效飞行器的气动布局
CN205891158U (zh) 一种带有菱形翼的新型水下航行器
CN209521859U (zh) 一种双体水翼式水上飞机
CN209209028U (zh) 一种倾转型三旋翼垂直起降飞翼
CN216581007U (zh) 一种复合式高速两栖直升机
CN201923315U (zh) 一种扁式飞艇
CN112224430B (zh) 一种装备模块化机翼起飞辅助装置的舰载飞行器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant