CN106801028A - 产高含量玉米黄素或虾青素工程菌及其应用 - Google Patents

产高含量玉米黄素或虾青素工程菌及其应用 Download PDF

Info

Publication number
CN106801028A
CN106801028A CN201710036290.9A CN201710036290A CN106801028A CN 106801028 A CN106801028 A CN 106801028A CN 201710036290 A CN201710036290 A CN 201710036290A CN 106801028 A CN106801028 A CN 106801028A
Authority
CN
China
Prior art keywords
genes
engineering bacteria
astaxanthin
crtz
crty
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710036290.9A
Other languages
English (en)
Other versions
CN106801028B (zh
Inventor
刘建忠
鲁骞
步依繁
申洪杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Sun Yat Sen University
Original Assignee
National Sun Yat Sen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Sun Yat Sen University filed Critical National Sun Yat Sen University
Priority to CN201710036290.9A priority Critical patent/CN106801028B/zh
Publication of CN106801028A publication Critical patent/CN106801028A/zh
Application granted granted Critical
Publication of CN106801028B publication Critical patent/CN106801028B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0071Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14)
    • C12N9/0083Miscellaneous (1.14.99)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/001Oxidoreductases (1.) acting on the CH-CH group of donors (1.3)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0069Oxidoreductases (1.) acting on single donors with incorporation of molecular oxygen, i.e. oxygenases (1.13)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0071Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14)
    • C12N9/0073Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14) with NADH or NADPH as one donor, and incorporation of one atom of oxygen 1.14.13
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1085Transferases (2.) transferring alkyl or aryl groups other than methyl groups (2.5)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P23/00Preparation of compounds containing a cyclohexene ring having an unsaturated side chain containing at least ten carbon atoms bound by conjugated double bonds, e.g. carotenes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y103/00Oxidoreductases acting on the CH-CH group of donors (1.3)
    • C12Y103/05Oxidoreductases acting on the CH-CH group of donors (1.3) with a quinone or related compound as acceptor (1.3.5)
    • C12Y103/0500515-Cis-phytoene desaturase (1.3.5.5)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y205/00Transferases transferring alkyl or aryl groups, other than methyl groups (2.5)
    • C12Y205/01Transferases transferring alkyl or aryl groups, other than methyl groups (2.5) transferring alkyl or aryl groups, other than methyl groups (2.5.1)
    • C12Y205/01029Geranylgeranyl diphosphate synthase (2.5.1.29)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y205/00Transferases transferring alkyl or aryl groups, other than methyl groups (2.5)
    • C12Y205/01Transferases transferring alkyl or aryl groups, other than methyl groups (2.5) transferring alkyl or aryl groups, other than methyl groups (2.5.1)
    • C12Y205/0103215-Cis-phytoene synthase (2.5.1.32)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

本发明公开了产高含量玉米黄素或虾青素工程菌及其应用。产高含量玉米黄素工程菌携带有crtE基因、crtB基因、crtI基因、crtY基因、crtZ基因,所述crtY基因与crtZ基因的拷贝数比例优选为1:2;产高含量虾青素的工程菌的还携带至少一个crtW基因,所述crtW与crtZ、crtY基因的拷贝数比例优选为1:2:1;所用的crtY基因、crtZ基因优选来自于菠萝泛菌,crtW基因优选来自于短波单胞菌,所述工程菌优选为无质粒工程大肠杆菌。构建的工程菌生产玉米黄素或虾青素在总类胡萝卜素之中的比例均高于90%,解决了目标产物含量低、难于提纯的问题,可应用于高纯度玉米黄素或虾青素的制备。

Description

产高含量玉米黄素或虾青素工程菌及其应用
技术领域
本发明涉及基因工程领域,更具体的涉及产高含量玉米黄素或虾青素工程菌及其应用。
背景技术
玉米黄素、虾青素是重要的类胡萝卜素。其中,玉米黄素在临床上用于治疗老年性黄斑病变。虾青素作为已发现的抗氧化能力最强的抗氧化剂,在临床上具有抗氧化、保护皮肤和眼睛,抵抗辐射、治疗心血管老化、老年痴呆和癌症等功效。
微生物异源合成玉米黄素、虾青素已成为研究热点,一般是通过在底盘菌中引入外源类胡萝卜素合成途径基因,玉米黄素和虾青素的合成从FPP开始,经过crtE、crtB、crtI、crtY连续催化,生成β-胡萝卜素,β-胡萝卜素经过crtZ的催化生产玉米黄素,玉米黄素再经过crtW的催化生成虾青素(合成途径如图1所示)。然而,由于crtZ和crtW这两种酶的非特异性和底物不专一性,往往导致反应过程中生成一系列的中间代谢产物,如番茄红素、β-胡萝卜素、角黄素、金盏花红素、隐黄质和海胆酮等,导致目标产物玉米黄素、虾青素在总类胡萝卜素之中的含量低于80%,这些中间产物与目标产物同属于类胡萝卜素,其分子结构非常相似,很难用普通化学方法进行分离纯化,即使获得高产的玉米黄素、虾青素菌株,但目标产物的低含量限制了高纯度的单一类玉米黄素或虾青素的制备。
为此,本发明旨在解决上述问题,提供产高含量玉米黄素或虾青素工程菌及其构建思路,为高纯度玉米黄素或虾青素的工业化生产奠定基础。
发明内容
本发明的目的在于提供产高含量玉米黄素或虾青素工程菌、构建思路及其在高纯度玉米黄素或虾青素生产中应用。
本发明所采取的技术方案是:
产高含量玉米黄素或虾青素工程菌,其中,所述产高含量玉米黄素的工程菌携带有crtE基因、crtB基因、crtI基因、crtY基因、crtZ基因,所述产高含量虾青素的工程菌还携带至少一个crtW基因;其中,crtY基因与crtZ基因的拷贝数比例为1:(1~2)。
优选的,产高含量玉米黄素或虾青素工程菌,所含crtY基因与crtZ基因的拷贝数比例为1:2。
进一步优选的,产高含量玉米黄素或虾青素工程菌,所含crtY基因拷贝数至少为2。
进一步优选的,产高含量玉米黄素或虾青素工程菌,所含crtZ基因拷贝数至少为4。
进一步优选的,所述高产虾青素的工程菌携带的crtW基因与crtZ基因、crtY基因的拷贝数比例为(1~2):(2~4):2。
其中,产高含量玉米黄素或虾青素工程菌所含crtY基因是来自于菠萝泛菌、成团泛菌的番茄红素环化酶基因的任意一种,所含crtZ基因是来自于菠萝泛菌、成团泛菌的β-胡萝卜素羟化酶基因的任意一种,所含crtW基因是来自于短波单胞菌、鞘氨醇单胞菌、副球菌和绿莱茵衣藻的β-胡萝卜素羟化酶酮化酶基因的任意一种。
优选的,产高含量玉米黄素或虾青素工程菌所含crtY基因是来自于菠萝泛菌的番茄红素环化酶基因,所含crtZ基因是来自于菠萝泛菌的β-胡萝卜素羟化酶基因,所含crtW基因是来自于短波单胞菌的β-胡萝卜素羟化酶酮化酶基因。
其中,上述工程菌为无质粒工程菌或含质粒工程菌。
优选的,上述工程菌为大肠杆菌。
上述的产高含量玉米黄素或虾青素工程菌在生产玉米黄素或虾青素中的应用。
本发明的有益效果是:
产高含量玉米黄素工程菌携带有crtE基因、crtB基因、crtI基因、crtY基因、crtZ基因,所述crtY基因与crtZ基因的拷贝数比例优选为1:2;产高含量虾青素的工程菌的还携带至少一个crtW基因,所述crtW与crtZ、crtY基因的拷贝数比例优选为1:2:1;所用的crtY基因、crtZ基因优选来自于菠萝泛菌,crtW基因优选来自于短波单胞菌,所述工程菌优选为无质粒工程大肠杆菌。构建的工程菌生产玉米黄素或虾青素在总类胡萝卜素之中的比例均高于90%,解决了目标产物含量低、难于提纯的问题,可应用于高纯度玉米黄素或虾青素的制备。
本发明优选获得的产高含量玉米黄素或虾青素的无质粒工程大肠杆菌还解决了质粒表达外源crt基因不适于产业化应用等问题,如:质粒易丢失,含抗生素抗性标记易导致抗生素污染,生产目标产物增加抗生素投入成本,不适于产业化应用。
附图说明
图1:类胡萝卜素生物合成途径(虚框内途径为外源类胡萝卜素合成途径)。
具体实施方式
以下将通过具体实施例对本发明作进一步解释。下面所采用的分子生物学实验技术包括PCR扩增、质粒提取、质粒转化、DNA片段连接、酶切、凝胶电泳等都采用常规的方法,具体可参见《分子克隆实验指南》(第三版)。
实施例1以产番茄红素的大肠杆菌为出发菌构建产高含量玉米黄素的无质粒工程菌
产番茄红素的大肠杆菌自身携带crtE基因、crtB基因、crtI基因,引入特定来源和拷贝数的crtY基因和crtZ基因(genbankD90087),步骤如下:
(1)以菠萝泛菌(Pantoea ananatis)基因组或含菠萝泛菌(Pantoea ananatis)crtY和crtZ基因的表达质粒pQE-crtYZ为模板,分别用下表1引物扩增crtY片段基因和crtZ基因片段。
表1 crtY基因和crtZ基因的扩增引物
(2)将上述crtY片段基因和crtZ基因片段连接到组装质粒pZSABP上,分别得到pZSABP-crtY重组质粒和pZSABP-crtZ重组质粒;
(3)用AvrII/SalI酶切pZSABP-crtZ,回收crtZ片段,连接到pZSABP-crtY的XbaI/SalI间,得到pZSABP-crtYZ;用同样的方法继续组装crtZ,分别得到pZSABP-crtY-2*crtZ;用同样的方法继续组装crtY-2*crtZ片段,得到pZSABP-2*(crtY-2*crtZ);
(4)用MluI/SalI酶切pZSABP-crtY-2*crtZ或pZSABP-2*(crtY-2*crtZ),回收基因片段,连接到整合载体pHKKP37b,分别得到pHKKP37b-crtY-2*crtZ或pHKKP37b-2*(crtY-2*crtZ)。按文献(Journal of Bacteriology 2001,183:6384–6393.)报道的方法将整合载体pHKKP37b-crtY-2*crtZ或pHKKP37b-2*(crtY-2*crtZ)转化到产番茄红素的大肠杆菌中,进行crtY-2*crtZ或2*(crtY-2*crtZ)基因簇的整合,得到产玉米黄素的大肠杆菌ZEAX-2或ZEAX-4。
实施例2以产β-胡萝卜素的大肠杆菌为出发菌构建产高含量玉米黄素的无质粒工程菌
产β-胡萝卜素的大肠杆菌自身携带crtE基因、crtB基因、crtI基因、crtY基因,引入特定来源和拷贝数的crtY基因和crtZ基因,步骤如下:
(1)crtY、crtZ基因片段的扩增、pZSABP-crtY重组质粒和pZSABP-crtZ重组质粒的制备同实施例1;
(2)用AvrII/SalI酶切pZSABP-crtZ,回收crtZ片段;连接到pZSABP-crtZ的XbaI/SalI间,得到pZSABP-2*crtZ;按同样方法将2*crtZ和实施例1制备的crtY-2*crtZ组装在一起,得到pZSABP-crtY-4*crtZ;
(3)用MluI/SalI酶切pZSABP-2*crtZ和pZSABP-crtY-4*crtZ,回收基因片段,连接到整合载体pHKKP37b,分别得到整合载体pHKKP37b-2*crtZ和pHKKP37b-crtY-4*crtZ。按文献(Journal of Bacteriology 2001,183:6384–6393.)报道的方法将上述2个整合载体分别转化到产β-胡萝卜素的大肠杆菌中,进行2*crtZ或crtY-4*crtZ基因簇的整合,分别得到产玉米黄素的大肠杆菌ZEAX-2或ZEAX-4。
实施例3产高含量虾青素的无质粒工程菌
在实施例1构建的高产玉米黄素的大肠杆菌ZEAX-4的基础上,引入crtW基因,步骤如下:
(1)为了提高基因在大肠杆菌中表达水平,按大肠杆菌密码子偏好性对基因的密码子进行优化。密码子优化后的短波单胞菌crtW基因(核苷酸序列见SEQ ID NO:5),委托苏州金威智生物科技有限公司全基因合成,并连接到pUC57载体上,得到pUC57-crtWBSP
(2)用NheI/PstI酶切pUC57-crtWBSP,回收crtWBSP片段,连接到组装载体pZS5P37上,得到pZS-5P37-crtWBSP;用BglII/SalI酶切pZS-5P37-crtWBSP,回收crtWBSP片段,连接到pZS-5P37-crtWBSP的BamHI/SalI间,得到pZS-2*(5P37-crtWBSP);
(3)用MluI/SalI酶切pZS-5P37-crtWBSP或pZS-2*(5P37-crtWBSP),回收基因片段,连接到整合载体pP21KT5b上,分别得到整合载体pP21KT5b-5P37-crtWBSP或pP21KT5b-2*(5P37-crtWBSP);按文献(Journal of Bacteriology 2001,183:6384–6393.)报道的方法将上述2个整合载分别转化到产玉米黄素的大肠杆菌ZEAX-4中,进行基因crtWBSP或2*crtWBSP整合,分别得到产玉米黄素的大肠杆菌ASTA-1或ASTA-2;
实施例4玉米黄素或虾青素的发酵
将实施例1和3构建的无质粒工程大肠杆菌于37℃、200rpm下发酵培养72小时。发酵结束离心收集菌体、用适量丙酮在50℃进行类胡萝卜素的萃取,HPLC分析其合成玉米黄素或虾青素的产量及占类胡萝卜素总产量的含量。
表2不同无质粒工程菌合成玉米黄素或虾青素的产量及含量
结果如表2所示,玉米黄素、虾青素的目标产物含量均高于90%,说明目标产物占类胡萝卜素总产量的比例大幅提高,有利于后期纯化,获得高纯度的玉米黄素或虾青素。此外,对于产高含量的玉米黄素工程菌,在crtY基因与crtZ基因的拷贝数比例为1:2的基础上,成倍提高拷贝数,玉米黄素的含量也有所提高;对于产高含量的虾青素工程菌,在crtW与crtZ、crtY基因的拷贝数比例优选为1:2:1的基础上,成倍提高拷贝数,虾青素含量也有所提高。
实施例5产高含量玉米黄素或虾青素的含质粒工程菌
将有关基因连接到低拷贝表达载体pZSABP上,然后转化到宿主菌中,本实施表达载体pZSABP的拷贝数为3~5个。
(1)将实施例1的pZSABP-crtY-2*crtZ、pZSABP-2*(crtY-2*crtZ)分别转化到产番茄红素大肠杆菌中,分别得到产玉米黄素的含质粒大肠杆菌;
(2)将实施例2的pZSABP-2*crtZ、pZSABP-crtY-4*crtZ分别转化到产β--胡萝卜素大肠杆菌中,分别得到产玉米黄素的含质粒大肠杆菌;
(3)将实施例3的pZS-5P37-crtWBSP、pZS-2*(5P37-crtWBSP)分别转化到产玉米黄素的大肠杆菌ZEAX-4中,分别得到产虾青素的含质粒大肠杆菌;
(4)将工程菌于37℃、200rpm下发酵培养72小时。发酵结束离心收集菌体、用适量丙酮在50℃进行类胡萝卜素的萃取,合成玉米黄素或虾青素的产量及占类胡萝卜素总产量的含量。
表3不同含质粒工程菌合成玉米黄素或虾青素的产量及含量
结果如表3所示,含质粒工程菌同样能产高含量玉米黄素或虾青素,目标产物含量均高于90%。虽然含质粒工程菌crt基因拷贝数比无质粒工程菌更高,但所合成目标产物占总类胡萝卜素中的比例并没有明显改变。
SEQUENCE LISTING
<110> 中山大学
<120> 产高含量玉米黄素或虾青素工程菌及其应用
<130>
<160> 5
<170> PatentIn version 3.5
<210> 1
<211> 56
<212> DNA
<213> 人工序列
<400> 1
ctagctagct ttcggaatta aggaggtaat aaatatgggc gcggctatgc aaccgc 56
<210> 2
<211> 33
<212> DNA
<213> 人工序列
<400> 2
ggggtacctt aacgatgagt cgtcataatg gct 33
<210> 3
<211> 56
<212> DNA
<213> 人工序列
<400> 3
ctagctagct ttcggaatta aggaggtaat aaatatgctg tggatctgga acgctc 56
<210> 4
<211> 28
<212> DNA
<213> 人工序列
<400> 4
ggggtacctt acttcccgga tgcgggct 28
<210> 5
<211> 772
<212> DNA
<213> Brevundimonas
<400> 5
gctagctttc ggaattaagg aggtaataaa tatgacggcg gctgttgcag aaccacgtat 60
cgttccgcgt cagacgtgga tcgggctgac tctggctggc atgattgtgg cgggctgggg 120
ttctctgcac gtttacggcg tatacttcca tcgttggggc accagctctc ttgttattgt 180
cccggctatc gttgcagtac agacttggct ctccgttggt ttgttcatcg tggctcacga 240
cgctatgcac ggctctctgg cgccgggccg tccgcgtctg aacgccgccg tgggtcgtct 300
taccctgggt ctgtacgcgg gctttcgttt cgaccgtctg aaaacagctc atcacgccca 360
ccacgctgcc ccaggcaccg ccgatgaccc ggatttttac gcgccggcgc cgcgcgcgtt 420
cctcccgtgg ttcctgaatt tttttcgcac ctatttcggt tggcgcgaga tggcggttct 480
gacagcgctt gttctgattg cgctgttcgg actgggcgcg cgtccggcga acctgctgac 540
cttttgggct gcgccggctc tgctgtctgc gcttcagctg tttacttttg gtacttggct 600
gccacaccgc cacaccgacc agcctttcgc ggatgcgcac cacgcacgta gctctggtta 660
cggtccagtg ctgtctctgc tgacttgttt ccattttggc cgccatcatg aacaccatct 720
gaccccgtgg cgtccgtggt ggcgcctgtg gcgcggcgaa tcataactgc ag 772

Claims (10)

1.产高含量玉米黄素或虾青素工程菌,其特征在于:所述产高含量玉米黄素的工程菌携带有crtE基因、crtB基因、crtI基因、crtY基因、crtZ基因,所述产高含量虾青素的工程菌还携带至少一个crtW基因;其中,crtY基因与crtZ基因的拷贝数比例为1:(1~2)。
2.根据权利要求1所述的产高含量玉米黄素或虾青素工程菌,其特征在于:所述crtY基因与crtZ基因的拷贝数比例为1:2。
3.根据权利要求1所述的产高含量玉米黄素或虾青素工程菌,其特征在于:crtY基因拷贝数至少为2。
4.根据权利要求1所述的产高含量玉米黄素或虾青素工程菌,其特征在于:crtZ基因拷贝数至少为4。
5.根据权利要求1所述的产高含量玉米黄素或虾青素工程菌,其特征在于:所述高产虾青素的工程菌携带有crtW基因与crtZ基因、crtY基因的拷贝数比例为(1~2):(2~4):2。
6.根据权利要求1所述的产高含量玉米黄素或虾青素工程菌,其特征在于:所述crtY基因是来自于菠萝泛菌、成团泛菌的番茄红素环化酶基因的任意一种,所述crtZ基因是来自于菠萝泛菌、成团泛菌的β-胡萝卜素羟化酶基因的任意一种,所述crtW基因是来自于短波单胞菌、鞘氨醇单胞菌、副球菌和绿莱茵衣藻的β-胡萝卜素羟化酶酮化酶基因的任意一种。
7.根据权利要求1所述的产高含量玉米黄素或虾青素工程菌,其特征在于:所述crtY基因是来自于菠萝泛菌的番茄红素环化酶基因,所述crtZ基因是来自于菠萝泛菌的β-胡萝卜素羟化酶基因,所述crtW基因是来自于短波单胞菌的β-胡萝卜素羟化酶酮化酶基因。
8.根据权利要求1所述的产高含量玉米黄素或虾青素工程菌,其特征在于:所述工程菌为无质粒工程菌或含质粒工程菌。
9.根据权利要求1所述的产高含量玉米黄素或虾青素工程菌,其特征在于:所述工程菌为大肠杆菌。
10.权利要求1~9任一项所述的产高含量玉米黄素或虾青素工程菌在生产玉米黄素或虾青素中的应用。
CN201710036290.9A 2017-01-17 2017-01-17 产高含量玉米黄素或虾青素工程菌及其应用 Active CN106801028B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710036290.9A CN106801028B (zh) 2017-01-17 2017-01-17 产高含量玉米黄素或虾青素工程菌及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710036290.9A CN106801028B (zh) 2017-01-17 2017-01-17 产高含量玉米黄素或虾青素工程菌及其应用

Publications (2)

Publication Number Publication Date
CN106801028A true CN106801028A (zh) 2017-06-06
CN106801028B CN106801028B (zh) 2019-12-31

Family

ID=58984493

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710036290.9A Active CN106801028B (zh) 2017-01-17 2017-01-17 产高含量玉米黄素或虾青素工程菌及其应用

Country Status (1)

Country Link
CN (1) CN106801028B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109097385A (zh) * 2018-07-26 2018-12-28 西安海斯夫生物科技有限公司 一种产β-胡萝卜素类球红细菌工程菌株及其构建方法
CN109593120A (zh) * 2019-01-15 2019-04-09 华中农业大学 一种橙色类胡萝卜素蛋白的制备方法
CN111454854A (zh) * 2020-05-02 2020-07-28 昆明理工大学 一株产虾青素的红冬孢酵母基因工程菌株
CN112852694A (zh) * 2020-10-26 2021-05-28 中国科学院天津工业生物技术研究所 虾青素合成菌株构建及其应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1184159A (zh) * 1996-12-02 1998-06-10 霍夫曼-拉罗奇有限公司 改进的类胡萝卜素发酵生产
CN1607253A (zh) * 1995-06-09 2005-04-20 Dsmip资产公司 类胡萝卜素的发酵生产
CN101675166A (zh) * 2007-04-05 2010-03-17 Sk能源株式会社 参与番茄红素生物合成的基因、含有该基因的重组载体以及带有重组载体的转化的微生物
EP2291530A1 (de) * 2008-06-27 2011-03-09 Evonik Röhm GmbH 2-hydroxyisobuttersäure produzierende rekombinante zelle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1607253A (zh) * 1995-06-09 2005-04-20 Dsmip资产公司 类胡萝卜素的发酵生产
CN1184159A (zh) * 1996-12-02 1998-06-10 霍夫曼-拉罗奇有限公司 改进的类胡萝卜素发酵生产
CN101675166A (zh) * 2007-04-05 2010-03-17 Sk能源株式会社 参与番茄红素生物合成的基因、含有该基因的重组载体以及带有重组载体的转化的微生物
EP2291530A1 (de) * 2008-06-27 2011-03-09 Evonik Röhm GmbH 2-hydroxyisobuttersäure produzierende rekombinante zelle

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109097385A (zh) * 2018-07-26 2018-12-28 西安海斯夫生物科技有限公司 一种产β-胡萝卜素类球红细菌工程菌株及其构建方法
CN109097385B (zh) * 2018-07-26 2022-05-20 西安海斯夫生物科技有限公司 一种产β-胡萝卜素类球红细菌工程菌株及其构建方法
CN109593120A (zh) * 2019-01-15 2019-04-09 华中农业大学 一种橙色类胡萝卜素蛋白的制备方法
CN111454854A (zh) * 2020-05-02 2020-07-28 昆明理工大学 一株产虾青素的红冬孢酵母基因工程菌株
CN112852694A (zh) * 2020-10-26 2021-05-28 中国科学院天津工业生物技术研究所 虾青素合成菌株构建及其应用

Also Published As

Publication number Publication date
CN106801028B (zh) 2019-12-31

Similar Documents

Publication Publication Date Title
Lin et al. Metabolic engineering a yeast to produce astaxanthin
Zhou et al. Highly efficient biosynthesis of astaxanthin in Saccharomyces cerevisiae by integration and tuning of algal crtZ and bkt
CN106801028A (zh) 产高含量玉米黄素或虾青素工程菌及其应用
Armstrong et al. Genetics and molecular biology of carotenoid pigment biosynthesis
Nishizaki et al. Metabolic engineering of carotenoid biosynthesis in Escherichia coli by ordered gene assembly in Bacillus subtilis
Verdoes et al. Metabolic engineering of the carotenoid biosynthetic pathway in the yeast Xanthophyllomyces dendrorhous (Phaffia rhodozyma)
Schmidt-Dannert Engineering novel carotenoids in microorganisms
León et al. Metabolic engineering of ketocarotenoids biosynthesis in the unicelullar microalga Chlamydomonas reinhardtii
Sieiro et al. Genetic basis of microbial carotenogenesis
Wang et al. Engineering of β-carotene hydroxylase and ketolase for astaxanthin overproduction in Saccharomyces cerevisiae
Cataldo et al. Heterologous production of the epoxycarotenoid violaxanthin in Saccharomyces cerevisiae
Wu et al. Enhancing β-carotene production in Escherichia coli by perturbing central carbon metabolism and improving the NADPH supply
Pollmann et al. Engineering of the carotenoid pathway in Xanthophyllomyces dendrorhous leading to the synthesis of zeaxanthin
Steiger et al. Cloning of two carotenoid ketolase genes from Nostoc punctiforme for the heterologous production of canthaxanthin and astaxanthin
CN105087604B (zh) 一种sll0147基因在合成集胞藻类胡萝卜素中的应用
Choi et al. Characterization of bacterial β-carotene 3, 3′-hydroxylases, CrtZ, and P450 in astaxanthin biosynthetic pathway and adonirubin production by gene combination in Escherichia coli
US20090093015A1 (en) Beta-cryptoxanthin production using a novel lycopene beta-monocyclase gene
Xie et al. Metabolic engineering of non-carotenoid-producing yeast Yarrowia lipolytica for the biosynthesis of zeaxanthin
CN109943493A (zh) 实现通用酶催化功能多样性的突变体菌株及其构建方法
Kim et al. Over-production of β-carotene from metabolically engineered Escherichia coli
Zhang et al. Improving astaxanthin production in Escherichia coli by co-utilizing CrtZ enzymes with different substrate preference
CN109097385B (zh) 一种产β-胡萝卜素类球红细菌工程菌株及其构建方法
EP2088199A1 (en) A strain of genetically reengineered escherichia coli for biosynthesis of high yield carotenoids after mutation screening
Watcharawipas et al. Red yeasts and their carotenogenic enzymes for microbial carotenoid production
Liu et al. Enhanced coproduction of cell-bound zeaxanthin and secreted exopolysaccharides by Sphingobium sp. via metabolic engineering and optimized fermentation

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant