CN106799245A - 高效降解染料废水的3DMoS2/RGO复合气凝胶光催化材料及其制备方法 - Google Patents
高效降解染料废水的3DMoS2/RGO复合气凝胶光催化材料及其制备方法 Download PDFInfo
- Publication number
- CN106799245A CN106799245A CN201710071984.6A CN201710071984A CN106799245A CN 106799245 A CN106799245 A CN 106799245A CN 201710071984 A CN201710071984 A CN 201710071984A CN 106799245 A CN106799245 A CN 106799245A
- Authority
- CN
- China
- Prior art keywords
- mos
- waste water
- composite aerogel
- rgo composite
- solution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000463 material Substances 0.000 title claims abstract description 46
- 239000002131 composite material Substances 0.000 title claims abstract description 44
- 238000006555 catalytic reaction Methods 0.000 title claims abstract description 43
- 239000004964 aerogel Substances 0.000 title claims abstract description 40
- 239000002351 wastewater Substances 0.000 title claims abstract description 28
- 230000015556 catabolic process Effects 0.000 title claims abstract description 27
- 238000006731 degradation reaction Methods 0.000 title claims abstract description 27
- 238000002360 preparation method Methods 0.000 title claims abstract description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 25
- 229910021389 graphene Inorganic materials 0.000 claims abstract description 21
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 20
- 239000000975 dye Substances 0.000 claims abstract description 17
- 238000001027 hydrothermal synthesis Methods 0.000 claims abstract description 14
- 229920001343 polytetrafluoroethylene Polymers 0.000 claims abstract description 14
- UMGDCJDMYOKAJW-UHFFFAOYSA-N thiourea Chemical compound NC(N)=S UMGDCJDMYOKAJW-UHFFFAOYSA-N 0.000 claims abstract description 14
- 238000011282 treatment Methods 0.000 claims abstract description 12
- 238000013019 agitation Methods 0.000 claims abstract description 11
- 238000000502 dialysis Methods 0.000 claims abstract description 11
- 238000004108 freeze drying Methods 0.000 claims abstract description 11
- 229910003208 (NH4)6Mo7O24·4H2O Inorganic materials 0.000 claims abstract description 10
- 239000004810 polytetrafluoroethylene Substances 0.000 claims abstract description 6
- -1 polytetrafluoroethylene Polymers 0.000 claims abstract description 4
- 229910052961 molybdenite Inorganic materials 0.000 claims description 15
- 229910052982 molybdenum disulfide Inorganic materials 0.000 claims description 15
- CWQXQMHSOZUFJS-UHFFFAOYSA-N molybdenum disulfide Chemical compound S=[Mo]=S CWQXQMHSOZUFJS-UHFFFAOYSA-N 0.000 claims description 13
- 238000000034 method Methods 0.000 claims description 9
- 229910019626 (NH4)6Mo7O24 Inorganic materials 0.000 claims description 4
- 238000005286 illumination Methods 0.000 description 9
- 239000003054 catalyst Substances 0.000 description 8
- 238000005516 engineering process Methods 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 230000003197 catalytic effect Effects 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 239000010919 dye waste Substances 0.000 description 2
- 230000001699 photocatalysis Effects 0.000 description 2
- 239000011941 photocatalyst Substances 0.000 description 2
- 229920000742 Cotton Polymers 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000009303 advanced oxidation process reaction Methods 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000002537 cosmetic Substances 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000004043 dyeing Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000003925 fat Substances 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 210000004209 hair Anatomy 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 239000010842 industrial wastewater Substances 0.000 description 1
- 238000001764 infiltration Methods 0.000 description 1
- 239000010985 leather Substances 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 229910052976 metal sulfide Inorganic materials 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 239000004753 textile Substances 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 239000002966 varnish Substances 0.000 description 1
- 238000003911 water pollution Methods 0.000 description 1
- 239000001993 wax Substances 0.000 description 1
- 210000002268 wool Anatomy 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J27/00—Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
- B01J27/02—Sulfur, selenium or tellurium; Compounds thereof
- B01J27/04—Sulfides
- B01J27/047—Sulfides with chromium, molybdenum, tungsten or polonium
- B01J27/051—Molybdenum
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/20—Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
- B01J35/23—Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/30—Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
- B01J35/39—Photocatalytic properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/50—Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
- B01J35/58—Fabrics or filaments
- B01J35/59—Membranes
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/30—Treatment of water, waste water, or sewage by irradiation
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/30—Organic compounds
- C02F2101/308—Dyes; Colorants; Fluorescent agents
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/30—Wastewater or sewage treatment systems using renewable energies
- Y02W10/37—Wastewater or sewage treatment systems using renewable energies using solar energy
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Toxicology (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Carbon And Carbon Compounds (AREA)
- Catalysts (AREA)
Abstract
本发明公开了一种高效降解染料废水的3D MoS2/RGO复合气凝胶光催化材料及其制备方法,具体步骤为:将氧化石墨烯加入到水中并超声分散40min得到溶液A;将(NH4)6Mo7O24·4H2O和硫脲加入到溶液A中,磁力搅拌1h得到深褐色溶液B;将溶液B加入到聚四氟乙烯水热反应釜中于200℃水热反应24h;自然冷却至室温,取出所制得的样品经水透析处理后冷冻干燥48h即制得3D MoS2/RGO复合气凝胶光催化材料。本发明采用一锅法制备出高效降解染料废水的3D MoS2/RGO复合气凝胶光催化材料,该复合气凝胶光催化材料具有在常温下高效降解染料废水的特性。
Description
技术领域
本发明属于复合光催化材料技术领域,具体涉及一种高效降解染料废水的3DMoS2/RGO复合气凝胶光催化材料及其制备方法。
背景技术
据估计,全世界每年合成染料及颜料在106吨左右,种类超过10000种,而这些被广泛应用于纺织工业染色,尼龙,羊毛,棉花和丝绸;以及着色油,脂肪,蜡,清漆和塑料;纸,皮革,化妆品和食品工业等,其中约10%的染料随工业废水排出,污染水源。严重的水污染威胁了人类的健康,因而废水的净化技术受到了人们越来越多的重视。近年来,许多用于将染料从废水中去除的技术已经被研究,主要包括化学氧化还原法、物理絮凝沉淀法、光催化法、吸附、电化学处理、高级氧化法、反渗透和生物去除法。其中,光催化法已经被广泛研究去降解染料废水,对光催化剂的研究也引起了人们的广泛关注。石墨烯是一种具有多种优良性能的材料,不仅透明、导电、硬度高、柔韧性好,还带有其它一系列优良性能,已广泛应用于电气和机械设备。此外,经还原过后的RGO气凝胶更是具有低密度、高比表面积和大孔径的优良特性。而MoS2本身作为一种典型类石墨烯的过渡金属硫化物,它具有良好的光、电特性及催化性能,它的禁带宽度为1.2-1.8eV,是一种理想的可见光响应的光催化剂,它能更充分地利用太阳光。MoS2/RGO复合气凝胶光催化剂充分结合了两者优点,以3D网状结构气凝胶作为支撑的纳米材料不仅质量轻结构稳定,可以直接回收;而且也因为石墨烯的导电性,可将光照下产生的电子转移,而提高了催化剂的催化性能。因此MoS2/RGO复合气凝胶光催化剂不仅解决了粉末状催化剂难固定,难回收的缺点,而且提高了催化剂的催化活性。在本研究中着重研究了不同的质量比对光催化剂催化性能的影响,提出了一种简单而有效的水热合成3D薄膜状结构的MoS2/RGO复合气凝胶光催化材料的方法,并且它能高效地降解染料废水,为治理废水,保护环境提供了一种有效的新方法。
发明内容
本发明解决的技术问题是提供了一种操作简单且环境友好的用于高效降解染料废水的3D MoS2/RGO复合气凝胶光催化材料及其制备方法。
本发明为解决上述技术问题采用如下技术方案,高效降解染料废水的3D MoS2/RGO复合气凝胶光催化材料的制备方法,其特征在于具体步骤为:
(1)将氧化石墨烯加入到水中并超声分散40min得到溶液A;
(2)将(NH4)6Mo7O24·4H2O和硫脲加入到溶液A中,磁力搅拌1h得到深褐色溶液B;
(3)将溶液B加入到聚四氟乙烯水热反应釜中于200℃水热反应24h;
(4)自然冷却至室温,取出所制得的样品经水透析处理后冷冻干燥48h即制得3D薄膜状结构的MoS2/RGO复合气凝胶光催化材料。
进一步优选,所述的氧化石墨烯、(NH4)6Mo7O24·4H2O和硫脲的质量比为0.1-0.5:0.12-0.6:0.98-4.9。
进一步优选,所述的氧化石墨烯、(NH4)6Mo7O24·4H2O和硫脲的质量比为0.4:0.24:1.96,制得的3D MoS2/RGO复合气凝胶光催化材料中MoS2与RGO的质量比为1:2,该3D MoS2/RGO复合气凝胶光催化材料在可见光下降解15mg/L的罗丹明B染料废水,3h的降解率为99.7%。
本发明所述的高效降解染料废水的3D MoS2/RGO复合气凝胶光催化材料,其特征在于是由上述方法制备得到的。
本发明与现有技术相比具有以下有益效果:本发明采用一锅法制备出高效降解染料废水的3D MoS2/RGO复合气凝胶光催化材料,该复合气凝胶光催化材料具有在常温下高效降解染料废水的特性,因此本发明提供了一种能够通过简单绿色的制备工艺获得复合气凝胶光催化材料的方法。
附图说明
图1是本发明实施例1-8制得的光催化材料的降解性能柱状图;
图2是本发明实施例3-8制得的光催化材料的SEM图,其中a-MG-1、b-MG-2、c-MG-3、d-MG-4、e-MG-5、f-MG-6。
图3是本发明实施例1-8制得的光催化材料的XRD图谱。
具体实施方式
以下通过实施例对本发明的上述内容做进一步详细说明,但不应该将此理解为本发明上述主题的范围仅限于以下的实施例,凡基于本发明上述内容实现的技术均属于本发明的范围。
实施例1
将0.4g氧化石墨烯加入到60mL水中并超声分散40min得到溶液A;将溶液A磁力搅拌1h,加入到100mL聚四氟乙烯反应釜中于200℃水热反应24h;自然冷却至室温,取出所制得的样品经水透析处理后冷冻干燥48h即制得纯的RGO气凝胶材料,标记为RGO。
本实施例制得的RGO气凝胶材料在模拟太阳光(可见光)光照下降解15mg/L的罗丹明B染料废水,3h的降解率为58.1%。
实施例2
将0.24g (NH4)6Mo7O24·4H2O和1.96g硫脲加入到60mL水中并磁力搅拌1h得到溶液B;将溶液B加入到100mL聚四氟乙烯反应釜中于200℃水热反应24h;自然冷却至室温,取出所制得的样品经水透析处理后冷冻干燥48h即制得MoS2光催化材料,标记为MS。
本实施例制得的MS光催化材料在模拟太阳光(可见光)光照下降解15mg/L的罗丹明B染料废水,3h的降解率为54%。
实施例3
将0.1g氧化石墨烯加入到60mL水中并超声分散40min得到溶液A;将0.6g (NH4)6Mo7O24·4H2O和4.9g硫脲加入到溶液A中,磁力搅拌1h得到深褐色溶液B;将溶液B加入到100mL聚四氟乙烯反应釜中于200℃水热反应24h;自然冷却至室温,取出所制得的样品经水透析处理后冷冻干燥48h即制得质量比为5:1的MoS2/RGO复合气凝胶光催化材料,标记为MG-1。
本实施例制得的MG-1复合气凝胶光催化材料在模拟太阳光(可见光)光照下降解15mg/L的罗丹明B染料废水,3h的降解率为50.3%。
实施例4
将0.1g氧化石墨烯加入到60mL水中并超声分散40min得到溶液A;将0.24g (NH4)6Mo7O24·4H2O和1.96g硫脲加入到溶液A中,磁力搅拌1h得到深褐色溶液B;将溶液B加入到100mL聚四氟乙烯反应釜中于200℃水热反应24h;自然冷却至室温,取出所制得的样品经水透析处理后冷冻干燥48h即制得质量比为2:1的MoS2/RGO复合气凝胶光催化材料,标记为MG-2。
本实施例制得的MG-2复合气凝胶光催化材料在模拟太阳光(可见光)光照下降解15mg/L的罗丹明B染料废水,3h的降解率为60.5%。
实施例5
将0.2g氧化石墨烯加入到60mL水中并超声分散40min得到溶液A;将0.24g (NH4)6Mo7O24·4H2O和1.96g硫脲加入到溶液A中,磁力搅拌1h得到深褐色溶液B;将溶液B加入到100mL聚四氟乙烯反应釜中于200℃水热反应24h;自然冷却至室温,取出所制得的样品经水透析处理后冷冻干燥48h即制得质量比为1:1的MoS2/RGO复合气凝胶光催化材料,标记为MG-3。
本实施例制得的MG-3复合气凝胶光催化材料在模拟太阳光(可见光)光照下降解15mg/L的罗丹明B染料废水,3h的降解率为74.8%。
实施例6
将0.4g氧化石墨烯加入到60mL水中并超声分散40min得到溶液A;将0.24g (NH4)6Mo7O24·4H2O和1.96g硫脲加入到溶液A中,磁力搅拌1h得到深褐色溶液B;将溶液B加入到100mL聚四氟乙烯反应釜中于200℃水热反应24h;自然冷却至室温,取出所制得的样品经水透析处理后冷冻干燥48h即制得质量比为1:2的MoS2/RGO复合气凝胶光催化材料,标记为MG-4。
本实施例制得的MG-4复合气凝胶光催化材料在模拟太阳光(可见光)光照下降解15mg/L的罗丹明B染料废水,3h的降解率为99.7%。
实施例7
将0.3g氧化石墨烯加入到60mL水中并超声分散40min得到溶液A;将0.12g (NH4)6Mo7O24·4H2O和0.98g硫脲加入到溶液A中,磁力搅拌1h得到深褐色溶液B;将溶液B加入到100mL聚四氟乙烯反应釜中于200℃水热反应24h;自然冷却至室温,取出所制得的样品经水透析处理后冷冻干燥48h即制得质量比为1:3的MoS2/RGO复合气凝胶光催化材料,标记为MG-5。
本实施例制得的MG-5复合气凝胶光催化材料在模拟太阳光(可见光)光照下降解15mg/L的罗丹明B染料废水,3h的降解率为58.6%。
实施例8
将0.5g氧化石墨烯加入到60mL水中并超声分散40min得到溶液A;将0.12g (NH4)6Mo7O24·4H2O和0.98g硫脲加入到溶液A中,磁力搅拌1h得到深褐色溶液B;将溶液B加入到100mL聚四氟乙烯反应釜中于200℃水热反应24h;自然冷却至室温,取出所制得的样品经水透析处理后冷冻干燥48h即制得质量比为1:5的MoS2/RGO复合气凝胶光催化材料,标记为MG-6。
本实施例制得的MG-6复合气凝胶光催化材料在模拟太阳光(可见光)光照下降解15mg/L的罗丹明B染料废水,3h的降解率为57.3%。
图2说明石墨烯的负载量影响复合光催化剂的形貌,随着石墨烯负载量的增加,3DMoS2/RGO复合气凝胶光催化材料逐渐分散开,石墨烯表面附着的球状MoS2也逐渐减少,与此同时石墨烯也由原来的块状变为薄膜状,分散地更均匀。
图3对样品进行X射线衍射分析,通过XRD结果显示,该催化剂随着负载量的变化没有晶型转变,但是2θ=15º左右的衍射峰随着石墨烯负载量的增加而逐渐减弱(如图3左)。从图3(右)可知,负载过石墨烯后的复合材料的晶型与单纯的二硫化钼相一致,RGO 的峰并未在复合材料中出现,但是复合材料的峰强随负载量的变化验证了复合材料中石墨烯的存在。
以上实施例描述了本发明的基本原理、主要特征及优点,本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明原理的范围下,本发明还会有各种变化和改进,这些变化和改进均落入本发明保护的范围内。
Claims (4)
1.高效降解染料废水的3D MoS2/RGO复合气凝胶光催化材料的制备方法,其特征在于具体步骤为:
(1)将氧化石墨烯加入到水中并超声分散40min得到溶液A;
(2)将(NH4)6Mo7O24·4H2O和硫脲加入到溶液A中,磁力搅拌1h得到深褐色溶液B;
(3)将溶液B加入到聚四氟乙烯水热反应釜中于200℃水热反应24h;
(4)自然冷却至室温,取出所制得的样品经水透析处理后冷冻干燥48h即制得3D薄膜状结构的MoS2/RGO复合气凝胶光催化材料。
2.根据权利要求1所述的高效降解染料废水的3D MoS2/RGO复合气凝胶光催化材料的制备方法,其特征在于:所述的氧化石墨烯、(NH4)6Mo7O24·4H2O和硫脲的质量比为0.1-0.5:0.12-0.6:0.98-4.9。
3.根据权利要求1所述的高效降解染料废水的3D MoS2/RGO复合气凝胶光催化材料的制备方法,其特征在于:所述的氧化石墨烯、(NH4)6Mo7O24·4H2O和硫脲的质量比为0.4:0.24:1.96,制得的3D MoS2/RGO复合气凝胶光催化材料中MoS2与RGO的质量比为1:2,该3D MoS2/RGO复合气凝胶光催化材料在可见光下降解15mg/L的罗丹明B染料废水,3h的降解率为99.7%。
4.高效降解染料废水的3D MoS2/RGO复合气凝胶光催化材料,其特征在于是由权利要求1-3中任意一项所述的方法制备得到的。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710071984.6A CN106799245B (zh) | 2017-02-09 | 2017-02-09 | 高效降解染料废水的3DMoS2/RGO复合气凝胶光催化材料及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710071984.6A CN106799245B (zh) | 2017-02-09 | 2017-02-09 | 高效降解染料废水的3DMoS2/RGO复合气凝胶光催化材料及其制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106799245A true CN106799245A (zh) | 2017-06-06 |
CN106799245B CN106799245B (zh) | 2020-03-10 |
Family
ID=58987546
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710071984.6A Expired - Fee Related CN106799245B (zh) | 2017-02-09 | 2017-02-09 | 高效降解染料废水的3DMoS2/RGO复合气凝胶光催化材料及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106799245B (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107486184A (zh) * | 2017-10-09 | 2017-12-19 | 中国科学院长春应用化学研究所 | 一种用于去除水体中无机汞离子和甲基汞化合物的吸附材料及其制备方法 |
CN108686681A (zh) * | 2018-05-14 | 2018-10-23 | 南昌航空大学 | 一种具有可见光催化活性的石墨烯/ZnS-MoS2纳米固溶体光催化剂 |
CN109772454A (zh) * | 2019-02-28 | 2019-05-21 | 清华大学深圳研究生院 | 光催化膜及其制备方法和对消毒副产物前体物的降解应用 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104117367A (zh) * | 2014-08-12 | 2014-10-29 | 福州大学 | 一种BiOBr/RGO复合气凝胶及其制备方法和应用 |
CN104226290A (zh) * | 2014-09-09 | 2014-12-24 | 福州大学 | 一种TiO2/RGO气凝胶及其制备方法和应用 |
CN104600315A (zh) * | 2015-01-07 | 2015-05-06 | 上海大学 | 一种片状MoS2/石墨烯复合气凝胶及其制备方法 |
CN105499600A (zh) * | 2015-12-15 | 2016-04-20 | 中国科学院上海高等研究院 | 一种制备银纳米线-石墨烯复合气凝胶的方法 |
CN105618085A (zh) * | 2015-12-19 | 2016-06-01 | 西安交通大学 | 一种rGO负载花瓣状MoS2异质结构的制备方法 |
CN106268875A (zh) * | 2016-08-15 | 2017-01-04 | 河南师范大学 | 一种用于高效降解染料废水的MoS2光催化剂及其制备方法 |
-
2017
- 2017-02-09 CN CN201710071984.6A patent/CN106799245B/zh not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104117367A (zh) * | 2014-08-12 | 2014-10-29 | 福州大学 | 一种BiOBr/RGO复合气凝胶及其制备方法和应用 |
CN104226290A (zh) * | 2014-09-09 | 2014-12-24 | 福州大学 | 一种TiO2/RGO气凝胶及其制备方法和应用 |
CN104600315A (zh) * | 2015-01-07 | 2015-05-06 | 上海大学 | 一种片状MoS2/石墨烯复合气凝胶及其制备方法 |
CN105499600A (zh) * | 2015-12-15 | 2016-04-20 | 中国科学院上海高等研究院 | 一种制备银纳米线-石墨烯复合气凝胶的方法 |
CN105618085A (zh) * | 2015-12-19 | 2016-06-01 | 西安交通大学 | 一种rGO负载花瓣状MoS2异质结构的制备方法 |
CN106268875A (zh) * | 2016-08-15 | 2017-01-04 | 河南师范大学 | 一种用于高效降解染料废水的MoS2光催化剂及其制备方法 |
Non-Patent Citations (1)
Title |
---|
RUIYANG ZHANG, ET AL: "Three-dimensional MoS2/reduced graphene oxide aerogel as a macroscopic visible-light photocatalyst", 《CHINESE JOURNAL OF CATALYSIS》 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107486184A (zh) * | 2017-10-09 | 2017-12-19 | 中国科学院长春应用化学研究所 | 一种用于去除水体中无机汞离子和甲基汞化合物的吸附材料及其制备方法 |
CN108686681A (zh) * | 2018-05-14 | 2018-10-23 | 南昌航空大学 | 一种具有可见光催化活性的石墨烯/ZnS-MoS2纳米固溶体光催化剂 |
CN108686681B (zh) * | 2018-05-14 | 2021-05-28 | 南昌航空大学 | 一种具有可见光催化活性的石墨烯/ZnS-MoS2纳米固溶体光催化剂 |
CN109772454A (zh) * | 2019-02-28 | 2019-05-21 | 清华大学深圳研究生院 | 光催化膜及其制备方法和对消毒副产物前体物的降解应用 |
CN109772454B (zh) * | 2019-02-28 | 2021-07-27 | 清华大学深圳研究生院 | 光催化膜及其制备方法和对消毒副产物前体物的降解应用 |
Also Published As
Publication number | Publication date |
---|---|
CN106799245B (zh) | 2020-03-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zhang et al. | In situ preparation of cubic Cu2O-RGO nanocomposites for enhanced visible-light degradation of methyl orange | |
Gu et al. | Synthesis and photocatalytic activity of graphene based doped TiO2 nanocomposites | |
Hsieh et al. | Pt-TiO2/graphene photocatalysts for degradation of AO7 dye under visible light | |
Umer et al. | Montmorillonite dispersed single wall carbon nanotubes (SWCNTs)/TiO2 heterojunction composite for enhanced dynamic photocatalytic H2 production under visible light | |
Channei et al. | The staggered heterojunction of CeO2/CdS nanocomposite for enhanced photocatalytic activity | |
CN107020142B (zh) | 泡沫镍负载碳氮/还原石墨烯光催化剂的制备方法 | |
Maavia et al. | Facile synthesis of g-C3N4/CdWO4 with excellent photocatalytic performance for the degradation of Minocycline | |
Chan et al. | Photocatalytic activity of β-MnO2 nanotubes grown on PET fibre under visible light irradiation | |
CN107020143A (zh) | 一种可见光响应三元复合光催化剂的制备方法和用途 | |
CN106799245A (zh) | 高效降解染料废水的3DMoS2/RGO复合气凝胶光催化材料及其制备方法 | |
Zhai et al. | Effective sonocatalytic degradation of organic dyes by using Er3+: YAlO3/TiO2–SnO2 under ultrasonic irradiation | |
CN102671676A (zh) | 一种SnO2/SnS2异质结光催化剂的制备方法 | |
Kannan et al. | Facile one-step synthesis of cerium oxide-carbon quantum dots/RGO nanohybrid catalyst and its enhanced photocatalytic activity | |
Ri et al. | The synthesis of a Bi 2 MoO 6/Bi 4 V 2 O 11 heterojunction photocatalyst with enhanced visible-light-driven photocatalytic activity | |
CN109847786A (zh) | 一种Z型光催化剂MgAlLDH/CN-H的制备方法及应用 | |
CN102698775A (zh) | 一种BiOI-石墨烯可见光催化剂及其制备方法 | |
Liao et al. | A novel g-C3N4/BiOI/Ag2WO4 heterojunction for efficient degradation of organic pollutants under visible light irradiation | |
Yu et al. | Facile synthesis of a robust visible-light-driven AgCl/WO3 composite microrod photocatalyst | |
Mahalingam et al. | Synthesis and application of graphene-αMoO3 nanocomposite for improving visible light irradiated photocatalytic decolorization of methylene blue dye | |
CN106732514A (zh) | 可回收型氧化锌/石墨烯气凝胶光催化剂及其制备方法 | |
CN107020073A (zh) | 一种基于石墨烯的光催化剂材料的制备方法 | |
CN106582812A (zh) | 一种金属锌卟啉轴向功能化二氧化钛的复合光催化剂及其制备方法 | |
Fan et al. | Preparation of g-C3N4/MoS2 composite material and its visible light catalytic performance | |
CN106512987A (zh) | 钨酸铋/石墨烯气凝胶复合可见光催化剂及其制备方法 | |
Li et al. | Large-scale pattern fabrication of 3D rGO-Ag@ Ag3PO4 hydrogel composite photocatalyst with the excellent synergistic effect of adsorption and photocatalysis degradation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20200310 Termination date: 20220209 |
|
CF01 | Termination of patent right due to non-payment of annual fee |