CN106784124B - 一种基于P‑NiO/N‑ZnO:Al异质结结构的紫外探测器及其制备方法 - Google Patents

一种基于P‑NiO/N‑ZnO:Al异质结结构的紫外探测器及其制备方法 Download PDF

Info

Publication number
CN106784124B
CN106784124B CN201611208996.0A CN201611208996A CN106784124B CN 106784124 B CN106784124 B CN 106784124B CN 201611208996 A CN201611208996 A CN 201611208996A CN 106784124 B CN106784124 B CN 106784124B
Authority
CN
China
Prior art keywords
nio
zno
substrate
films
ultraviolet detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201611208996.0A
Other languages
English (en)
Other versions
CN106784124A (zh
Inventor
何海平
王渭天
金政
金一政
叶志镇
李硕星
李静
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN201611208996.0A priority Critical patent/CN106784124B/zh
Publication of CN106784124A publication Critical patent/CN106784124A/zh
Application granted granted Critical
Publication of CN106784124B publication Critical patent/CN106784124B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/109Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN heterojunction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1876Particular processes or apparatus for batch treatment of the devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Light Receiving Elements (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明公开了一种基于P‑NiO/N‑ZnO:Al异质结结构紫外探测器及其制备方法,该探测器包括P型NiO薄膜和N型ZnO:Al薄膜构成的异质PN结。其制备方法如下:将六水合硝酸镍与甘氨酸或乙酰丙酮以一定比例混合配置成溶液,在一定温度下搅拌一段时间后旋涂成膜,薄膜退火处理后,得到NiO薄膜,之后在其上采用脉冲激光沉积的方法沉积ZnO:Al薄膜,得到P‑NiO/N‑ZnO:Al异质结。此方法制备简单,能耗低,可适用于大面积器件,由此制备的异质结具有良好的整流特性,制得的紫外探测器具有良好的性能。

Description

一种基于P-NiO/N-ZnO:Al异质结结构的紫外探测器及其制备 方法
技术领域
本发明涉及一种P-NiO/N-ZnO:Al的异质结构紫外探测器及其制备方法,属于光电子功能器件领域。
背景技术
紫外探测器在环境监测,化学分析,日盲探测器上都有着广泛的应用,为了提高探测器的性能,许多材料被用来制备紫外探测器,比如ZnO、SiC、GaN、AlGaN。ZnO作为一种典型的N型半导体材料,由于其成本低廉,制备方便,近年来被视为SiC、GaN的替代品,越来越受到重视。同样,由于暗电流较低,反应速度快等优点,ZnO异质结结构的紫外探测器也受到了越来越多的研究。NiO作为一种本征P型直接带隙半导体材料,与ZnO形成异质结结构的紫外探测器具有优良的性能,原因在于异质结结构中内建电场的存在可以大大促进光生电子空穴对的有效分离,提高紫外探测器的探测灵敏度和响应速度。另外,因为NiO禁带宽度达到3.4eV,P-NiO/N-ZnO异质结紫外探测器也能够有效地探测高能紫外线。
NiO纳米材料的制备方法一般偏向于化学合成,包括水浴法、化学气相沉积(CVD)、煅烧法等。这些方法维持的周期一般而言都比较长,耗能较多,且重复性较差。例如煅烧法制备NiO纳米材料重复性比较差,需要不断调整煅烧温度及气氛等反应参数才能得到水溶性的NiO纳米晶。并且,纳米晶溶液不稳定,放置一段时间后团聚沉淀,使得样品无法再使用。
发明内容
本发明的目的是提出了一种P-NiO/N-ZnO:Al的异质结构紫外探测器及其制备方法。
一种基于P-NiO/N-ZnO:Al的异质结结构的紫外探测器,包括P型NiO层及N型ZnO:Al层,二者形成异质结,所述的NiO层是采用溶胶凝胶旋涂退火的方式获得。
本发明中制备P-NiO/N-ZnO:Al的异质结构紫外探测器的具体步骤如下:
1)按摩尔比为0.5~0.7称取还原剂和Ni(NO3)2·6H2O粉末,所述的还原剂为甘氨酸或乙酰丙酮;当还原剂为甘氨酸时,先将硝酸镍与甘氨酸混合,再加入去离子水常温~50℃下搅拌3~24h,获得NiO前驱体溶液;当还原剂为乙酰丙酮时,先将硝酸镍加入乙二醇甲醚中,于50℃下搅拌1h,再加入称量好的乙酰丙酮室温下混合均匀,获得NiO前驱体溶液;
2)将NiO前驱体溶液采用旋涂的方法,旋涂在衬底上,旋涂条件:转速为100rpm~5000rpm,温度为0℃~60℃,气氛为空气,将旋涂完的衬底在加热板上加热退火,退火温度为150℃~200℃时间5min~120min,得到NiO薄膜;
3)将步骤2)所得的薄膜利用脉冲激光沉积沉积一层ZnO:Al薄膜,沉积条件:衬底和靶材的距离为100mm,生长室真空度在2×10-3Pa以上,生长室通入纯O2,控制压强为0.1Pa~10Pa,调节激光功率为200~300mJ,频率为1~5Hz,温度为0℃~200℃,时间为5min~10min;
4)将P-NiO/N-ZnO:Al的异质结结构采用热蒸镀的方式蒸镀Au电极,蒸镀条件:蒸镀室真空度在1×10-4Pa以上,电流为150A,蒸发速率为电极厚度为120nm,得到P-NiO/N-ZnO:Al的异质结结构紫外探测器。
上述技术方案中所述的衬底可以为单晶硅片、玻璃、氧化铟锡等。
上述方法中所述的ZnO:Al靶材、Au电极纯度都在99.99%以上,甘氨酸、Ni(NO3)2·6H2O纯度均在98%以上。
本发明的优点在于:
1)本发明中NiO层制备方法简单方便,且能耗较低,温度150℃~200℃下即可得到质量优异的NiO薄膜。
2)重复性好,操作简便,适用于大面积制备NiO薄膜层。
3)该种方法制备的NiO薄膜层具有良好的电学和光学性能,获得的紫外探测器性能优异。
4)该种NiO薄膜具有一定的耐热性能,在后续的制备器件的过程中依然能保持良好的薄膜质量,为获得性能优异的紫外探测器提供可能。
附图说明
图1为P-NiO/N-ZnO:Al的异质结结构中NiO层的X射线衍射(XRD)图。
图2为NiO层的扫描图。
图3为P-NiO/N-ZnO:Al中ZnO:Al的扫描图。
图4为P-NiO/N-ZnO:Al探测器在紫外线照射下的IV特性曲线对比图。可以看出,本发明制备的探测器在360μw/cm2的紫外光照射下,电流强增强了2.94倍。
图5为采用旋涂退火法制备获得的NiO薄膜在后续150℃,2h加热前(a)后(b)的AFM对比图。可以看出,常温下粗糙度为4.55nm,150℃退火2h后粗糙度为4.75nm,变化很小。
具体实施方式
以下结合附图及具体实例进一步说明本发明。
实例1
1)以纯度为98%的Ni(NO3)2·6H2O和甘氨酸粉末为原料,按甘氨酸与Ni(NO3)2·6H2O摩尔比为6:10的比例,分别称取Ni(NO3)2·6H2O粉末0.2908g,甘氨酸粉末0.045g。将称量好的粉末倒入烧杯中,加入10ml去离子水,然后在室温下搅拌12h,使溶液完全混合,得到NiO前驱液,将ITO衬底(衬底厚度0.8cm,ITO厚度200nm)分别用丙酮,乙醇,去离子水,乙醇各超声清洗10min,将前期清洗好的衬底放入氧等离子体清洗机中继续清洗10min,之后在衬底上旋涂NiO前驱液,旋涂条件:转速2000rpm,时间40s,气氛为空气。将旋涂好的衬底放在加热板上加热,加热条件:温度200℃,时间为1h。得到NiO薄膜。
2)采用脉冲激光沉积的方法,以纯度在99.99%以上的ZnO:Al为靶材,在步骤1)的衬底上沉积一层ZnO:AL薄膜,沉积条件:衬底和靶材的距离为100mm,生长室真空度为2×10-3Pa,生长室通入纯O2,控制压强为0.1Pa,调节溅射功率为300mJ,衬底温度为200℃,溅射时间为5min,得到异质结结构的P-NiO/N-ZnO:Al薄膜。
3)将P-NiO/N-ZnO:Al的异质结结构采用热蒸镀的方式蒸镀Au电极,蒸镀条件:蒸镀室真空度在1×10-4Pa以上,电流为150A,蒸发速率为电极厚度为120nm。得到P-NiO/N-ZnO:Al的异质结结构紫外探测器。
实例2
1)以纯度为98%的Ni(NO3)2·6H2O和甘氨酸粉末为原料,按甘氨酸与Ni(NO3)2·6H2O摩尔比为5:10的比例分别称取后混合。将称量好的粉末倒入烧杯中,加入10ml去离子水,然后在室温下搅拌12h,使溶液完全混合,得到NiO前驱液,将ITO衬底(衬底厚度0.8cm,ITO厚度200nm)分别用丙酮,乙醇,去离子水,乙醇各超声清洗10min,将前期清洗好的衬底放入氧等离子体清洗机中继续清洗10min,之后在衬底上旋涂NiO前驱液,旋涂条件:转速3000rpm,时间40s,气氛为空气。将旋涂好的衬底放在加热板上加热,加热条件:温度200℃,时间为0.5h。得到NiO薄膜。
2)采用脉冲激光沉积的方法,以纯度在99.99%以上的ZnO:Al为靶材,在步骤1)的衬底上沉积一层ZnO:AL薄膜,沉积条件:衬底和靶材的距离为100mm,生长室真空度为2×10-3Pa,生长室通入纯O2,控制压强为0.1Pa,调节溅射功率为300mJ,衬底温度为200℃,溅射时间为4min,得到异质结结构的P-NiO/N-ZnO:Al薄膜。
3)将P-NiO/N-ZnO:Al的异质结结构采用热蒸镀的方式蒸镀Au电极,蒸镀条件:蒸镀室真空度在1×10-4Pa以上,电流为150A,蒸发速率为电极厚度为120nm。得到P-NiO/N-ZnO:Al的异质结结构紫外探测器。
实例3
1)以纯度为98%的Ni(NO3)2·6H2O和甘氨酸粉末为原料,按甘氨酸与Ni(NO3)2·6H2O摩尔比为7:10的比例分别称取后混合。将称量好的粉末倒入烧杯中,加入10ml去离子水,然后在室温下搅拌12h,使溶液完全混合,得到NiO前驱液,将ITO衬底(衬底厚度0.8cm,ITO厚度200nm)分别用丙酮,乙醇,去离子水,乙醇各超声清洗10min,将前期清洗好的衬底放入氧等离子体清洗机中继续清洗10min,之后在衬底上旋涂NiO前驱液,旋涂条件:转速4000rpm,时间40s,气氛为空气。将旋涂好的衬底放在加热板上加热,加热条件:温度200℃,时间为10min。得到NiO薄膜。
2)采用脉冲激光沉积的方法,以纯度在99.99%以上的ZnO:Al为靶材,在步骤1)的衬底上沉积一层ZnO:AL薄膜,沉积条件:衬底和靶材的距离为100mm,生长室真空度为2×10-3Pa,生长室通入纯O2,控制压强为0.1Pa,调节溅射功率为300mJ,衬底温度为200℃,溅射时间为2min,得到异质结结构的P-NiO/N-ZnO:Al薄膜。
3)将P-NiO/N-ZnO:Al的异质结结构采用热蒸镀的方式蒸镀Au电极,蒸镀条件:蒸镀室真空度在1×10-4Pa以上,电流为150A,蒸发速率为电极厚度为120nm。得到P-NiO/N-ZnO:Al的异质结结构紫外探测器。
实例4
1)以纯度为98%的Ni(NO3)2·6H2O和甘氨酸粉末为原料,按甘氨酸与Ni(NO3)2·6H2O摩尔比为6:10的比例,分别称取Ni(NO3)2·6H2O粉末0.2908g,甘氨酸粉末0.045g。将称量好的粉末倒入烧杯中,加入10ml去离子水,然后在室温下搅拌12h,使溶液完全混合,得到NiO前驱液,将ITO衬底(衬底厚度0.8cm,ITO厚度200nm)分别用丙酮,乙醇,去离子水,乙醇各超声清洗10min,将前期清洗好的衬底放入氧等离子体清洗机中继续清洗10min,之后在衬底上旋涂NiO前驱液,旋涂条件:转速4000rpm,时间40s,气氛为空气。将旋涂好的衬底放在加热板上加热,加热条件:温度175℃,时间为2h。得到NiO薄膜。
2)采用脉冲激光沉积的方法,以纯度在99.99%以上的ZnO:Al为靶材,在步骤1)的衬底上沉积一层ZnO:AL薄膜,沉积条件:衬底和靶材的距离为100mm,生长室真空度为2×10-3Pa,生长室通入纯O2,控制压强为0.1Pa,调节溅射功率为300mJ,衬底温度为200℃,溅射时间为2min,得到异质结结构的P-NiO/N-ZnO:Al薄膜。
3)将P-NiO/N-ZnO:Al的异质结结构采用热蒸镀的方式蒸镀Au电极,蒸镀条件:蒸镀室真空度在1×10-4Pa以上,电流为150A,蒸发速率为电极厚度为120nm。得到P-NiO/N-ZnO:Al的异质结结构紫外探测器。
实例5
1)以纯度98%的Ni(NO3)2·6H2O和乙酰丙酮为原料,称取Ni(NO3)2·6H2O粉末0.2908g,量取乙二醇甲醚10ml,将两者混合并且在50℃下搅拌1h,之后加入10μl乙酰丙酮后再在室温下再搅拌3h,使溶液完全混合,得到NiO前驱液,将ITO衬底(衬底厚度0.8cm,ITO厚度200nm)分别用丙酮,乙醇,去离子水,乙醇各超声清洗10min,将前期清洗好的衬底放入氧等离子体清洗机中继续清洗10min,之后在衬底上旋涂NiO前驱液,旋涂条件:转速2000rpm,时间40s,气氛为空气。将旋涂好的衬底放在加热板上加热,加热条件:温度150℃,时间为1h。得到NiO薄膜。
2)采用脉冲激光沉积的方法,以纯度在99.99%以上的ZnO:Al为靶材,在步骤1)的衬底上沉积一层ZnO:AL薄膜,沉积条件:衬底和靶材的距离为100mm,生长室真空度为2×10-3Pa,生长室通入纯O2,控制压强为0.1Pa,调节溅射功率为300mJ,衬底温度为200℃,溅射时间为5min,得到异质结结构的P-NiO/N-ZnO:Al薄膜。
3)将P-NiO/N-ZnO:Al的异质结结构采用热蒸镀的方式蒸镀Au电极,蒸镀条件:蒸镀室真空度在1×10-4Pa以上,电流为150A,蒸发速率为电极厚度为120nm。得到P-NiO/N-ZnO:Al的异质结结构紫外探测器。

Claims (2)

1.一种基于P-NiO/N-ZnO:Al的异质结结构紫外探测器的制备方法,该紫外探测器包括P型NiO层及N型ZnO:Al层,二者形成异质结,所述的NiO层是采用溶胶凝胶旋涂退火的方式获得,其特征在于,其制备方法步骤如下:
1)按摩尔比为0.5~0.7称取还原剂和Ni(NO3)2•6 H2O粉末,所述的还原剂为甘氨酸或乙酰丙酮;当还原剂为甘氨酸时,先将硝酸镍与甘氨酸混合,再加入去离子水常温~50℃下搅拌3~24h,获得NiO前驱体溶液;当还原剂为乙酰丙酮时,先将硝酸镍加入乙二醇甲醚中,于50℃下搅拌1h,再加入称量好的乙酰丙酮室温下混合均匀,获得NiO前驱体溶液;
2)将NiO前驱体溶液采用旋涂的方法,旋涂在衬底上,旋涂条件:转速为100rpm~5000rpm,温度为0℃~60℃,气氛为空气,将旋涂完的衬底在加热板上加热退火,退火温度为150℃~200℃时间5min~120min,得到NiO薄膜;
3)将步骤2)所得的薄膜利用脉冲激光沉积沉积一层ZnO:Al薄膜,沉积条件:衬底和靶材的距离为100mm,生长室真空度在2×10-3 Pa以上,生长室通入纯O2,控制压强为0.1Pa ~10 Pa,调节激光功率为200~300mJ,频率为1~5Hz,温度为0℃~200℃,时间为5min~10min;
4)将P-NiO/N-ZnO:Al的异质结结构采用热蒸镀的方式蒸镀Au电极,蒸镀条件:蒸镀室真空度在1×10-4 Pa以上,电流为150A,蒸发速率为10Å/s,电极厚度为120nm,得到p-NiO/n-ZnO:Al的异质结结构紫外探测器。
2.按权利要求1所述的基于P-NiO/N-ZnO:Al的异质结结构紫外探测器的制备方法,其特征在于,所述的衬底为单晶硅片、石英、玻璃、氧化铟锡。
CN201611208996.0A 2016-12-23 2016-12-23 一种基于P‑NiO/N‑ZnO:Al异质结结构的紫外探测器及其制备方法 Active CN106784124B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611208996.0A CN106784124B (zh) 2016-12-23 2016-12-23 一种基于P‑NiO/N‑ZnO:Al异质结结构的紫外探测器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611208996.0A CN106784124B (zh) 2016-12-23 2016-12-23 一种基于P‑NiO/N‑ZnO:Al异质结结构的紫外探测器及其制备方法

Publications (2)

Publication Number Publication Date
CN106784124A CN106784124A (zh) 2017-05-31
CN106784124B true CN106784124B (zh) 2018-04-20

Family

ID=58920164

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611208996.0A Active CN106784124B (zh) 2016-12-23 2016-12-23 一种基于P‑NiO/N‑ZnO:Al异质结结构的紫外探测器及其制备方法

Country Status (1)

Country Link
CN (1) CN106784124B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107799624A (zh) * 2017-09-08 2018-03-13 大连民族大学 一种基于纳米NiO/AlGaN异质结构的倒置式快速紫外光响应器件及制备方法
CN107640793B (zh) * 2017-11-02 2019-06-21 上海纳米技术及应用国家工程研究中心有限公司 非连续双面异质结夹层结构二氧化锡-氧化镍-二氧化锡的制备方法及其产品和应用
CN108132282B (zh) * 2017-12-20 2020-09-18 上海纳米技术及应用国家工程研究中心有限公司 连续双面异质结夹层结构的制备方法及其产品和应用
CN112909096B (zh) * 2021-02-27 2023-05-09 贵溪穿越光电科技有限公司 一种氧化锌/氧化镍透明薄膜晶体管及制备方法
CN114497271A (zh) * 2021-12-14 2022-05-13 昆明物理研究所 垂直结构NiO/SiO2/ZnO紫外探测器及其制备方法
CN116477676A (zh) * 2023-04-24 2023-07-25 中国长江三峡集团有限公司 一种氧化镍醇溶液、太阳能电池及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103137774A (zh) * 2013-01-31 2013-06-05 浙江大学 一种非极性p-NiO/n-ZnO异质结构及其制备方法
CN106252529A (zh) * 2016-09-14 2016-12-21 Tcl集团股份有限公司 一种掺杂的NiO、发光二极管及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103137774A (zh) * 2013-01-31 2013-06-05 浙江大学 一种非极性p-NiO/n-ZnO异质结构及其制备方法
CN106252529A (zh) * 2016-09-14 2016-12-21 Tcl集团股份有限公司 一种掺杂的NiO、发光二极管及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"High efficiency NiO/ZnO heterojunction UV photodiode by sol–gel processing";Namseok Park;《Journal of Materials Chemistry C》;20130903;第7333-7337页 *
"UV-detector based on pn-heterojunction diode composed of transparent oxide semiconductors, p-NiOyn-ZnO";Hiromichi Ohta;《Thin Solid Films 》;20031215;全文 *

Also Published As

Publication number Publication date
CN106784124A (zh) 2017-05-31

Similar Documents

Publication Publication Date Title
CN106784124B (zh) 一种基于P‑NiO/N‑ZnO:Al异质结结构的紫外探测器及其制备方法
Wang et al. All-oxide NiO/Ga2O3 p–n junction for self-powered UV photodetector
Wang et al. One-step growth of amorphous/crystalline Ga2O3 phase junctions for high-performance solar-blind photodetection
Guo et al. Zero-power-consumption solar-blind photodetector based on β-Ga2O3/NSTO heterojunction
Pintor-Monroy et al. Tunable electrical and optical properties of nickel oxide (NiO x) thin films for fully transparent NiO x–Ga2O3 p–n junction diodes
Xu et al. ZnO-based photodetector: from photon detector to pyro-phototronic effect enhanced detector
CN107369763B (zh) 基于Ga2O3/钙钛矿异质结的光电探测器及其制备方法
Jamwal et al. Gallium oxide nanostructures: A review of synthesis, properties and applications
CN102569442B (zh) 薄膜太阳能电池及其制作方法
CN107819045B (zh) 基于氧化镓异质结结构的紫外光电探测器及其制备方法
Izaki et al. Electrodeposited ZnO Nanowire/Cu2O Photovoltaic Device with Highly Resistive ZnO Intermediate Layer
Caglar et al. Preparation and characterization of electrodeposited ZnO and ZnO: Co nanorod films for heterojunction diode applications
CN104659123A (zh) 化合物薄膜太阳能电池及其制备方法
CN103543184A (zh) 一种基于四氧化三钴纳米针的气敏传感器及其制备方法
Pintor-Monroy et al. Controlling carrier type and concentration in NiO films to enable in situ PN homojunctions
CN108007977B (zh) 基于β-Ga2O3/CuGa2O4/[HONH3]PbI3异质结的气敏传感器
CN109698278A (zh) 一种有机无机复合结构自驱动日盲紫外探测器及制备方法
CN104916785A (zh) 一种CH3NH3PbI3薄膜太阳能电池制备方法
CN104916733A (zh) 一种非晶ZnSnO薄膜晶体管型紫外探测器及其制备方法
Selman et al. Fabrication of Cu2O nanocrystalline thin films photosensor prepared by RF sputtering technique
Varshney et al. Ga2O3/GaN heterointerface-based self-driven broad-band ultraviolet photodetectors with high responsivity
Wang et al. Pt/(InGa) 2O3/n-Si heterojunction-based solar-blind ultraviolet photovoltaic detectors with an ideal absorption cutoff edge of 280 nm
Huang et al. Easily processable Cu2O/Si self-powered photodetector array for image sensing applications
CN104934490A (zh) 一种大面积合成氧化亚锡半导体光电薄膜材料的方法
Huang et al. Band gap engineering of AlYN films for solar-blind ultraviolet photodetection

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant