CN106771709A - A kind of S parameter De- embedding method of multiport network - Google Patents
A kind of S parameter De- embedding method of multiport network Download PDFInfo
- Publication number
- CN106771709A CN106771709A CN201611035719.4A CN201611035719A CN106771709A CN 106771709 A CN106771709 A CN 106771709A CN 201611035719 A CN201611035719 A CN 201611035719A CN 106771709 A CN106771709 A CN 106771709A
- Authority
- CN
- China
- Prior art keywords
- twenty
- fixture
- parameters
- port
- network
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Measurement Of Resistance Or Impedance (AREA)
Abstract
本发明提出了一种多端口网络的S参数去嵌入方法,首先获取多端口夹具S参数,得到整体夹具的S参数之后,然后采用矩阵运算将夹具S参数去除,在进行去嵌入处理时,使用入射波/反射波的方式进行公示推导。相比于现有的采用电磁仿真计算出夹具参数的去嵌入方法,本发明的精度更高;相比于TRL校准,本发明的校准简便、校准件容易制作。
The present invention proposes a method for de-embedding S parameters of a multi-port network. First, the S parameters of the multi-port fixture are obtained, and after obtaining the S parameters of the overall fixture, matrix operations are used to remove the S parameters of the fixture. When performing de-embedding processing, use The method of incident wave/reflected wave is used for public derivation. Compared with the existing de-embedding method using electromagnetic simulation to calculate the fixture parameters, the accuracy of the present invention is higher; compared with TRL calibration, the calibration of the present invention is simple, and the calibration parts are easy to manufacture.
Description
技术领域technical field
本发明涉及测试技术领域,特别涉及一种多端口网络的S参数去嵌入方法。The invention relates to the technical field of testing, in particular to an S-parameter de-embedding method of a multi-port network.
背景技术Background technique
现在多端口器件、连接器日益增多,测试需求也增多。面对各种不同的器件、连接器,需要制作专门的夹具以便连接到矢量网络仪端口上。在测试中需要去除夹具的影响,就需要两种解决方案,第一种为去嵌入,第二种为校准。Nowadays, there are more and more multi-port devices and connectors, and the demand for testing is also increasing. In the face of various devices and connectors, special fixtures need to be made to connect to the ports of the vector network instrument. To remove the influence of the fixture in the test, two solutions are needed, the first is de-embedding, and the second is calibration.
第一种去嵌入的方式:采用电磁仿真计算出夹具参数,但是由于夹具实际加工、制造等原因,与仿真参数差别较大,造成最终测试结果差别较大。The first method of de-embedding: use electromagnetic simulation to calculate the fixture parameters, but due to the actual processing and manufacturing of the fixture, there is a big difference from the simulation parameters, resulting in a big difference in the final test results.
第二种校准的方式:作专门的校准件,但是由于定制的校准件制作难度大,校准过程复杂,使得测试困难。The second calibration method: make special calibration parts, but because of the difficulty of making customized calibration parts and the complicated calibration process, it makes the test difficult.
发明内容Contents of the invention
为解决上述现有技术中的不足,本发明提出一种多端口网络的S参数去嵌入方法。In order to solve the above-mentioned deficiencies in the prior art, the present invention proposes an S-parameter de-embedding method for a multi-port network.
本发明的技术方案是这样实现的:Technical scheme of the present invention is realized like this:
一种多端口网络的S参数去嵌入方法,首先获取多端口夹具S参数,得到整体夹具的S参数之后,然后采用矩阵运算将夹具S参数去除,在进行去嵌入处理时,使用入射波/反射波的方式进行公示推导。A de-embedding method for S-parameters of a multi-port network. First, the S-parameters of the multi-port fixture are obtained. After obtaining the S-parameters of the overall fixture, matrix operations are used to remove the S-parameters of the fixture. During the de-embedding process, the incident wave/reflection The public derivation is carried out in the form of waves.
可选地,获取多端口夹具S参数的步骤,具体包括:Optionally, the step of obtaining the S parameters of the multi-port fixture specifically includes:
对于多端口夹具,将夹具每个端口进行对称拼接,形成对称双端口夹具结构,进而计算得到夹具参数,然后将夹具各个端口的S参数进行拼接,得到整体夹具的S参数,具体计算过程如下:For multi-port fixtures, each port of the fixture is symmetrically spliced to form a symmetrical double-port fixture structure, and then the fixture parameters are calculated, and then the S parameters of each port of the fixture are spliced to obtain the S parameters of the overall fixture. The specific calculation process is as follows:
步骤(a),校准之后,直接测量得到整体夹具的S参数:S11、S21、S12、S22;Step (a), after calibration, directly measure the S parameters of the overall fixture: S11, S21, S12, S22;
步骤(b),将S11时域变换得到T11,其最大峰值处的时间记为t1;Step (b), S11 time-domain transformation is obtained T11, and the time at its maximum peak is recorded as t1 ;
步骤(c),将S21时域变换得到T21,其最大峰值处的时间记为t2;Step (c), S21 time-domain transformation is obtained T21, and the time at its maximum peak is recorded as t 2 ;
步骤(d),以t1为中心,2(t2-t1)为宽度设置门,将S11截取,得到S11A;Step (d), with t 1 as the center and 2(t 2 -t 1 ) as the width to set the gate, intercepting S11 to obtain S11 A ;
步骤(e),同理,可得到S11B;Step (e), similarly, can obtain S11 B ;
由S参数关系得到It is obtained from the S-parameter relation
其中,S11、S21、S12、S22为网络仪测量到的整体夹具S参数;S11A、S21A、S12A、S22A为夹具A的S参数;S11B、S21B、S12B、S22B为夹具B的S参数;Among them, S11, S21, S12, and S22 are the S parameters of the overall fixture measured by the network instrument; S11 A , S21 A , S12 A , and S22 A are the S parameters of fixture A; S11 B , S21 B , S12 B , and S22 B are S parameter of fixture B;
进而得到:And then get:
由于是对称夹具,所以S21A=S12A=S21B=S12B,S21=S12,所以:Since it is a symmetrical fixture, S21 A =S12 A =S21 B =S12 B , S21=S12, so:
将夹具各个端口的S参数进行拼接,得到整体夹具的S参数。The S parameters of each port of the fixture are spliced to obtain the S parameters of the overall fixture.
可选地,所述采用矩阵运算将夹具S参数去除的步骤,具体包括:Optionally, the step of removing the S-parameters of the fixture by matrix operation specifically includes:
对于N端口被测件网络: For N-port DUT network:
对于X端口网络,其S参数如下:For the X-port network, its S-parameters are as follows:
对于Y端口网络,其S参数如下:For the Y port network, its S parameters are as follows:
对于网络仪测试到的总体网络,其S参数如下:For the overall network tested by the network instrument, its S parameters are as follows:
根据入射波与反射波的关系,建立如下矩阵:According to the relationship between the incident wave and the reflected wave, the following matrix is established:
其中,ai为各网络的入射波,bi为各网络的反射波;Among them, a i is the incident wave of each network, and b i is the reflected wave of each network;
且对于被测件两侧的入射波与反射波有如下关系:And for the incident wave and reflected wave on both sides of the DUT, the relationship is as follows:
其中: in:
联立上述方程,消除 Simultaneously the above equations, eliminate
得到:get:
[S]=[C(TS-A)-qB+D]-1 (13)[S]=[C(TS-A) -q B+D] -1 (13)
至此,完成N端口网络的S参数去嵌入操作。So far, the S-parameter de-embedding operation of the N-port network is completed.
本发明的有益效果是:The beneficial effects of the present invention are:
(1)相比于现有的采用电磁仿真计算出夹具参数的去嵌入方法,本发明的精度更高;(1) Compared with the existing de-embedding method using electromagnetic simulation to calculate fixture parameters, the accuracy of the present invention is higher;
(2)相比于TRL校准,本发明的校准简便、校准件容易制作。(2) Compared with TRL calibration, the calibration of the present invention is simple and convenient, and the calibration parts are easy to manufacture.
附图说明Description of drawings
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the technical solutions in the embodiments of the present invention or the prior art, the following will briefly introduce the drawings that need to be used in the description of the embodiments or the prior art. Obviously, the accompanying drawings in the following description are only These are some embodiments of the present invention. Those skilled in the art can also obtain other drawings based on these drawings without creative work.
图1为本发明的对称双端口夹具信号模型示意图;Fig. 1 is a schematic diagram of a signal model of a symmetrical two-port fixture of the present invention;
图2为本发明的多端口网络S参数去嵌入方法的原理示意图;Fig. 2 is the schematic diagram of the principle of the multi-port network S parameter de-embedding method of the present invention;
图3为本发明的多端口网络S参数去嵌入方法的一个具体实施例的原理示意图。Fig. 3 is a principle schematic diagram of a specific embodiment of the multi-port network S-parameter de-embedding method of the present invention.
具体实施方式detailed description
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The following will clearly and completely describe the technical solutions in the embodiments of the present invention with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only some, not all, embodiments of the present invention. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without making creative efforts belong to the protection scope of the present invention.
随着电子信息技术的发展,多端口器件日益增多,而且器件的封装形式、接口类型也日益增多,使用网络分析仪测试此类器件就需要面对多端口夹具去嵌入的问题。With the development of electronic information technology, there are more and more multi-port devices, and the packaging forms and interface types of devices are also increasing. Using a network analyzer to test such devices needs to face the problem of multi-port fixture de-embedding.
本发明提出一种多端口网络的S参数去嵌入方法,首先采用时域方式进行多端口夹具参数的获取,然后采用矩阵运算将夹具S参数去除。The present invention proposes a method for de-embedding S parameters of a multi-port network. Firstly, the multi-port fixture parameters are acquired in a time domain manner, and then the S parameters of the fixture are removed by matrix operation.
多端口夹具参数的获取步骤中,对于多端口夹具,将夹具每个端口进行对称拼接,形成如图1所示的对称双端口夹具结构,进而计算得到夹具参数,然后将夹具各个端口的S参数进行拼接,得到整体夹具的S参数,具体计算过程如下:In the step of obtaining the parameters of the multi-port fixture, for the multi-port fixture, each port of the fixture is symmetrically spliced to form a symmetrical double-port fixture structure as shown in Figure 1, and then the fixture parameters are calculated, and then the S parameters of each port of the fixture are Splicing is carried out to obtain the S parameters of the overall fixture. The specific calculation process is as follows:
步骤(a),校准之后,直接测量到夹具整体的S参数:S11、S21、S12、S22;Step (a), after calibration, directly measure the overall S parameters of the fixture: S11, S21, S12, S22;
步骤(b),将S11时域变换得到T11,其最大峰值处的时间记为t1;Step (b), S11 time-domain transformation is obtained T11, and the time at its maximum peak is recorded as t1 ;
步骤(c),将S21时域变换得到T21,其最大峰值处的时间记为t2;Step (c), S21 time-domain transformation is obtained T21, and the time at its maximum peak is recorded as t 2 ;
步骤(d),以t1为中心,2(t2-t1)为宽度设置门,将S11截取,得到S11A;Step (d), with t 1 as the center and 2(t 2 -t 1 ) as the width to set the gate, intercepting S11 to obtain S11 A ;
步骤(e),同理,可得到S11B。Step (e), similarly, can obtain S11 B .
由图1信号流图中S参数关系得到It is obtained from the relationship of S parameters in the signal flow diagram in Figure 1
其中,S11、S21、S12、S22为网络仪测量到的整体S参数;S11A、S21A、S12A、S22A为夹具A的S参数;S11B、S21B、S12B、S22B为夹具B的S参数。Among them, S11, S21, S12, and S22 are the overall S parameters measured by the network instrument; S11 A , S21 A , S12 A , and S22 A are the S parameters of fixture A; S11 B , S21 B , S12 B , and S22 B are fixtures S-parameters of B.
进而得到:And then get:
由于是对称夹具,所以S21A=S12A=S21B=S12B,S21=S12,所以:Since it is a symmetrical fixture, S21 A =S12 A =S21 B =S12 B , S21=S12, so:
将夹具各个端口的S参数进行拼接,得到整体夹具的S参数。The S parameters of each port of the fixture are spliced to obtain the S parameters of the overall fixture.
得到整体夹具的S参数之后,接下来,采用矩阵运算将夹具S参数去除,在进行去嵌入处理时,使用入射波/反射波的方式进行公示推导。After obtaining the S-parameters of the overall fixture, the next step is to use matrix operations to remove the S-parameters of the fixture. When performing de-embedding processing, the incident wave/reflected wave method is used for public derivation.
如图2所示,对于N端口被测件网络: As shown in Figure 2, for the N-port DUT network:
对于X端口网络,其S参数如下:For the X-port network, its S-parameters are as follows:
对于Y端口网络,其S参数如下:For the Y port network, its S parameters are as follows:
对于网络仪测试到的总体网络,其S参数如下:For the overall network tested by the network instrument, its S parameters are as follows:
根据入射波与反射波的关系,建立如下矩阵:According to the relationship between the incident wave and the reflected wave, the following matrix is established:
其中,ai为各网络的入射波,bi为各网络的反射波;Among them, a i is the incident wave of each network, and b i is the reflected wave of each network;
且对于被测件两侧的入射波与反射波有如下关系:And for the incident wave and reflected wave on both sides of the DUT, the relationship is as follows:
其中: in:
联立上述方程,消除 Simultaneously the above equations, eliminate
得到:get:
[S]=[C(TS-A)-1B+D]-1 (13)[S]=[C(TS-A) -1 B+D] -1 (13)
至此,完成N端口网络的S参数去嵌入操作,去除多端口夹具的影响,得到被测件的真实参数。So far, the S-parameter de-embedding operation of the N-port network is completed, the influence of the multi-port fixture is removed, and the real parameters of the DUT are obtained.
下面给出一个具体实施例对本发明的多端口的S参数去嵌入步骤进行说明,如图3所示,该实施例以三端口被测件去嵌四端口和双端口网络为例进行公式推导。A specific embodiment is given below to illustrate the multi-port S-parameter de-embedding steps of the present invention. As shown in FIG. 3 , this embodiment uses a three-port DUT to de-embed a four-port and two-port network as an example for formula derivation.
四端口网络、双端口网络及整体网络的S参数如下:The S-parameters of four-port network, two-port network and overall network are as follows:
其中,S1S为四端口网络的S参数,S2S为双端口网络的S参数,TS为四端口网络、被测件、双端口网络级联的S参数,S为被测件的网络参数,S11、S21、S12、S22为网络仪测量到的整体S参数。Among them, S1S is the S parameter of the four-port network, S2S is the S parameter of the two-port network, TS is the S parameter of the four-port network, the DUT, and the dual-port network cascade, S is the network parameter of the DUT, S11, S21, S12, and S22 are the overall S parameters measured by the network instrument.
利用反射波与入射波的关系,构建整体的关系矩阵:Using the relationship between the reflected wave and the incident wave, construct the overall relationship matrix:
其中,b1、...、b9为各网络的反射波,a1、...、a9为各网络的入射波,其他参数为网络的S参数,A、B、C、D为拆分后的矩阵,S为被测件的S参数矩阵。Among them, b 1 , ..., b 9 are the reflected waves of each network, a 1 , ..., a 9 are the incident waves of each network, other parameters are the S parameters of the network, A, B, C, D are The split matrix, S is the S-parameter matrix of the DUT.
此外由图3中入射波和反射波,还可以构建如下关系:In addition, from the incident wave and reflected wave in Figure 3, the following relationship can also be constructed:
联立方程(16)、(17)、(18),消除得到Simultaneous equations (16), (17), (18), eliminate get
[S]=[C(TS-A)-1B+D]-1 (19)[S]=[C(TS-A) -1 B+D] -1 (19)
至此,由上述公式可去除多端口夹具的影响,得到被测件的真实参数。So far, the influence of the multi-port fixture can be removed from the above formula, and the real parameters of the DUT can be obtained.
相比于现有的采用电磁仿真计算出夹具参数的去嵌入方法,本发明的精度更高;相比于TRL校准,本发明的校准简便、校准件容易制作。Compared with the existing de-embedding method using electromagnetic simulation to calculate the fixture parameters, the accuracy of the present invention is higher; compared with TRL calibration, the calibration of the present invention is simple and the calibration parts are easy to manufacture.
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The above descriptions are only preferred embodiments of the present invention, and are not intended to limit the present invention. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the present invention shall be included in the scope of the present invention. within the scope of protection.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201611035719.4A CN106771709A (en) | 2016-11-15 | 2016-11-15 | A kind of S parameter De- embedding method of multiport network |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201611035719.4A CN106771709A (en) | 2016-11-15 | 2016-11-15 | A kind of S parameter De- embedding method of multiport network |
Publications (1)
Publication Number | Publication Date |
---|---|
CN106771709A true CN106771709A (en) | 2017-05-31 |
Family
ID=58970908
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201611035719.4A Pending CN106771709A (en) | 2016-11-15 | 2016-11-15 | A kind of S parameter De- embedding method of multiport network |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106771709A (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108646208A (en) * | 2018-06-08 | 2018-10-12 | 中国电子科技集团公司第四十研究所 | A kind of automatic De- embedding method of multiport fixture |
CN109239480A (en) * | 2018-07-20 | 2019-01-18 | 华南理工大学 | A kind of transmission line, scattering parameter test macro and method |
CN109254217A (en) * | 2018-11-12 | 2019-01-22 | 中电科仪器仪表有限公司 | A kind of S parameter extracting method of unilateral side fixture |
CN110398678A (en) * | 2019-06-11 | 2019-11-01 | 西安电子科技大学 | A wide impedance range test method for high-power semiconductor devices |
CN110765612A (en) * | 2019-10-22 | 2020-02-07 | 北京交通大学 | A method for measuring S-parameters of materials based on de-embedding errors |
CN110907785A (en) * | 2018-09-14 | 2020-03-24 | 天津大学青岛海洋技术研究院 | S parameter de-embedding method based on artificial neural network |
WO2020107623A1 (en) * | 2018-11-27 | 2020-06-04 | 中国电子科技集团公司第十三研究所 | New on-chip s parameter calibration method |
CN111929558A (en) * | 2020-09-28 | 2020-11-13 | 浙江铖昌科技有限公司 | Self-calibration-based de-embedding method, system, storage medium and terminal |
WO2023020100A1 (en) * | 2021-08-19 | 2023-02-23 | 深圳飞骧科技股份有限公司 | Chip test system |
CN116430146A (en) * | 2023-04-17 | 2023-07-14 | 深圳市万兆通光电技术有限公司 | S parameter automatic measurement method and system based on loss factor |
CN116973636A (en) * | 2023-07-31 | 2023-10-31 | 中科可控信息产业有限公司 | S parameter testing method, device, equipment and storage medium |
CN119519833A (en) * | 2025-01-16 | 2025-02-25 | 光梓信息科技(深圳)有限公司 | Photoelectric S parameter test device, system and de-embedding method |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1893465A (en) * | 2005-01-24 | 2007-01-10 | 理想工业公司 | Hand-held tester and method for local area network cabling |
US20130060501A1 (en) * | 2011-09-01 | 2013-03-07 | Chien-Chang Huang | Calibration Method for Radio Frequency Scattering Parameter Measurement Applying Three Calibrators and Measurement Structure Thereof |
US20130134990A1 (en) * | 2011-11-30 | 2013-05-30 | Raytheon Company | Calibration measurements for network analyzers |
CN103645385A (en) * | 2013-11-13 | 2014-03-19 | 中国电子科技集团公司第四十一研究所 | S-parameter obtaining method based on embedded multi-port network matching circuit |
CN203643514U (en) * | 2013-12-30 | 2014-06-11 | 京信通信技术(广州)有限公司 | Coupling assembly and data measuring device of measuring scattering parameters |
CN104297597A (en) * | 2014-10-20 | 2015-01-21 | 中国电子科技集团公司第四十一研究所 | New method for testing clamp effect in dual-port-removed network |
CN105445575A (en) * | 2015-11-04 | 2016-03-30 | 中国电子科技集团公司第四十一研究所 | Optical path de-embedding method for S parameter measurement of optical device |
CN105891628A (en) * | 2016-03-30 | 2016-08-24 | 清华大学 | Universal four-port on-wafer high-frequency de-embedding method |
-
2016
- 2016-11-15 CN CN201611035719.4A patent/CN106771709A/en active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1893465A (en) * | 2005-01-24 | 2007-01-10 | 理想工业公司 | Hand-held tester and method for local area network cabling |
US20130060501A1 (en) * | 2011-09-01 | 2013-03-07 | Chien-Chang Huang | Calibration Method for Radio Frequency Scattering Parameter Measurement Applying Three Calibrators and Measurement Structure Thereof |
US20130134990A1 (en) * | 2011-11-30 | 2013-05-30 | Raytheon Company | Calibration measurements for network analyzers |
CN103645385A (en) * | 2013-11-13 | 2014-03-19 | 中国电子科技集团公司第四十一研究所 | S-parameter obtaining method based on embedded multi-port network matching circuit |
CN203643514U (en) * | 2013-12-30 | 2014-06-11 | 京信通信技术(广州)有限公司 | Coupling assembly and data measuring device of measuring scattering parameters |
CN104297597A (en) * | 2014-10-20 | 2015-01-21 | 中国电子科技集团公司第四十一研究所 | New method for testing clamp effect in dual-port-removed network |
CN105445575A (en) * | 2015-11-04 | 2016-03-30 | 中国电子科技集团公司第四十一研究所 | Optical path de-embedding method for S parameter measurement of optical device |
CN105891628A (en) * | 2016-03-30 | 2016-08-24 | 清华大学 | Universal four-port on-wafer high-frequency de-embedding method |
Non-Patent Citations (2)
Title |
---|
张超等: "对称结构有源器件测量夹具去嵌入方法研究", 《万方-HTTP://WWW.WANFANGDATA.COM.CN/DETAILS/DETAIL.DO?_TYPE=CONFERENCE&ID=7111117》 * |
王静祎: "微波电路测试时嵌入和去嵌入技术研究", 《中国优秀硕士学位论文全文数据库 信息科技辑》 * |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108646208A (en) * | 2018-06-08 | 2018-10-12 | 中国电子科技集团公司第四十研究所 | A kind of automatic De- embedding method of multiport fixture |
CN109239480A (en) * | 2018-07-20 | 2019-01-18 | 华南理工大学 | A kind of transmission line, scattering parameter test macro and method |
CN110907785A (en) * | 2018-09-14 | 2020-03-24 | 天津大学青岛海洋技术研究院 | S parameter de-embedding method based on artificial neural network |
CN109254217A (en) * | 2018-11-12 | 2019-01-22 | 中电科仪器仪表有限公司 | A kind of S parameter extracting method of unilateral side fixture |
CN109254217B (en) * | 2018-11-12 | 2020-10-09 | 中电科仪器仪表有限公司 | S parameter extraction method of unilateral clamp |
WO2020107623A1 (en) * | 2018-11-27 | 2020-06-04 | 中国电子科技集团公司第十三研究所 | New on-chip s parameter calibration method |
US11340286B2 (en) | 2018-11-27 | 2022-05-24 | The 13Th Research Institute Of China Electronics | On-wafer S-parameter calibration method |
CN110398678A (en) * | 2019-06-11 | 2019-11-01 | 西安电子科技大学 | A wide impedance range test method for high-power semiconductor devices |
CN110765612B (en) * | 2019-10-22 | 2021-10-01 | 北京交通大学 | A method for measuring S-parameters of materials based on de-embedding errors |
CN110765612A (en) * | 2019-10-22 | 2020-02-07 | 北京交通大学 | A method for measuring S-parameters of materials based on de-embedding errors |
CN111929558A (en) * | 2020-09-28 | 2020-11-13 | 浙江铖昌科技有限公司 | Self-calibration-based de-embedding method, system, storage medium and terminal |
CN111929558B (en) * | 2020-09-28 | 2021-01-15 | 浙江铖昌科技股份有限公司 | Self-calibration-based de-embedding method, system, storage medium and terminal |
WO2023020100A1 (en) * | 2021-08-19 | 2023-02-23 | 深圳飞骧科技股份有限公司 | Chip test system |
CN116430146A (en) * | 2023-04-17 | 2023-07-14 | 深圳市万兆通光电技术有限公司 | S parameter automatic measurement method and system based on loss factor |
CN116973636A (en) * | 2023-07-31 | 2023-10-31 | 中科可控信息产业有限公司 | S parameter testing method, device, equipment and storage medium |
CN119519833A (en) * | 2025-01-16 | 2025-02-25 | 光梓信息科技(深圳)有限公司 | Photoelectric S parameter test device, system and de-embedding method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106771709A (en) | A kind of S parameter De- embedding method of multiport network | |
CN109444717B (en) | Novel on-chip S parameter error calibration method and device | |
CN104297597B (en) | New method for testing clamp effect in dual-port-removed network | |
CN107861050B (en) | A method of On-wafer measurement is carried out using vector network analyzer | |
CN103399286B (en) | A kind of measurement calibration steps of many characteristic impedance network | |
CN103675457B (en) | Microwave device impedance measurement calibration method | |
US6665628B2 (en) | Methods for embedding and de-embedding balanced networks | |
CN103983931B (en) | The defining method of vector network analyzer S parameter uncertainty of measurement | |
CN111142057B (en) | Terahertz frequency band on-chip S parameter calibration method and terminal equipment | |
CN105445575B (en) | A kind of light path De- embedding method in optical device S parameter measurement | |
CN108646208B (en) | Automatic de-embedding method for multi-port clamp | |
CN106771649A (en) | A kind of multiport scattering parameter method of testing for being based on four port vector network analyzers | |
CN103760509A (en) | Multi-port vector network analyzer calibrating method involved with switch compensating errors | |
CN103645385B (en) | A Method of S-Parameter Acquisition Based on Embedded Multiport Network Matching Circuit | |
CN107102284B (en) | A Multiport Non-Intrusive Accurate Calibration Method Based on Ideal Zero Thru | |
US11385175B2 (en) | Calibration method and terminal equipment of terahertz frequency band on-wafer S parameter | |
CN111611765B (en) | Clamp de-embedding method, system, storage medium, computer program and application | |
CN104181392B (en) | Two-port network phase shift method of testing based on vector network analyzer | |
CN111983538A (en) | On-chip S parameter measurement system calibration method and device | |
CN103792435B (en) | Coupling component, and data measuring device and method for measuring scattering parameters | |
CN108562769B (en) | S parameter extraction method for differential clamp | |
CN106771849B (en) | A Test Method for Reflection Response of Two Impedance Discontinuities on a Transmission Line | |
CN204666731U (en) | Terahertz is at sheet multiport circuit calibrating device | |
CN109254217B (en) | S parameter extraction method of unilateral clamp | |
Mubarak et al. | Residual error analysis of a calibrated vector network analyzer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20170531 |
|
RJ01 | Rejection of invention patent application after publication |