CN106758820A - 一种小半径连续现浇梁预应力束张拉施工方法 - Google Patents

一种小半径连续现浇梁预应力束张拉施工方法 Download PDF

Info

Publication number
CN106758820A
CN106758820A CN201611029918.4A CN201611029918A CN106758820A CN 106758820 A CN106758820 A CN 106758820A CN 201611029918 A CN201611029918 A CN 201611029918A CN 106758820 A CN106758820 A CN 106758820A
Authority
CN
China
Prior art keywords
prestressing tendon
tensioning
jack
construction method
prestressing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201611029918.4A
Other languages
English (en)
Inventor
刘预保
张兵
游义金
黄钢
何开伟
刘泽
蔡钦好
肖平
廖泽源
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Railway Erju Co Ltd
China Railway No 2 Engineering Group Co Ltd
Original Assignee
China Railway Erju Co Ltd
China Railway No 2 Engineering Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Railway Erju Co Ltd, China Railway No 2 Engineering Group Co Ltd filed Critical China Railway Erju Co Ltd
Priority to CN201611029918.4A priority Critical patent/CN106758820A/zh
Publication of CN106758820A publication Critical patent/CN106758820A/zh
Pending legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D21/00Methods or apparatus specially adapted for erecting or assembling bridges
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01DCONSTRUCTION OF BRIDGES, ELEVATED ROADWAYS OR VIADUCTS; ASSEMBLY OF BRIDGES
    • E01D2101/00Material constitution of bridges
    • E01D2101/20Concrete, stone or stone-like material
    • E01D2101/24Concrete
    • E01D2101/26Concrete reinforced
    • E01D2101/28Concrete reinforced prestressed

Abstract

本发明涉及桥梁技术领域,特别涉及一种小半径连续现浇梁预应力束张拉施工方法,其包括以下步骤:1)将预应力束穿入管道内;2)对预应力束的两端同时实施预张拉;3)安装锚具和千斤顶并连接张拉设备;4)计算所需的张拉次数;5)检查校核设备精度;6)对预应力束的两端同时分多级施加张拉力,各级张拉力施加完毕后均设有持荷时间;7)校核预应力束的伸长量。该方法工艺简便、易操作,且张拉质量高,能安全快速地完成长钢束、转角大、起弯段多的小半径曲线上的预应力束的张拉。

Description

一种小半径连续现浇梁预应力束张拉施工方法
技术领域
本发明涉及桥梁技术领域,特别涉及一种半径小、长度大、起弯段多的预应力束张拉施工方法。
背景技术
预应力混凝土是为了弥补混凝土过早出现裂缝的现象,在构件使用(加载)以前,预先给混凝土一个预压力,即在混凝土的受拉区内,用人工加力的方法,将钢筋进行张拉,利用钢筋的回缩力,使混凝土受拉区预先受压力。这种储存下来的预加压力,当构件承受由外荷载产生拉力时,首先抵消受拉区混凝土中的预压力,然后随荷载增加,才使混凝土受拉,这就限制了混凝土的伸长,延缓或不使裂缝出现。
随着国内桥梁预应力工程建设的加快,高速公路迅速的推进,城市连续现浇匝道桥、跨河、跨既有线的大跨径连续预应力桥梁逐步增多。匝道桥通常具有以下特点:(1)匝道桥的宽度一般在8~15.5m左右,为1个或2个车道;(2)由于匝道用来实现道路的转向功能,在立交中往往受到占地面积的限制,匝道桥多为小半径的曲线梁桥,平曲线最小半径可在60m左右,有时处于缓和曲线上,且设置较大超高值;(3)匝道桥往往设置纵坡较大。
永吉高速公路A、B匝道桥上的连续现浇箱梁是永顺至吉首高速公路途经的高墩小半径曲线预应力连续现浇梁,经加宽桥后与既有吉茶高速公路拼接,A匝道桥左右幅、B匝道桥各2联小半径连续现浇梁,每联由3或4跨组成,A匝道上部结构为(3×27)m+(3×27+26.212/26.393)m,B匝道桥上部结构为(3×24.5+4×24)m,B匝道和A左为单箱单室,A右为单箱双室,箱梁顶设有1.251%的纵坡,4.504%~6.0%的横坡,箱梁中心高度为2m,梁顶宽7.5~10.4m,底宽4.9~6.5m,腹板厚50~70cm,A匝道桥平面位于R=100m圆曲线、缓和曲线上,B匝道平面位于R=60m圆曲线、缓和曲线上,为山区小半径曲线上的预应力连续现浇梁桥。
受平面曲线和平竖弯切角的限制,A、B匝道桥上的连续现浇梁位于最小曲线半径为60m的平曲线上,平竖弯转角32.6°,单联单束预应力的张拉长度为93.2m,预应力张拉面临应力损失大、局部集中受力,应力传递速率缓慢的难题,由于整联现浇梁的预应力钢绞线根数多,单联单束预应力束的起弯段多,所处的平曲线半径小,现有预应力张拉方法无法实现小半径上的应力传递速率。
发明内容
本发明的目的在于:针对在进行长钢束、转角大、起弯段多的小半径曲线匝道桥施工时,现有预应力张拉方法存在应力损失大、局部集中受力和应力传递速率缓慢的问题,提供一种预应力束张拉施工方法,该预应力束张拉施工方法工艺简便,容易操作,预应力束张拉质量高,能有效避免现有预应力束张拉所存在的问题,有利于安全快速地完成长钢束、转角大、起弯段多的小半径曲线上的预应力束的张拉。
为了实现上述发明目的,本发明提供了以下技术方案:
一种小半径连续现浇梁预应力束张拉施工方法,包括以下步骤:
a、将预应力束穿入管道内;
b、对每束预应力束的两端同时实施预张拉;
c、安装锚具和千斤顶并连接张拉设备;
d、根据每束预应力束的理论伸长量和千斤顶的行程,计算所需的张拉次数;
e、检查校核设备精度;
f、对预应力束的两端同时分多级施加张拉力,各级张拉力施加完毕后均设有持荷时间;
g、校核预应力束的伸长量。
通过对预应力束实施预张拉使超小曲线半径且长度长、起弯段多的预应力束顺直,防止张拉时同束中的单根预应力束在张拉过程出现应力集中,提前受力;预张拉后对每束预应力束分九级施加张拉力并设定各级持荷时间,由于采取上述张拉方式,可以减小长预应力束局部单根预应力的屈服疲劳并减小起弯点应力集中和转角处应力损失;该方法工艺简便、易操作、成效明显,与常规预应力束张拉相比其成效快、预应力束张拉质量高,有利于安全快速地完成长钢束、转角大、起弯段多的小半径曲线上的预应力束的张拉。
优选的,在步骤b中,包括以下几个步骤:
b1、在预应力束的两端分别安装限位板,在限位板的外侧分别安装千斤顶,千斤顶端部再安装工具锚和工具夹片;
b2、将预应力束两端的千斤顶分别与智能张拉仪通过高压油管相连;
b3、对每束预应力束的两端同时施加10%~25%F的预张拉力,其中F为张拉控制力,两端预张拉速率保持同步;
b4、预张拉完毕后依次拆下工具夹片、工具锚、千斤顶和限位板。
通过采用千斤顶和智能张拉仪对预应力束的两端同时实施智能预张拉,使超小曲线半径且长度长、起弯段多的预应力束顺直,这样可以防止张拉时同束中的单根预应力束在张拉过程出现应力集中,提前受力。
优选的,在步骤c中,包括以下几个步骤:
c1、在预应力束的张拉端依次安装工作锚、工作夹片、限位板、千斤顶、工具锚、工具夹片,根据每根预应力束编号情况,同一根预应力束两端保持在同一轴线,即限位板和锚具单孔处于同一位置,所有的锚具、限位板及千斤顶的轴线与锚垫板轴线一致,相互间应紧贴无空隙;
c2、将预应力束两端的千斤顶分别与智能张拉仪通过高压油管相连。
优选的,所述步骤d中,在确定张拉次数时,千斤顶的工作行程控制在16cm以内,千斤顶的最小回缩量控制在2cm以内。根据千斤顶的最大行程来确定千斤顶在每次张拉过程中的工作行程及最小回缩量,这样可以避免千斤顶在超过极限状态下工作,有利于保护千斤顶的精度,延长千斤顶的使用寿命,从而保证对预应力束的张拉质量。
优选的,在步骤e中,包括以下步骤:
e1、将位移测量装置安装于千斤顶上并通过数据线与智能张拉仪相连,接收装置与智能张拉仪内的无线电波接收器相连;
e2、检查校核位移测量装置的敏感度和接收装置的信号强度,其中接收装置的信号强度必须与预应力束两端信号强度一致,位移测量装置的敏感度必须达到传递至接收装置上的数据与现场实测数据一致。
在张拉时采用这样的工艺要求,有利于保证对预应力束两端的张拉同步进行,同时使位移测量装置采集数据与现场实测数据一致,从而保证对预应力束的张拉质量。
优选的,在步骤f中,依次从0~20%F~30%F~40%F~50%F~60%F~70%F~80%F~90%F~100%F分九级施加张拉力,其中F为张拉控制力,除张拉力至100%F阶段的持荷时间为180s外,其余各级的张拉力施加完毕后均持荷90s再进行下级张拉力的施加。通过对进行预张拉后的预应力束分多级施加张拉力并设定各级持荷时间,可以减小长预应力束局部单根预应力的屈服疲劳并减小起弯点应力集中和转角处应力损失。
优选的,在步骤g中,在分级张拉过程中需测量千斤顶的外伸量,张拉完毕后通过千斤顶外伸量推算出每束预应力束的实际伸长量,该实际伸长量需与位移测量装置反馈至接收装置内的数据一致,且与理论伸长量的相对偏差不超过6%。通过在分级张拉过程中测量千斤顶的外伸量推算出每束预应力束的实际伸长量并与位移测量装置检测数据和理论伸长量进行比较,从而达到双控的目的,这样有利于保证预应力束的张拉质量。
优选的,在步骤g之后,需要观测锚具变形和预应力束内缩均需保持在4mm内,方可对预应力束管道内进行灌浆,养护后对预应力束的两端进行锚固。
与现有技术相比,本发明的有益效果:
1、通过采用千斤顶和智能张拉仪对预应力束的两端同时实施智能预张拉,使超小曲线半径且长度长、起弯段多的预应力束顺直,这样可以防止张拉时同束中的单根预应力束在张拉过程出现应力集中,提前受力;
2、通过对进行预张拉后的预应力束分多级施加张拉力并设定各级持荷时间,可以减小长预应力束局部单根预应力的屈服疲劳并减小起弯点应力集中和转角处应力损失;
3、通过在张拉过程中测量千斤顶的外伸量推算出每束预应力束的实际伸长量并与位移测量装置检测数据和理论伸长量进行比较,从而达到双控的目的,这样有有利于提高预应力束张拉质量;
4、通过将两台千斤顶分别连接至两台智能张拉仪,两台智能张拉仪通过无线电波与接收装置相连接,两台智能张拉仪施加的张拉力大小相同,采取这种方式,实现预应力束的同步张拉,可以更好地控制张拉力的大小,从而最大程度保证预应力束的张拉质量。
附图说明:
图1为本发明的预应力束张拉施工方法的整体安装示意图。
图2为图1的预应力束张拉端的部件安装详细示意图。
图3为本发明的预应力束张拉施工方法的流程图。
图中标记:1-锚垫板,2-工作锚,3-工作夹片,4-限位板,5-千斤顶,6-工具锚,7-工具夹片,8-预应力束,9-混凝土梁,10-位移传感器,11-数据线,12-智能张拉仪,13-高压油管,14-接收电脑。
具体实施方式
下面结合试验例及具体实施方式对本发明作进一步的详细描述。但不应将此理解为本发明上述主题的范围仅限于以下的实施例,凡基于本发明内容所实现的技术均属于本发明的范围。
实施例
如图1-图3所示,本实施中预应力张拉施工方法,包括以下步骤:
a、对每个管道内的每根预应力束进行编号,采用穿束机逐根穿过混凝土内的每束管道;
b、对每束预应力束8的两端同时实施智能预张拉;
c、在预应力束8的张拉端依次安装工作锚2、工作夹片3、限位板4、千斤顶5、工具锚6、工具夹片7,根据每根预应力束编号情况,同一根预应力束两端保持在同一轴线,即限位板和锚具单孔处于同一位置,所有的锚具、限位板及千斤顶的轴线与锚垫板1轴线一致,相互间应紧贴无空隙,将预应力束8两端的千斤顶5分别与智能张拉仪12通过高压油管13相连,本实施例中采用的是400t液压穿心式千斤顶;
d、根据每束预应力束8的理论伸长量和千斤顶5的最大行程,划分每束预应力束8所需千斤顶5的倒顶次数,确定张拉次数;
e、将位移传感器10安装于千斤顶5上并通过数据线11与智能张拉仪12相连,接收电脑14与智能张拉仪12内的无线电波接收器相连,检查校核位移传感器10敏感度和电脑接收信号强度,电脑接收的信号强度必须与预应力束两端信号强度一致,位移传感器10敏感度必须达到传感器传递至接收电脑上的数据与现场实测数据一致;
f、启动电脑开始对每束预应力束8的两端同时分多级施加张拉力,各级张拉力施加完毕后均设有持荷时间;
g、校核预应力束的伸长量;
通过对预应力束实施预张拉使超小曲线半径且长度长、起弯段多的预应力束顺直,防止张拉时同束中的单根预应力束在张拉过程出现应力集中,提前受力;预张拉后对每束预应力束分多级施加张拉力并设定各级持荷时间,由于采取上述张拉方式,可以减小长预应力束局部单根预应力的屈服疲劳并减小起弯点应力集中和转角处应力损失;该方法工艺简便、易操作、成效明显,与常规预应力束张拉相比其成效快、预应力束张拉质量高,有利于安全快速地完成长钢束、转角大、起弯段多的小半径曲线上的预应力束的张拉。
本实施例中,在步骤b中,包括以下几个步骤:
b1、在预应力束8的两端分别安装限位板4,在限位板4的外侧分别安装千斤顶5,千斤顶5端部再安装工具锚6和工具夹片7;
b2、将预应力束8两端的千斤顶5分别与智能张拉仪12通过高压油管13相连;
b3、对每束预应力束8的两端同时施加10%~25%F的预张拉力,其中F为张拉控制力,两端预张拉速率保持同步;
b4、预张拉完毕持荷一段时间后依次拆下工具夹片7、工具锚6、千斤顶5和限位板4。
通过采用千斤顶和智能张拉仪对预应力束的两端同时实施智能预张拉,使超小曲线半径且长度长、起弯段多的预应力束顺直,这样可以防止张拉时同束中的单根预应力束在张拉过程出现应力集中,提前受力。
本实施例中,所述步骤d中,在确定张拉次数时,千斤顶5的工作行程控制在16cm以内,千斤顶5的最小回缩量控制在2cm以内。根据千斤顶的最大行程来确定千斤顶在每次张拉过程中的工作行程及最小回缩量,这样可以避免千斤顶在超过极限状态下工作,有利于保护千斤顶的精度,延长千斤顶的使用寿命,从而保证对预应力束的张拉质量。
本实施例中,在步骤f中,依次从0~20%F~30%F~40%F~50%F~60%F~70%F~80%F~90%F~100%F分九级施加张拉力,其中F为张拉控制力,张拉次数2~3,除张拉力至100%F阶段的持荷时间为180s外,其余各级的张拉力施加完毕后均持荷90s再进行下级张拉力的施加,在施加张拉力过程中不能修改接收电脑内设置的张拉分级次数和各级持荷时间。
通过对进行预张拉后的预应力束分多级施加张拉力并设定各级持荷时间,可以减小长预应力束局部单根预应力的屈服疲劳并减小起弯点应力集中和转角处应力损失。
本实施例中,在步骤g中,在分级张拉过程中需采用精度为0.1mm钢尺测量千斤顶5的外伸量,张拉完毕后通过千斤顶5外伸量推算出每束预应力束8的实际伸长量,该实际伸长量需与位移传感器10反馈至接收电脑14内的数据一致,且与理论伸长量的相对偏差不超过6%。
通过在分级张拉过程中测量千斤顶的外伸量推算出每束预应力束的实际伸长量并与位移测量装置检测数据和理论伸长量进行比较,从而达到双控的目的,这样有利于保证预应力束的张拉质量。
本实施例中,在步骤g之后,需要观测锚具变形和预应力束内缩均需保持在4mm内,方可对预应力束管道内进行灌浆,养护后对预应力束的两端进行锚固,锚固完毕后的工作夹片相互间的错位保持在2mm内,且工作夹片露出工作锚外的长度应保持在4mm内,用砂轮锯切割端头多余的预应力束,锚固后的外露长度不宜小于30mm。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的原理之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种小半径连续现浇梁预应力束张拉施工方法,其特征在于,包括以下步骤:
a、将预应力束穿入管道内;
b、对每束预应力束的两端同时实施预张拉;
c、安装锚具和千斤顶并连接张拉设备;
d、根据每束预应力束的理论伸长量和千斤顶的行程,计算所需的张拉次数;
e、检查校核设备精度;
f、对预应力束的两端同时分多级施加张拉力,各级张拉力施加完毕后均设有持荷时间;
g、校核预应力束的伸长量。
2.根据权利要求1所述的预应力束张拉施工方法,其特征在于,在步骤b中,对每束预应力束的两端同时施加10%~25%F的预张拉力,其中F为张拉控制力,两端预张拉速率保持同步。
3.根据权利要求1或2所述的预应力束张拉施工方法,其特征在于,步骤c包括以下步骤:
c1、在预应力束的张拉端依次安装工作锚、工作夹片、限位板、千斤顶、工具锚、工具夹片;
c2、将预应力束两端的千斤顶分别与智能张拉仪相连。
4.根据权利要求1所述的预应力束张拉施工方法,其特征在于,所述步骤d中,在确定张拉次数时,千斤顶的工作行程控制在16cm以内,千斤顶的最小回缩量控制在2cm以内。
5.根据权利要求1所述的预应力束张拉施工方法,其特征在于,步骤e包括以下步骤:
e1、将位移测量装置安装于千斤顶上并通过数据线与智能张拉仪相连,接收装置与智能张拉仪内的无线电波接收器相连;
e2、检查校核位移测量装置的敏感度和接收装置的信号强度,其中接收装置的信号强度必须与预应力束两端信号强度一致,位移测量装置的敏感度必须达到传递至接收装置上的数据与现场实测数据一致。
6.根据权利要求5所述的预应力束张拉施工方法,其特征在于,在步骤f中,依次从0~20%F~30%F~40%F~50%F~60%F~70%F~80%F~90%F~100%F分九级施加张拉力,其中F为张拉控制力。
7.根据权利要求6所述的预应力束张拉施工方法,其特征在于,除张拉力至100%F阶段的持荷时间为180s外,其余各级的张拉力施加完毕后均持荷90s再进行下级张拉力的施加。
8.根据权利要求6所述的预应力束张拉施工方法,其特征在于,在步骤g中,在各级张拉过程中需测量千斤顶的外伸量,张拉完毕后通过千斤顶外伸量推算出每束预应力束的实际伸长量,该实际伸长量需与位移测量装置反馈至接收装置内的数据一致,且与理论伸长量的相对偏差不超过6%。
9.根据权利要求1所述的预应力束张拉施工方法,其特征在于,在步骤g之后,需要观测锚具变形和预应力束的内缩情况,满足要求后进行锚固。
10.根据权利要求9所述的预应力束张拉施工方法,其特征在于,所述锚具变形和预应力束内缩均需保持在4mm内,方可进行锚固。
CN201611029918.4A 2016-11-15 2016-11-15 一种小半径连续现浇梁预应力束张拉施工方法 Pending CN106758820A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611029918.4A CN106758820A (zh) 2016-11-15 2016-11-15 一种小半径连续现浇梁预应力束张拉施工方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611029918.4A CN106758820A (zh) 2016-11-15 2016-11-15 一种小半径连续现浇梁预应力束张拉施工方法

Publications (1)

Publication Number Publication Date
CN106758820A true CN106758820A (zh) 2017-05-31

Family

ID=58970390

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611029918.4A Pending CN106758820A (zh) 2016-11-15 2016-11-15 一种小半径连续现浇梁预应力束张拉施工方法

Country Status (1)

Country Link
CN (1) CN106758820A (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108612313A (zh) * 2018-02-01 2018-10-02 重庆恒佳工程技术咨询有限公司 一种预应力智能张拉自动控制方法
CN109356040A (zh) * 2018-09-29 2019-02-19 中铁二局集团有限公司 一种高墩群小半径曲线现浇梁贝雷梁支架施工体系
CN109537467A (zh) * 2018-12-18 2019-03-29 中交天津航道局有限公司 一种箱梁预应力施工方法
CN110700100A (zh) * 2019-10-11 2020-01-17 重庆建工建筑产业技术研究院有限公司 一种高墩小半径曲线匝道桥现浇平台贝雷梁束施工方法
CN112146980A (zh) * 2020-09-03 2020-12-29 山东大学 一种预应力钢绞线初始张拉力及稳压时间判别系统及方法
CN112281660A (zh) * 2020-09-17 2021-01-29 济南利民路桥工程有限责任公司 一种桥梁梁体预应力张拉方法
CN114323389A (zh) * 2022-03-14 2022-04-12 四川交达预应力工程检测科技有限公司 预应力检测方法、不分级快速连续张拉方法及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007211482A (ja) * 2006-02-09 2007-08-23 Otaki Jack Kk 橋梁における橋桁の送り出し工法
CN101125441A (zh) * 2007-08-31 2008-02-20 中铁二局股份有限公司 后张法预应力混凝土箱梁整孔预制施工方法
CN103161317A (zh) * 2011-12-08 2013-06-19 上海耐斯特液压设备有限公司 预应力全自动智能张拉设备及其操作方法
CN203795869U (zh) * 2013-12-23 2014-08-27 李胜利 一种预应力梁全自动张拉自控系统
CN104452574A (zh) * 2014-11-12 2015-03-25 河海大学 一种新型匝道桥结构及其施工方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007211482A (ja) * 2006-02-09 2007-08-23 Otaki Jack Kk 橋梁における橋桁の送り出し工法
CN101125441A (zh) * 2007-08-31 2008-02-20 中铁二局股份有限公司 后张法预应力混凝土箱梁整孔预制施工方法
CN103161317A (zh) * 2011-12-08 2013-06-19 上海耐斯特液压设备有限公司 预应力全自动智能张拉设备及其操作方法
CN203795869U (zh) * 2013-12-23 2014-08-27 李胜利 一种预应力梁全自动张拉自控系统
CN104452574A (zh) * 2014-11-12 2015-03-25 河海大学 一种新型匝道桥结构及其施工方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
张修和: "《预应力混凝土箱梁连续梁桥建造技术-宁安高速铁路青弋江特大桥工程实例分析》", 31 July 2015 *
杨勇等: "预应力小半径弯梁的设计与施工", 《山西建筑》 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108612313A (zh) * 2018-02-01 2018-10-02 重庆恒佳工程技术咨询有限公司 一种预应力智能张拉自动控制方法
CN108612313B (zh) * 2018-02-01 2020-10-16 重庆恒佳工程技术咨询有限公司 一种预应力智能张拉自动控制方法
CN109356040A (zh) * 2018-09-29 2019-02-19 中铁二局集团有限公司 一种高墩群小半径曲线现浇梁贝雷梁支架施工体系
CN109537467A (zh) * 2018-12-18 2019-03-29 中交天津航道局有限公司 一种箱梁预应力施工方法
CN110700100A (zh) * 2019-10-11 2020-01-17 重庆建工建筑产业技术研究院有限公司 一种高墩小半径曲线匝道桥现浇平台贝雷梁束施工方法
CN112146980A (zh) * 2020-09-03 2020-12-29 山东大学 一种预应力钢绞线初始张拉力及稳压时间判别系统及方法
CN112146980B (zh) * 2020-09-03 2021-10-08 山东大学 一种预应力钢绞线初始张拉力及稳压时间判别系统及方法
CN112281660A (zh) * 2020-09-17 2021-01-29 济南利民路桥工程有限责任公司 一种桥梁梁体预应力张拉方法
CN114323389A (zh) * 2022-03-14 2022-04-12 四川交达预应力工程检测科技有限公司 预应力检测方法、不分级快速连续张拉方法及系统
CN114323389B (zh) * 2022-03-14 2022-05-17 四川交达预应力工程检测科技有限公司 预应力检测方法、不分级快速连续张拉方法及系统

Similar Documents

Publication Publication Date Title
CN106758820A (zh) 一种小半径连续现浇梁预应力束张拉施工方法
CN107036915A (zh) 一种冲击荷载作用下测量frp与混凝土粘结性能的试验装置及方法
CN109137761A (zh) 一种控制既有桥梁与加宽桥梁沉降差的方法
CN103215974A (zh) 基于分布式光纤传感技术的基桩挠度量测方法
Harries et al. Updated research for collision damage and repair of prestressed concrete beams
CN109208488B (zh) 一种高空组合压重的高桥墩预压装置及其施工方法
CN111693226A (zh) 桥梁后张预应力管道高效检漏防堵施工方法
Pirskawetz et al. Detection of wire breaks in prestressed concrete bridges by Acoustic Emission analysis
CN106351129B (zh) 紧临既有线大跨度连续梁施工方法
CN110184948A (zh) 一种大桥主梁施工方法
Moon et al. Practical crack control during the construction of precast segmental box girder bridges
Cheng et al. Flexural performance of prestressed beams with grouting material of various compactnesses
Enckell Structural health monitoring of bridges in Sweden
Jiang et al. Key technologies of whole incremental launching construction control for inclined continuous box girder with steep longitudinal gradient
CN104452569B (zh) 一种大跨径预应力混凝土梁桥布束方法
Sansalone et al. Applications of the Impact-Echo Method for Detecting Flaws in Highway Bridges
CN206916632U (zh) 悬臂t型刚构线型监测点安装结构
CN105045944B (zh) 一种工程用预应力技术使用状态评估方法
CN203684115U (zh) 一种拓宽薄壁的混凝土箱梁
Kollegger et al. Ultimate strength of curved strand tendons
Chataigner et al. Acoustic monitoring of a prestressed concrete beam reinforced by adhesively bonded composite
CN216839039U (zh) 一种多跨渡线连续梁组合支架
CN104805761A (zh) 一种拓宽薄壁的混凝土箱梁
Park et al. Planning and Design of Jeokgeum Grand Bridge
Zhu et al. Research on wire-broken monitoring of bridge cable based on acoustic emission technique

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination