CN106756906A - 一种双镀层金刚石粉末的制备方法 - Google Patents

一种双镀层金刚石粉末的制备方法 Download PDF

Info

Publication number
CN106756906A
CN106756906A CN201611195460.XA CN201611195460A CN106756906A CN 106756906 A CN106756906 A CN 106756906A CN 201611195460 A CN201611195460 A CN 201611195460A CN 106756906 A CN106756906 A CN 106756906A
Authority
CN
China
Prior art keywords
diamond
powder
copper
plating
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201611195460.XA
Other languages
English (en)
Other versions
CN106756906B (zh
Inventor
何新波
潘彦鹏
任淑彬
吴茂
张忍
曲选辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Science and Technology Beijing USTB
Original Assignee
University of Science and Technology Beijing USTB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Science and Technology Beijing USTB filed Critical University of Science and Technology Beijing USTB
Priority to CN201611195460.XA priority Critical patent/CN106756906B/zh
Publication of CN106756906A publication Critical patent/CN106756906A/zh
Application granted granted Critical
Publication of CN106756906B publication Critical patent/CN106756906B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/38Coating with copper
    • C23C18/40Coating with copper using reducing agents
    • C23C18/405Formaldehyde
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/17Metallic particles coated with metal
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1646Characteristics of the product obtained
    • C23C18/165Multilayered product
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/1851Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material
    • C23C18/1872Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material by chemical pretreatment
    • C23C18/1886Multistep pretreatment
    • C23C18/1893Multistep pretreatment with use of organic or inorganic compounds other than metals, first
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/341Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with at least one carbide layer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemically Coating (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明属于粉末冶金技术领域,涉及一种双镀层金刚石粉末的制备方法,采用盐浴镀覆技术在金刚石表面镀覆一层均匀的WC用来改善金刚石与铜的润湿性,然后采用化学镀覆方法持续在WC层表面镀铜,通过控制镀液中Cu2+含量来控制镀铜层厚度,从而制备出含铜体积分数为30~50vol.%的双镀层Cu‑WC‑Diamond粉末。该粉末可直接压制成形(Diamond/Cu)复合材料零部件,实现了复杂形状金属基复合材料零部件的近净成形。本发明的优点在于可通过控制镀铜层厚度制备Cu‑WC‑Diamond粉末,而制备的Cu‑WC‑Diamond粉末的镀铜量即为压制该粉末成形后的Diamond/Cu复合材料的含铜量,因此制备的复合材料金刚石分布均匀,结合强度高,性能优异。

Description

一种双镀层金刚石粉末的制备方法
技术领域
本发明属于粉末冶金技术领域,提供了一种双镀层Cu-WC-Diamond(金刚石)粉末的制备方法,该粉末可直接压制成形高体分(Diamond/Cu)复合材料零部件,省去了传统粉末冶金法制备复合材料的混粉步骤,实现了复杂形状金属基复合材料零部件的近净成形。
背景技术
随着电子信息化时代的迅速发展,对现代电子元器件集成和运行速度的要求越来越高,元器件在高频工作下产生极大热量,过高的温度会降低器件的稳定性及使用寿命,因此新一代电子封装散热材料的研制成为势在必行的趋势。高体分Diamond/Cu复合材料因其具有优异的热物理综合性能,特别是较高的热导率(≥400W·m-1·K-1)、与半导体材料Si基板匹配的热膨胀系数,已成为最为理想的电子封装材料之一,在国防、军工和航空航天等领域有着广阔的应用前景。因此,近年来高性能Diamond/Cu复合材料一直是热管理材料的研究前沿方向。目前,制备高体积分数Diamond/Cu复合材料较成熟的方法主要有粉末冶金法和金刚石预成形坯—Cu液熔渗法。传统的粉末冶金法采用简单的混粉-压形-烧结三步工艺,可以灵活地选择基体合金成分和增强体的类型,性能的可设计范围较大。但该方法生产Diamond/Cu最大体积分数仅为55%左右,并且生产效率低,生产成本高。金刚石预成形坯—Cu液熔渗法可以制备出高体积分数的复合材料,该方法首先是将一定比例的金刚石微粉和成形剂(如石蜡、水等)通过粉末冶金模压技术制备出金刚石预成形坯,然后将成形剂脱除并进行预烧结制备出具有一定孔隙度的金刚石骨架,最后通过压力将Cu熔液渗入到金刚石骨架的孔隙中,从而制备出高体积分数的Diamond/Cu复合材料。由于该方法采用粉末冶金模压技术制备金刚石预成形坯,所以成形坯密度不均匀,零件的形状复杂程度也受到很大的限制。同时,由于金刚石和Cu之间不湿润,即使采用各种形式的加压渗透技术也很难达到完全渗透,往往留下一定量的气孔,这对于电子封装材料是致命的弱点。预制坯即使通过脱脂过程仍会有成形剂残留在金刚石预成型坯中,降低材料的各项性能。此外,基体中高体积分数的Diamond/Cu复合材料的机加工极其困难,成为该材料实际应用的瓶颈。考虑到以上两种传统方法的局限性,本发明研制了一种可通过不添加铜粉而直接压制成形的双镀层Cu-WC-Diamond粉末,由于金刚石粉末颗粒表面均匀镀覆的铜层取代了铜粉使得直接压制成形的Diamond/Cu复合材料中金刚石颗粒分布的均匀性趋于完美,可以制备传统粉末冶金法制备不了的高体分(>60vol%)Diamond/Cu复合材料。同时,由于金刚石粉表面的镀铜层具有良好的压制性能,无需添加成形剂即可压制致密,与熔渗法相比不仅精简了预成形坯的制备步骤而且避免了成形剂等残留杂质对Diamond/Cu复合材料性能的影响。此外,由于该双镀层Cu-WC-Diamond粉末具有优异的成形性,因此对于近净成形Diamond/Cu复合材料具有重要的应用前景。
发明内容
本发明的目的在于提供一种双镀层Cu-WC-Diamond粉末的制备方法,采用该双镀层粉末可以不添加铜粉而直接冷压压制成形具有高体积分数的金刚石颗粒增强铜基复合材料,能够低成本直接制备出具有最终形状和较高尺寸精度的高性能Diamond/Cu复合材料零件。
本发明采用盐浴镀覆技术在金刚石表面镀覆一层均匀的WC用来改善金刚石与铜的润湿性,然后采用化学镀覆方法继续在WC层表面镀铜,通过控制镀液中Cu2+含量来控制镀铜层厚度,从而制备出含铜体积分数为30~50vol.%的双镀层Cu-WC-Diamond粉末。具体工艺为:
一种双镀层金刚石粉末的制备方法,其特征在于:采用盐浴镀覆技术在金刚石表面镀覆一层均匀的WC用来改善金刚石与铜的润湿性,然后采用化学镀覆方法持续在WC层表面镀铜,通过调整镀液中Cu2+含量来控制镀铜层厚度,从而制备出含铜体积分数为30~50vol.%的双镀层Cu-WC-Diamond粉末。
具体工艺为:
1)将经过筛分的金刚石粉末、WO3粉末以及混合盐NaCl-KCl,通过机械混料机混合均匀,然后在通Ar气的快速升温管式电炉中进行反应烧结,在高温下使熔盐中的WO3粉末与表面石墨化的金刚石反应形成WC层;混合盐摩尔比NaCl:KCl=1:1;
2)随炉冷却后,将得到的产物进行超声酒精清洗筛分出镀覆WC层的金刚石粉体;
3)在镀覆WC层的金刚石粉体表面进行化学镀铜,镀铜过程如下:将金刚石粉体置于浓度为30g/L的SnCl2去离子水溶液中进行表面敏化,然后置于浓度为0.25g/L的PdCl2去离子水溶液中进行表面活化,最后在配制好的硫酸铜镀液中进行化学镀铜。
其中步骤3)中硫酸铜镀液配方为:CuSO4·5H2O(15g/L),37%HCHO水溶液(14ml/L),EDTA(14.5g/L),C4O6H4KNa(14g/L),二联吡啶(0.02g/L),亚铁氰化钾(0.01g/L);镀液的酸碱度控制在PH>11,反应温度控制在43±0.5℃;通过控制硫酸铜镀液的用量制备出含铜体积分数不同的双镀层Cu-WC-Diamond粉末。通过控制单位质量金刚石粉末所需镀铜液的量是0.286~0.668L/g,镀覆时间是1~6h;双镀层Cu-WC-Diamond粉末含铜体积分数为30~50vol.%。
进一步步骤1)所述金刚石粉的晶型度为MBD4~MBD12,平均粒度为80~120μm;金刚石粉末与WO3粉末的摩尔比为10:1~3,金刚石粉末与混合盐的质量比为1:3~5,混粉时间为0.5~3h,粉末装载量为53~73vol.%。
进一步步骤1)所述反应烧结,烧结温度为900℃~1000℃,时间为0.5~2h。
制备的双镀层Cu-WC-Diamond粉末可采用冷压成形-无压真空烧结工艺制备具有高体积分数的Diamond/Cu复合材料零件,可以实现复杂形状零件的近净成形,克服了后续机加工困难的问题,其生产设备简单,生产效率高,因而可以大大降低生产成本。更重要的是采用此技术可以灵活的调整金刚石的体积分数,金刚石颗粒在铜基体中的分布也很均匀,这主要是由于金刚石在复合材料零件中所占的体积分数与金刚石在双镀层Cu-WC-Diamond粉末中所占的体积分数是相同的,而金刚石表面镀铜层的体积分数就是铜基体的体积分数,因此可以在金刚石表面镀铜阶段通过精确控制金刚石与镀铜层的比例来制备不同体分的Diamond/Cu复合材料。在超高压冷压和随后的真空烧结过程中,通过调整压制压力、烧结温度和烧结时间使金刚石表面镀铜层相互粘结,制备的复合材料致密度很高,性能优异。
附图说明
图1为本发明的工艺流程图。
具体实施方式
实施例1:制备镀铜层体积分数为30%的Cu-WC-Diamond双镀层金刚石粉末
步骤1:称取平均粒度为80μm的MBD6金刚石粉末10g,WO3粉末19.32g,混合盐NaCl-KCl(摩尔比NaCl:KCl=1:1)30g,采用混粉机混合0.5h,粉末装载量为53vol.%。
步骤2:将上述混合粉末在快速升温管式电炉中进行加热至900℃保温2h,期间通入Ar氛围保护。将管式炉中的反应产物放入装有酒精的烧杯中,并采用超声波清洗器震荡清洗,干燥过筛得到表面镀覆WC层的金刚石粉末。
步骤3:称取镀覆WC层的金刚石粉末8g置于0.4L的SnCl2(30g/L)去离子水溶液中进行表面敏化,然后置于0.4L的PdCl2(0.25g/L)去离子水溶液中进行表面活化。最后将处理过的金刚石粉末进行化学镀铜,配制硫酸铜镀液2.288L,其中硫酸铜镀液配方为:CuSO4·5H2O(15g/L),HCHO(37%水溶液,14ml/L),EDTA(14.5g/L),C4O6H4KNa(14g/L),二联吡啶(0.02g/L),亚铁氰化钾(0.01g/L)。镀覆温度为43.5℃,PH=12,镀覆时间1h,最终制备出30Cu-70Diamond(WC)双镀层金刚石粉末。
实施例2:制备镀铜层体积分数为40%的Cu-WC-Diamond双镀层金刚石粉末
步骤1:称取平均粒度为100μm的MBD8金刚石粉末10g,WO3粉末38.64g,混合盐NaCl-KCl(摩尔比NaCl:KCl=1:1)40g,采用混粉机混合1h,粉末装载量为63vol.%。
步骤2:将上述混合粉末在快速升温管式电炉中进行加热至950℃保温1h,期间通入Ar氛围保护。将管式炉中的反应产物放入装有酒精的烧杯中,并采用超声波清洗器震荡清洗,干燥过筛得到表面镀覆WC层的金刚石粉末。
步骤3:称取镀覆WC层的金刚石粉末8g置于0.4L的SnCl2(30g/L)去离子水溶液中进行表面敏化,然后置于0.4L的PdCl2(0.25g/L)去离子水溶液中进行表面活化。最后将处理过的金刚石粉末进行化学镀铜,配制硫酸铜镀液3.560L,其中硫酸铜镀液配方为:CuSO4·5H2O(15g/L),HCHO(37%水溶液,14ml/L),EDTA(14.5g/L),C4O6H4KNa(14g/L),二联吡啶(0.02g/L),亚铁氰化钾(0.01g/L)。镀覆温度为43.5℃,PH=12,镀覆时间3h,最终制备出40Cu-60Diamond(WC)双镀层金刚石粉末。
实施例3:制备镀铜层体积分数为50%的Cu-WC-Diamond双镀层金刚石粉末
步骤1:称取平均粒度为120μm的MBD10金刚石粉末10g,WO3粉末57.96g,混合盐NaCl-KCl(摩尔比NaCl:KCl=1:1)50g,采用混粉机混合3h,粉末装载量为73vol.%。
步骤2:将上述混合粉末在快速升温管式电炉中进行加热至1000℃保温0.5h,期间通入Ar氛围保护。将管式炉中的反应产物放入装有酒精的烧杯中,并采用超声波清洗器震荡清洗,干燥过筛得到表面镀覆WC层的金刚石粉末。
步骤3:称取镀覆WC层的金刚石粉末8g置于0.4L的SnCl2(30g/L)去离子水溶液中进行表面敏化,然后置于0.4L的PdCl2(0.25g/L)去离子水溶液中进行表面活化。最后将处理过的金刚石粉末进行化学镀铜,配制硫酸铜镀液5.344L,其中硫酸铜镀液配方为:CuSO4·5H2O(15g/L),HCHO(37%水溶液,14ml/L),EDTA(14.5g/L),C4O6H4KNa(14g/L),二联吡啶(0.02g/L),亚铁氰化钾(0.01g/L)。镀覆温度为43.5℃,PH=12,镀覆时间6h,最终制备出50Cu-50Diamond(WC)双镀层金刚石粉末。

Claims (5)

1.一种双镀层金刚石粉末的制备方法,其特征在于:采用盐浴镀覆技术在金刚石表面镀覆一层均匀的WC用来改善金刚石与铜的润湿性,然后采用化学镀覆方法持续在WC层表面镀铜,通过调整镀液中Cu2+含量来控制镀铜层厚度,从而制备出含铜体积分数为30~50vol.%的双镀层Cu-WC-Diamond粉末;
具体工艺为:
1)将经过筛分的金刚石粉末、WO3粉末以及混合盐NaCl-KCl,通过机械混料机混合均匀,然后在通Ar气的快速升温管式电炉中进行反应烧结,在高温下使熔盐中的WO3粉末与表面石墨化的金刚石反应形成WC层;混合盐摩尔比NaCl:KCl=1:1;
2)随炉冷却后,将得到的产物进行超声酒精清洗筛分出镀覆WC层的金刚石粉体;
3)在镀覆WC层的金刚石粉体表面进行化学镀铜,镀铜过程如下:将金刚石粉体置于浓度为30g/L的SnCl2去离子水溶液中进行表面敏化,然后置于浓度为0.25g/L的PdCl2去离子水溶液中进行表面活化,最后在配制好的硫酸铜镀液中进行化学镀铜。
2.根据权利要求1所述的双镀层金刚石粉末的制备方法,其特征在于:步骤3)中硫酸铜镀液配方为:CuSO4·5H2O(15g/L),37%HCHO水溶液(14ml/L),EDTA(14.5g/L),C4O6H4KNa(14g/L),二联吡啶(0.02g/L),亚铁氰化钾(0.01g/L);镀液的酸碱度控制在PH>11,反应温度控制在43±0.5℃;通过控制硫酸铜镀液的用量制备出含铜体积分数不同的双镀层Cu-WC-Diamond粉末。
3.根据权利要求1所述的双镀层金刚石粉末的制备方法,其特征在于:步骤1)所述金刚石粉的晶型度为MBD4~MBD12,平均粒度为80~120μm;金刚石粉末与WO3粉末的摩尔比为10:1~3,金刚石粉末与混合盐的质量比为1:3~5,混粉时间为0.5~3h,粉末装载量为53~73vol.%。
4.根据权利要求1所述的所述的双镀层金刚石粉末的制备方法,其特征在于:步骤1)所述反应烧结,烧结温度为900℃~1000℃,时间为0.5~2h。
5.根据权利要求2所述的所述的双镀层金刚石粉末的制备方法,其特征在于:硫酸铜镀液的用量是0.286~0.668L/g,镀覆时间是1~6h;双镀层Cu-WC-Diamond粉末含铜体积分数为30~50vol.%。
CN201611195460.XA 2016-12-22 2016-12-22 一种双镀层金刚石粉末的制备方法 Active CN106756906B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611195460.XA CN106756906B (zh) 2016-12-22 2016-12-22 一种双镀层金刚石粉末的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611195460.XA CN106756906B (zh) 2016-12-22 2016-12-22 一种双镀层金刚石粉末的制备方法

Publications (2)

Publication Number Publication Date
CN106756906A true CN106756906A (zh) 2017-05-31
CN106756906B CN106756906B (zh) 2019-03-01

Family

ID=58900385

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611195460.XA Active CN106756906B (zh) 2016-12-22 2016-12-22 一种双镀层金刚石粉末的制备方法

Country Status (1)

Country Link
CN (1) CN106756906B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107855533A (zh) * 2017-11-16 2018-03-30 北京科技大学 一种结合注射成形技术制备金刚石/铜复合材料的方法
CN107900327A (zh) * 2017-11-16 2018-04-13 北京科技大学 一种结合3d打印技术制备金刚石/铜复合材料的方法
CN110373660A (zh) * 2019-08-26 2019-10-25 合肥工业大学 一种金属镀层敏化活化的金刚石颗粒表面化学镀铜的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN85100286A (zh) * 1985-04-01 1986-08-27 林增栋 金刚石表面金属化的技术
US20100319900A1 (en) * 2009-10-21 2010-12-23 Andrey Mikhailovich Abyzov Composite material having high thermal conductivity nd process of fabricating same
CN102644102A (zh) * 2012-04-05 2012-08-22 燕山大学 一种采用金刚石微粉制造的金刚石线锯
CN104046833A (zh) * 2014-06-18 2014-09-17 南昌航空大学 一种高导热性能的金刚石/铜复合材料及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN85100286A (zh) * 1985-04-01 1986-08-27 林增栋 金刚石表面金属化的技术
US20100319900A1 (en) * 2009-10-21 2010-12-23 Andrey Mikhailovich Abyzov Composite material having high thermal conductivity nd process of fabricating same
CN102644102A (zh) * 2012-04-05 2012-08-22 燕山大学 一种采用金刚石微粉制造的金刚石线锯
CN104046833A (zh) * 2014-06-18 2014-09-17 南昌航空大学 一种高导热性能的金刚石/铜复合材料及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHUN ZHANG ET AL.: ""Effects of dual-layer coatings on microstructure and thermal conductivity of diamond/Cu composites prepared by vacuum hot pressing"", 《SURFACE & COATINGS TECHNOLOGY》 *
QIPING KANG ET AL.: ""Microstructure and thermal properties of copper–diamond composites with tungsten carbide coating on diamond particles"", 《MATERIALS CHARACTERIZATION》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107855533A (zh) * 2017-11-16 2018-03-30 北京科技大学 一种结合注射成形技术制备金刚石/铜复合材料的方法
CN107900327A (zh) * 2017-11-16 2018-04-13 北京科技大学 一种结合3d打印技术制备金刚石/铜复合材料的方法
CN107900327B (zh) * 2017-11-16 2019-10-18 北京科技大学 一种结合3d打印技术制备金刚石/铜复合材料的方法
CN107855533B (zh) * 2017-11-16 2019-10-29 北京科技大学 一种结合注射成形技术制备金刚石/铜复合材料的方法
CN110373660A (zh) * 2019-08-26 2019-10-25 合肥工业大学 一种金属镀层敏化活化的金刚石颗粒表面化学镀铜的方法
CN110373660B (zh) * 2019-08-26 2021-11-30 合肥工业大学 一种金属镀层敏化活化的金刚石颗粒表面化学镀铜的方法

Also Published As

Publication number Publication date
CN106756906B (zh) 2019-03-01

Similar Documents

Publication Publication Date Title
CN107900327B (zh) 一种结合3d打印技术制备金刚石/铜复合材料的方法
CN106583735B (zh) 一种制备具有高体积分数金刚石/铜复合材料零件的方法
CN107855533B (zh) 一种结合注射成形技术制备金刚石/铜复合材料的方法
CN108213408B (zh) 一种利用3d打印技术制备具有复杂结构的多孔金属零件的方法
CN105624505B (zh) 一种金属基超硬复合材料及其制备方法
CN106424713A (zh) 一种铜碳复合材料及其制备方法
CN103467140B (zh) 一种碳化硅陶瓷的表面金属化层及金属化方法
CN104975200B (zh) 一种高性能铝/碳复合材料及其制备方法
CN105950940B (zh) 一种镀镍立方氮化硼复合材料及其制备方法
CN106756906B (zh) 一种双镀层金刚石粉末的制备方法
CN112091217B (zh) 一种采用球形钨粉激光3d打印制造铜钨材料的方法
CN105921753A (zh) 金刚石-铜复合材料制备复杂形状近终形零件的方法
CN102071332A (zh) 一种制备高体积分数金刚石增强铜基复合材料的方法
CN108972374A (zh) 一种金属结合剂、金属结合剂金刚石砂轮及其制备方法
CN102943194B (zh) 金刚石-Ti(C,N)基金属陶瓷复合材料及制备方法
CN109972004A (zh) 一种稀土Sc改性Al-Si-Mg合金及其制备方法
CN103194712B (zh) 一种高导热性的钨铜复合材料作为钨铜热沉和电子封装材料的应用
CN103302294A (zh) 一种粉末冶金法制备纳米Cu@SiC/Cu基复合材料的方法
CN102554218A (zh) 一种通过化学镀铜制备钨铜复合粉末的方法
CN108789189A (zh) 一种钎焊多层金刚石工具的制备工艺
CN107838417A (zh) 一种铁铝基结合剂金刚石工具及其制备方法
CN106862573B (zh) 一种WC-Co与CBN-Co梯度复合刀具材料及制备方法
TW200427533A (en) Metal powder composition for use in selective laser sintering
CN101845567B (zh) 一种强化熔渗Cu用注射成形金刚石粉末脱脂坯体的方法
CN109371275A (zh) 一种柔性颗粒增强金属基复合材料的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant