CN106756674B - 一种提高超高强铝合金电导率的方法 - Google Patents

一种提高超高强铝合金电导率的方法 Download PDF

Info

Publication number
CN106756674B
CN106756674B CN201710077814.9A CN201710077814A CN106756674B CN 106756674 B CN106756674 B CN 106756674B CN 201710077814 A CN201710077814 A CN 201710077814A CN 106756674 B CN106756674 B CN 106756674B
Authority
CN
China
Prior art keywords
conductivity
aluminum alloy
cryogenic
ultrahigh
strength aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710077814.9A
Other languages
English (en)
Other versions
CN106756674A (zh
Inventor
孙振淋
辛玉武
孙国荣
刘慧�
郝博健
徐奉鑫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AVIC Harbin Dongan Engine Group Co Ltd
Original Assignee
AVIC Harbin Dongan Engine Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AVIC Harbin Dongan Engine Group Co Ltd filed Critical AVIC Harbin Dongan Engine Group Co Ltd
Priority to CN201710077814.9A priority Critical patent/CN106756674B/zh
Publication of CN106756674A publication Critical patent/CN106756674A/zh
Application granted granted Critical
Publication of CN106756674B publication Critical patent/CN106756674B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/053Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with zinc as the next major constituent

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)
  • Conductive Materials (AREA)

Abstract

本发明涉及一种提高超高强铝合金材料电导率的方法,对加工后发生畸变的点阵结构,经深冷处理后,偏离平衡位置的原子因热胀冷缩的原理,发生收缩,逐渐恢复到平衡点阵位置,点阵结构中自由电子运动的相干散射程度下降,电阻率下降,电导率上升。本发明对电导率出现衰减的超高强铝合金零件,通过深冷处理后,电导率得到提高,恢复到合格水平。

Description

一种提高超高强铝合金电导率的方法
技术领域
本发明涉及一种提高铝合金电导率的方法,尤其是一种提高超高强铝合金材料电导率的方法。
背景技术
铝合金比强度高、密度小,应用极为广泛。出于减重需要,航空、航天领域大量使用铝合金材料。在航空、航天领域,一些重要、关键铝合金构件通常使用超高强铝合金,包括7A04、7A09、7A33、7050、7075和7475,这些材料的零件,在工作过程中,有的除了需要保证一定的力学性能要求以外,还需要对其电导率进行控制。然而在对时效后的超高强铝合金进行加工后,其电导率通常会出现一定程度的下降,导致电导率不能满足设计使用要求的情况。
发明内容
本发明的目的是提供一种提高超高强铝合金材料电导率的方法,实现超高强铝合金材料加工制造的构件电导率提升至设计指定的合格范围内。
本发明的具体技术方案是:
1、对机加后电导率衰减至不合格区域的零件清洗干净后,放入深冷处理机;
2、根据加入的铝合金零件质量,相应加入零件质量0.2~0.8倍的液氮,然后封闭深冷处理机,深冷处理可以一次完成,也可以分成多次完成,但最多不得超过5次,深冷处理的总保温时间为2~36h,深冷处理的温度范围为-100~-196℃;
3、深冷处理结束后,从深冷处理机中取出零件,在8h内转入热处理炉或烘箱中消除应力,消除应力的温度为80~110℃,消除应力的保温时间为0.5~10h:
4、对超高强铝合金零件进行电导率检测,如果电导率合格,则处理结束;若电导率低于设计给定值,重复上述步骤1、2、3,然后复测,至电导率合格为止,深冷处理最多可重复2次。
经机械加工后,由于铝合金的模量低,晶格点阵在机械加工应力的作用下,发生严重点阵畸变,几何空间的原子偏离平衡位置,自由电子的运动因此产生干涉,宏观表现为铝合金电阻率上升,电导率下降。发生畸变的点阵结构,经深冷处理后,偏离平衡位置的原子因热胀冷缩的原理,发生收缩,逐渐恢复到平衡点阵位置,点阵结构中自由电子运动的相干散射程度下降,电阻率下降,电导率上升。因此,电导率出现衰减的超高强铝合金零件,通过深冷处理后,电导率得到提高,恢复到合格水平。
具体实施方式
一种提高超高强铝合金材料电导率的方法包括以下步骤::
1、对机加后电导率衰减至不合格区域的零件清洗干净后,放入深冷处理机;
2、根据加入的铝合金零件质量,相应加入零件质量0.2~0.8倍的液氮,然后封闭深冷处理机,深冷处理可以一次完成,也可以分成多次完成,但最多不得超过5次,深冷处理的总保温时间为2~36h,深冷处理的温度范围为-100~-196℃;
3、深冷处理结束后,从深冷处理机中取出零件,在8h内转入热处理炉或烘箱中消除应力,消除应力的温度为80~110℃,消除应力的保温时间为0.5~10h:
4、对超高强铝合金零件进行电导率检测,如果电导率合格,则处理结束;若电导率低于设计给定值,重复上述步骤1、2、3,然后复测,至电导率合格为止,深冷处理最多可重复2次。
实施例
一种航空传动系统用超高强铝合金7075构件,质量3.87kg,原材料为固溶——时效状态(T73),设计给定电导率为22.0~24.4MS/m,转入时电导率为23.9MS/m,经过机加后,电导率低至21.07MS/m。为提高其电导率,采用如下步骤:
1、将该铝合金构件清洗干净后,放入深冷处理机中;
2、向深冷处理机中倒入1.5kg液氮后,封闭深冷处理机;深冷处理的温度维持在-180℃,深冷处理时间为16h;
3、构件从深冷处理机中取出后,2h内转入热处理炉进行消除应力,消除应力的温度为100℃,消除应力的保温时间为4h;
4、构件消除应力后,进行电导率检测,构件电导率由机加后的21.07MS/m提升至24.1MS/m,电导率检测合格。

Claims (1)

1.一种提高超高强铝合金材料电导率的方法,其特征在于,所述的方法包括以下步骤:
1)对机加后电导率衰减至不合格区域的零件清洗干净后,放入深冷处理机,所述的超高强铝合金材料为7075铝合金;
2)根据加入的铝合金零件质量,相应加入零件质量0.2~0.8倍的液氮,然后封闭深冷处理机,深冷处理可以一次完成,也可以分成多次完成,但最多不得超过5次,深冷处理的总保温时间为2~36h,深冷处理的温度范围为-100~-196℃;
3)深冷处理结束后,从深冷处理机中取出零件,在8h内转入热处理炉或烘箱中消除应力,消除应力的温度为80~110℃,消除应力的保温时间为0.5~10h:
4)对超高强铝合金零件进行电导率检测,如果电导率合格,则处理结束;若电导率低于设计给定值,重复上述步骤1) 、2) 、3) ,然后复测,至电导率合格为止,深冷处理最多可重复2次。
CN201710077814.9A 2017-02-14 2017-02-14 一种提高超高强铝合金电导率的方法 Active CN106756674B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710077814.9A CN106756674B (zh) 2017-02-14 2017-02-14 一种提高超高强铝合金电导率的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710077814.9A CN106756674B (zh) 2017-02-14 2017-02-14 一种提高超高强铝合金电导率的方法

Publications (2)

Publication Number Publication Date
CN106756674A CN106756674A (zh) 2017-05-31
CN106756674B true CN106756674B (zh) 2021-07-20

Family

ID=58955531

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710077814.9A Active CN106756674B (zh) 2017-02-14 2017-02-14 一种提高超高强铝合金电导率的方法

Country Status (1)

Country Link
CN (1) CN106756674B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2004260006B2 (en) * 2003-06-24 2007-05-24 Gm Global Technology Operations, Inc. Aluminum alloy for engine blocks
US7241328B2 (en) * 2003-11-25 2007-07-10 The Boeing Company Method for preparing ultra-fine, submicron grain titanium and titanium-alloy articles and articles prepared thereby
CN102719709A (zh) * 2012-05-17 2012-10-10 深圳市兆方创业科技有限公司 一种高强高导铝合金导线及其制备方法
CN103628007A (zh) * 2013-12-03 2014-03-12 葛鹏 一种消除铝合金工件残余应力的新方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2004260006B2 (en) * 2003-06-24 2007-05-24 Gm Global Technology Operations, Inc. Aluminum alloy for engine blocks
US7241328B2 (en) * 2003-11-25 2007-07-10 The Boeing Company Method for preparing ultra-fine, submicron grain titanium and titanium-alloy articles and articles prepared thereby
CN102719709A (zh) * 2012-05-17 2012-10-10 深圳市兆方创业科技有限公司 一种高强高导铝合金导线及其制备方法
CN103628007A (zh) * 2013-12-03 2014-03-12 葛鹏 一种消除铝合金工件残余应力的新方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
时效深冷循环处理7055铝合金的组织演变规律和性能特征;李桂荣 等;《稀有金属材料与工程》;20131130;第42卷;第251页右栏和第252页左栏表2 *

Also Published As

Publication number Publication date
CN106756674A (zh) 2017-05-31

Similar Documents

Publication Publication Date Title
US9487850B2 (en) Ultra high strength copper-nickel-tin alloys
CN105839044B (zh) 一种钛合金齿轮的制造方法
JP7084137B2 (ja) 高強度で均一な銅-ニッケル-錫合金および製造プロセス
CN104630556A (zh) 一种超高强高韧高耐蚀CuNiSiNbSn系弹性铜合金及其制备方法
CN105838862A (zh) 一种马氏体时效不锈钢循环相变细化晶粒的方法
CN106756674B (zh) 一种提高超高强铝合金电导率的方法
US10323312B2 (en) Reducing microtexture in titanium alloys
CN103451558B (zh) 一种纳米级碳化硅铸造铁合金材料及其制备方法和应用
Sha et al. Dynamic and static recrystalization behaviour of coarse-grained austenite in a Nb-V-Ti microaloyed steel
WO2014159404A1 (en) Improving formability of wrought copper-nickel-tin alloys
US20160273078A1 (en) Copper-nickel-tin alloy with manganese
KR20130131052A (ko) 알루미늄 합금 다이캐스팅 제품의 열처리 방법 및 이에 사용되는 알루미늄 합금 조성물
Li et al. Hot compressive deformation behavior and constitutive relationship of Al-Zn-Mg-Zr alloy with trace amounts of Sc
KR101523202B1 (ko) 우주선용 볼트를 제조하는 방법
Leder et al. Determination of the thermophysical properties of titanium alloys from liquid bath profiles
KR102297929B1 (ko) 균일한 결정 입도의 열간 가공된 스피노달 합금
CN111020297A (zh) 一种镍铬合金材料及其制备方法
Kumar Saxena et al. Effect of grain size on deformation twinning behavior of Ti6Al4V alloy
US10364483B1 (en) High hardness, high elasticity intermetallic compounds for mechanical components
CN104178611A (zh) 一种s520b材料的热处理工艺及其应用
CN102703767A (zh) 一种提高镍钛铜记忆合金相变温度稳定性的中温处理方法
Chunlei et al. Flow behavior of lead-free machinable brass during hot compression deformation
CN106566950A (zh) 一种具有高强度高弹性高耐腐蚀性的镍铍合金及其制造方法
Vargasov et al. Manufacture of parts from a titanium alloy under superplasticity conditions
KANG et al. Hot deformation constitutive equation of 7059 aluminum alloy

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant