CN106749574B - Plant male fertility-related protein MS6021 and coding gene and application thereof - Google Patents

Plant male fertility-related protein MS6021 and coding gene and application thereof Download PDF

Info

Publication number
CN106749574B
CN106749574B CN201611164100.3A CN201611164100A CN106749574B CN 106749574 B CN106749574 B CN 106749574B CN 201611164100 A CN201611164100 A CN 201611164100A CN 106749574 B CN106749574 B CN 106749574B
Authority
CN
China
Prior art keywords
plant
gene
sequence
protein
male
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201611164100.3A
Other languages
Chinese (zh)
Other versions
CN106749574A (en
Inventor
陈化榜
田有辉
赵丽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Genetics and Developmental Biology of CAS
Original Assignee
Institute of Genetics and Developmental Biology of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Genetics and Developmental Biology of CAS filed Critical Institute of Genetics and Developmental Biology of CAS
Priority to CN201611164100.3A priority Critical patent/CN106749574B/en
Publication of CN106749574A publication Critical patent/CN106749574A/en
Application granted granted Critical
Publication of CN106749574B publication Critical patent/CN106749574B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8287Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for fertility modification, e.g. apomixis
    • C12N15/8289Male sterility

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Biochemistry (AREA)
  • Wood Science & Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Botany (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Plant Pathology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Microbiology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Medicinal Chemistry (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Peptides Or Proteins (AREA)

Abstract

The invention discloses a plant male fertility related protein MS6021 and a coding gene and application thereof. The protein provided by the invention is named as MS6021 protein and is (a) or (b) as follows: (a) a protein consisting of an amino acid sequence shown in a sequence 1 in a sequence table; (b) and (b) a protein derived from the sequence 1, which is subjected to substitution and/or deletion and/or addition of one or more amino acid residues and is related to plant male fertility. The gene (MS6021 gene) for coding the MS6021 protein also belongs to the protection scope of the invention. The MS6021 gene of the invention can control male fertility in corn, namely, homozygous mutation or deletion of the gene can ensure male sterility of corn, and expression of the MS6021 gene in arabidopsis homologous gene mutant can restore male fertility. The invention provides a new gene resource for the research of male fertility of corn.

Description

Plant male fertility-related protein MS6021 and coding gene and application thereof
Technical Field
The invention relates to the field of plant genetic engineering, in particular to a plant male fertility-related protein MS6021 and a coding gene and application thereof.
Background
In flowering plants, reproductive development of the male organ (anther) is crucial for generation alternation and genetic recombination. The mature anther consists of pollen mother cells inside and four-layered body cells outside, wherein the four-layered body cells are respectively a epidermis layer, an inner cortex layer, a middle layer and a tapetum layer from outside to inside. Wherein the tapetum has secretion function, and can provide a large amount of raw materials for forming cuticle and pollen outer wall on the surface of anther. While the anther cuticle and the pollen exine are barriers for the pollen grains containing genetic material to resist various biotic and abiotic stresses from the outside.
The cuticle of anther is composed of cutin and wax, wherein the cutin is polymer of 16-carbon and 18-carbon fatty acids and their derivatives, and the wax is composed of long-chain fatty acid, alkane, alkene, fatty alcohol, etc. The pollen outer wall is composed mainly of sporopollenin, and its biochemical components and biosynthetic processes have yet to be studied intensively due to its high insolubility and chemical resistance. In recent years, genetic and biochemical studies of these substances have been advanced in Arabidopsis and rice. For example, CYP703a2 and CYP703A3 in the P450 gene family function as lauric acid hydroxylase, and CYP704B1 and CYP704B2 catalyze hydroxylation at the ω -position of fatty acid. ACOS5, PKSA/LAP6 and PKSB/LAP5, TKPR1 may act together to synthesize the major components of sporopollenin. The genes encoding these proteins are mainly expressed in the tapetum, and the action products of the proteins are secreted from the tapetum and transported to the anther cuticle and the outer wall of pollen to assemble into biomacromolecules. There are studies that have shown that proteins such as ABC, LTP, MATE are responsible for this transport process. For example, the rice OsABCG15 is responsible for the transport of lipid precursors to anther cuticles and pollen exoderm, and its homologous protein AtABCG26 in Arabidopsis transports lipid precursors and polyketides to pollen exoderm. OsC6 is responsible for the transport of lipid molecules from tapetum cells to other anther cells.
Disclosure of Invention
The invention aims to provide a plant male fertility-related protein MS6021 and a coding gene and application thereof.
The protein provided by the invention is obtained from corn and is named as MS6021 protein, and is (a) or (b) as follows:
(a) a protein consisting of an amino acid sequence shown in a sequence 1 in a sequence table;
(b) and (b) a protein derived from the sequence 1, which is subjected to substitution and/or deletion and/or addition of one or more amino acid residues and is related to plant male fertility.
Sequence 1 of the sequence table is an amino acid sequence of MS6021 protein, comprising 592 amino acids, in the protein sequence, 76 basic amino acids and 61 acidic amino acids, the molecular weight of the protein is 64KD, and the isoelectric point is 7.91.
In order to facilitate the purification and detection of the MS6021 protein in (a), a tag as shown in Table 1 may be attached to the amino terminus or the carboxyl terminus of a protein consisting of the amino acid sequence shown in sequence 1 in the sequence listing.
TABLE 1 sequences of tags
Label (R) Residue of Sequence of
Poly-Arg 5-6 (typically 5) RRRRR
Poly-His 2-10 (generally 6) HHHHHH
FLAG 8 DYKDDDDK
Strep-tag II 8 WSHPQFEK
c-myc 10 EQKLISEEDL
The MS6021 protein in the above (b) may be synthesized artificially, or may be obtained by synthesizing the coding gene and then performing biological expression. The gene encoding the MS6021 protein in (b) above may be obtained by deleting one or several amino acid residues from the DNA sequence shown in sequence No. 2 in the sequence Listing, and/or by performing missense mutation of one or several base pairs, and/or by linking the coding sequence of the tag shown in Table 1 above at the 5 'end and/or 3' end thereof.
The gene (MS6021 gene) for coding the MS6021 protein also belongs to the protection scope of the invention.
The MS6021 gene is any one of the following (1) to (5):
(1) the coding region is shown as the DNA molecule from the 133 th and 1911 th nucleotides at the 5' end of the sequence 2 in the sequence table;
(2) DNA molecule shown in sequence 2 in the sequence table;
(3) DNA molecule shown in sequence 3 in the sequence table;
(4) a DNA molecule which is hybridized with the DNA sequence defined in (1) or (2) or (3) under strict conditions and encodes a protein related to the male fertility of the plant;
(5) and (3) a DNA molecule which has more than 90% homology with the DNA sequence defined in (1) or (2) or (3) or (4) and encodes a protein related to the male fertility of the plant.
The stringent conditions can be hybridization and washing with 0.1 XSSPE (or 0.1 XSSC), 0.1% SDS solution at 65 ℃ in DNA or RNA hybridization experiments.
The recombinant expression vector, the expression cassette, the transgenic cell line or the recombinant strain containing the MS6021 gene also belong to the protection scope of the invention.
The recombinant expression vector can be constructed by using the existing plant expression vector. The plant expression vector comprises a binary agrobacterium vector, a vector which can be used for plant microprojectile bombardment and the like, such as pGreen0029, pCAMBIA3301, pCAMBIA1300, pBI121, pBin19, pCAMBIA2301, pCAMBIA1301-UBIN or other derivative plant expression vectors. The plant expression vector may also comprise the 3' untranslated region of the foreign gene, i.e., a region comprising a polyadenylation signal and any other DNA segments involved in mRNA processing or gene expression. The poly A signal can direct the addition of poly A to the 3' end of the mRNA precursor. When the gene is used for constructing a recombinant expression vector, any one of enhanced, constitutive, tissue-specific or inducible promoters, such as a cauliflower mosaic virus (CaMV)35S promoter, a Ubiquitin gene Ubiquitin promoter (pUbi), a stress-inducible promoter rd29A and the like, can be added before the transcription initiation nucleotide, and can be used alone or in combination with other plant promoters; in addition, when the gene of the present invention is used to construct a recombinant expression vector, enhancers, including translational or transcriptional enhancers, may be used, and these enhancer regions may be ATG initiation codon or initiation codon of adjacent regions, etc., but must be in the same reading frame as the coding sequence to ensure proper translation of the entire sequence. The translational control signals and initiation codons are widely derived, either naturally or synthetically. The translation initiation region may be derived from a transcription initiation region or a structural gene. In order to facilitate the identification and screening of transgenic plant cells or plants, the recombinant expression vectors used may be processed, for example, by adding genes encoding enzymes or luminescent compounds which produce a color change, antibiotic markers having resistance or chemical resistance marker genes, etc., which are expressed in plants. Or directly screening the transformed plants in a stress environment without adding any selective marker gene.
The recombinant expression vector can be specifically a recombinant plasmid obtained by replacing small fragments of multiple cloning sites (such as Sac I and Hind III) of a pCAMBIA1300 vector with DNA molecules shown in a sequence 4 of a sequence table.
The expression cassette consists of a promoter capable of driving expression of the gene, a reporter gene, and a transcription termination sequence.
The reporter gene may specifically be a gfp gene.
The transgenic cell line is a non-propagating material into which the gene is transferred.
The invention also protects the application of the MS6021 protein or MS6021 gene or the recombinant vector, the expression cassette, the transgenic cell line or the recombinant bacterium in regulating and controlling the male fertility of plants.
The invention also protects the application of the MS6021 protein or the MS6021 gene in cultivating male sterile plants.
The invention also protects the application of the MS6021 protein or the MS6021 gene in cultivating male fertile plants.
The invention also provides a method for cultivating the transgenic plant, which comprises the following steps: introducing the MS6021 gene into the original plant to obtain a male fertile transgenic plant; the starting plant is a plant which shows male sterility due to the suppression of the expression of the MS6021 gene or the homologous gene of the MS6021 gene in other species.
The starting plant can be specifically an arabidopsis thaliana mutant ms 2.
The invention also provides a method for cultivating male sterile plants, which comprises the following steps: inhibiting the expression of MS6021 gene in the target plant to obtain the male sterile plant.
The invention also provides a method for cultivating male sterile plants, which comprises the following steps: reducing the activity and/or expression level of the MS6021 protein in the target plant to obtain the male sterile plant.
The invention also protects the application of the MS6021 protein or the MS6021 gene or any one of the above methods in plant breeding.
The goal of breeding is to select male sterile or male fertile plants.
Any of the above plants is a dicotyledonous plant or a monocotyledonous plant.
The dicotyledonous plant can be a plant of the order Capricorales. The plant of order Capparis can be a plant of the family Brassicaceae. The cruciferous plant may be a plant of the arabidopsis thaliana family. The Arabidopsis plant may be an Arabidopsis plant. The arabidopsis plant may specifically be arabidopsis thaliana, such as colombian ecotype arabidopsis thaliana.
The monocot plant can be a plant of the order gramineae. The plant of the order gramineae may be a gramineae. The graminaceous plant may be a plant of the zea mays family. The zea mays plant may be a zea mays plant. The sorghum family plant may be corn.
The MS6021 gene of the invention can control male fertility in corn, namely, homozygous mutation or deletion of the gene can ensure male sterility of corn, and expression of the MS6021 gene in arabidopsis homologous gene mutant can restore male fertility. The invention provides a new gene resource for the research of male fertility of corn.
Drawings
FIG. 1 is a graph comparing the phenotype of maize mutant ms x 6021 with wild type. Wherein A, C, E is wild type, B, D, F is ms-6021 mutant.
FIG. 2 is a map-based cloning map of the MS6021 gene.
FIG. 3 is a schematic diagram of the structure of the MS6021 gene and its mutation sites in maize mutants MS-6021, MS-6022, MS-6046 and MS-6047.
FIG. 4 is an agarose gel electrophoresis image of PCR identification of transgenic Arabidopsis thaliana.
FIG. 5 is a morphology of Arabidopsis pollen grains. Wherein, A: wild type arabidopsis pollen grains; b: arabidopsis mutant ms2 pollen grains; c: the transgene complements pollen grains of the expression plants.
Detailed Description
The following examples are given to facilitate a better understanding of the invention, but do not limit the invention. The experimental procedures in the following examples are conventional unless otherwise specified. The test materials used in the following examples were purchased from a conventional biochemical reagent store unless otherwise specified. The quantitative tests in the following examples, all set up three replicates and the results averaged.
Maize inbred line B73: reference documents: gong pay, plum blossom, maize inbred line B73 pyruvate phosphate dikinase gene cloning and the effect of low nitrogen on PPDK expression [ J ]. Tropical biology report, 2014, 5 (4): 326-; the public is available from the institute of genetics and developmental biology, academy of Chinese sciences.
Maize mutant ms-6021: preserved by Maize Genetics Cooperation storage Center, Co-op ID: 928O; description: 928 Oms-6021. The specific webpage links of the corn mutant in the preservation center are as follows: http:// www.maizegdb.org/data _ center/log/105816.
Maize mutant ms-6022, maintained by Maize Genetics Cooperation storage Center, Co-op ID: 928P, Description: 928P ms-6022. the Maize mutant is linked to the particular webpage of the collection as http:// www.maizegdb.org/data Center/variation? ID 105755.
Maize mutant ms-6046, preserved by Maize Genetics Cooperation storage Center, Co-op ID: 928S, Description: 928S ms-6046. the Maize mutant is linked to the particular webpage of the collection as http:// www.maizegdb.org/data Center/variation? ID 105773.
Maize mutant ms-6047, preserved by Maize Genetics Cooperation storage Center, Co-op ID: 928T, Description: 928T ms-6047. the Maize mutant is linked to the particular webpage in the collection as http:// www.maizegdb.org/data Center/variation? ID 105774.
Arabidopsis mutant ms2, deposited by The European Arabidopsis Stock Centre, NASC ID: N803563, Donor Number: SAIL-75 _ E01. The mutants are linked to The particular webpage in The collection as http:// Arabidopsis. info/StockInfo? NASC _ ID 803563.
Maize ms5, saved by Maize Genetics Cooperation storage Center, Co-op ID: 516C, Description: 516C ms5. the Maize was linked to the collection Center by http:// www.maizegdb.org/data Center/variation? ID 15066.
Columbia ecotype Arabidopsis thaliana (Col-0): ABRC (Arabidopsis Biological Resource center).
pUC-T vector: beijing Runzukang Biotech Co., Ltd.
pCAMBIA1300 vector: beijing Ding Guoshang Biotechnology Limited liability company.
pJIT163-hGFP vector: biovector NTCC inc.
Agrobacterium tumefaciens GV 3101: beijing Solaibao Tech Co., Ltd., Cat #: BC 304-01.
Example 1, discovery of MS6021 protein and Gene encoding the same
Phenotype of maize mutant ms x 6021
Maize mutant ms-6021 displays overall plant shape as compared to normal male-fertile plants (male-fertile plants selfed from male-fertile plants corresponding to heterozygous maize mutant ms-6021)There is no abnormality in the state (A and B in figure 1), but the anther of the tassel is not externally hung (C and D in figure 1), and the anther is dissected to be internally used with 1% I2No full mature pollen grains were observed by KI solution staining (E and F in FIG. 1), which was manifested as a complete male sterility. The phenomenon is consistent in phenotype observed in Beijing and Hainan for 4 years continuously, the sterile property is stable, and whether the male sterility is realized can be distinguished by naked eyes under field conditions.
Second, construction of genetic mapping population
F is matched with maize mutant ms x-6021 as female parent and maize inbred line B73 as male parent1,F1The field phenotypes were all male fertile. Then using the maize mutant ms x-6021 as a female parent and F1Construction of backcross population (BC) for male parent1F1),BC1F1The population can be divided into two types of male fertile individuals and male sterile individuals in the field, and the proportion of the two types is 1: 1 (table 1) through chi-square test. It was thus postulated that the phenotype of the maize mutant ms x 6021 was controlled by a recessive single gene and that BC was produced1F1The population is used as a genetic mapping population.
TABLE 1 BC1F1Statistics of the proportion of individuals with different phenotypes in a population
X0.05 2(1)=3.84
Third, the location and verification of the target gene
1. The genomic DNA of the maize mutant ms x-6021 and the maize inbred line B73 are used as templates, and primers with polymorphism between the mutant and the inbred line are screened by using maize whole genome primers. Then, using BC1F1Determining genotypes of 998 individuals of the population, screening out the crossover individuals with the phenotype inconsistent with the genotypes by combining the male fertility phenotype, and screening out the number of the crossover individuals with the number inconsistent with the phenotype according to different primersAlso, the localization interval was determined according to the decreasing tendency, thereby localizing the gene of interest between the primer markers 4-49(154.661Mb) and 4-89(154.676Mb) located on chromosome nine. Referring to published genome sequencing results of maize inbred line B73, the physical distance was about 15kb (FIG. 2). Wherein, the sequences of the molecular marker primers for gene mapping are shown in Table 2.
TABLE 2 molecular marker primer sequences for gene mapping
2. Referring to the maize genome sequencing information, the 15kb range of the localization interval contains 2 genes, GRMZM2G420926 and GRMZM2G120987 respectively. The genomic DNA of the male fertile individual (AA) and the genomic DNA of the male sterile individual (AA) are used as templates, the 2 genes are amplified and compared with the sequence difference, and the difference of the DNA sequence between the male fertile individual and the male sterile individual is found to exist only in the GRMZM2G120987 gene. Compared with the male fertile individual (AA), the male sterile individual (AA) has 926bp (sequence 5 of the sequence table) inserted into the 3' UTR of the GRMZM2G120987 gene. Therefore, the candidate gene GRMZM2G120987 is presumed to be the target gene of the present invention.
3. PCR was performed using genomic DNA of mutant ms-6021 as a template, primer sets 6021-1F/6021-1R, 6021-2F/6021-3R, 6021-3F/6021-3R, 6021-4F/6021-4R, 6021-5F/6021-5R, 6021-6F/6021-6R, 6021-7F/6021-7R, 6021-8F/6021-8R, 6021-9F/6021-9R, 6021-10F/6021-10R, and 6021-11F/6021-11R, and the sequence of the obtained PCR product was spliced to give sequence 6 in the sequence Listing (sequence of the target gene in the genome of mutant ms-6021).
6021-1F:5’-CGCAGGTCACTCACTAGCTA-3’;
6021-1R:5’-GAGCAAGCAACAGCAGAGAG-3’;
6021-2F:5’-TAGCAGGCAGGAAGTAGCAG-3’;
6021-3R:5’-GCGACCAAACACAATGCAAG-3’;
6021-4F:5’-AGATTGCGAAACGAGGTGTG-3’;
6021-4R:5’-GAGCTTATCTGGGGAGTGCA-3’;
6021-5F:5’-GACGTACGATACTTGCGCTG-3’;
6021-5R:5’-CATGGCCTTGGTGAACACAT-3’;
6021-6F:5’-CGTGAATGGACAGAGGCAAG-3’;
6021-6R:5’-GCTGGCCTTTCCCGTAATAG-3’;
6021-7F:5’-TGATGGATCCTGTGGTCCTC-3’;
6021-7R:5’-TAGAAGGTGTAGGGCCGGTA-3’;
6021-8F:5’-AGTTGAGTTGTAGTGCTCCCT-3’;
6021-8R:5’-CTTCATGACGTGCTTCCGG-3’;
6021-9F:5’-CATCACCAACGTCCACATCC-3’;
6021-9R:5’-ATCCACCTACAACTCTGGCC-3’;
6021-10F:5’-GTGACCGACGACCAATCTTG-3’;
6021-10R:5’-CAACGTCTGCTGGATCAAGG-3’;
6021-11F:5’-GAGCTGTTGATTCTTGCGCT-3’;
6021-11R:5’-TCGGTCCCCAAAACAGACTT-3’。
4. The genome DNA of a normal male fertile plant (male fertile plant AA self-crossed and separated from the male fertile plant corresponding to the heterozygous corn mutant ms-6021) is used as a template, primer pairs 6021-1F/6021-1R, 6021-2F/6021-3R, 6021-3F/6021-3R, 6021-4F/6021-4R, 6021-5F/6021-5R, 6021-6F/6021-6R, 6021-7F/6021-7R, 6021-8F/6021-8R, 6021-9F/6021-9R, 6021-10F/6021-10R and 6021-11F/6021-11R are adopted to carry out PCR amplification, and the sequence of the obtained PCR product is spliced to be the sequence 3 in the sequence table (the sequence of the target gene in the genome of the normal male fertile plant).
5. Mutant ms-6021 was subjected to allelic testing with maize male sterile mutants ms-6022, ms-6046, ms-6047. Specifically, male sterile mutants ms-6022, ms-6046 and ms-6047 are respectively used as female parents, male fertile strains (Aa) corresponding to ms-6021 mutants are used as male parents, and the hybrid F is formed1. Sowing the harvested seeds into plants, observing male breeding in fieldSex, both types of male fertile and male sterile plants were found, and statistical tests showed that the ratio of the number of male fertile to male sterile plants was 1: 1 (as shown in table 3), thus demonstrating that mutants ms-6022, ms-6046, ms-6047 and mutant ms-6021 are allelic materials. The GRMZM2G120987 gene was amplified using the genomic DNA of mutants ms-6022, ms-6046 and ms-6047 as templates, and the sequences of the GRMZM2G120987 genes were all found to be mutated (fig. 3), thereby confirming that the GRMZM2G120987 gene is the target gene of the present invention. Wherein ms-6022 is completely consistent with ms-6021 mutation, i.e., 926bp is inserted into the 3' UTR region; ms-6046 inserts 2bp on the third exon of the gene, resulting in translation frameshift; ms-6047 then produced deletion of large fragments.
The sequence of the target gene in the mutant ms-6046 genome is shown as the sequence 7 in the sequence table;
the sequence of the target gene in the mutant ms-6047 genome is shown as the sequence 8 in the sequence table.
TABLE 3 allelic testing of mutant ms-6021 and mutants ms-6022, ms-6046, ms-6047
Example 2 obtaining of MS6021 protein and Gene encoding the same
Total RNA from maize ms5 was extracted and reverse transcribed to cDNA. Using the cDNA as a template, PCR was performed using primers F2 and R2 to obtain the cDNA sequence of the target gene (designated as MS6021 gene). The cDNA sequence of the MS6021 gene is shown as the sequence 2 in the sequence table, wherein the CDS is shown as the 133-nd 1911-th nucleotide from the 5' end of the sequence 2. The sequence shown in the sequence 2 encodes the protein shown in the sequence 1. The protein shown in the sequence 1 of the sequence table is named as MS6021 protein and consists of 592 amino acid residues.
F2:5’-CGTCTTAACACCCACCCACCTACTACTA-3’;
R2:5’-GACACTATCAGACAGCCACGATGTTTC-3’。
Example 3 functional verification of MS6021 protein and its encoding Gene
Firstly, obtaining recombinant expression vector
1. Cloning of the promoter: taking genome DNA of Columbia ecotype arabidopsis thaliana (Col-0) as a template, performing PCR amplification by adopting a primer pair consisting of MS2P-1F and MS2P-1R, and recovering a PCR amplification product.
MS2P-1F:5′-GGGAGCTCACAACCAAGAAGATAGCGCACTGGT-3′;
MS2P-1R:5′-GGGGTACCGCTTGTTGGTTAAGAAATTGGTGACTTGT-3′。
In MS2P-1F and MS2P-1R, the Sac I and Kpn I cleavage sites are underlined, respectively.
2. And (3) double-digesting the PCR amplification product in the step 1 by using restriction enzymes Sac I and Kpn I, and recovering the digested product.
3. The pUC-T circular vector was digested with the restriction enzymes Sac I and Kpn I, and the vector backbone of about 2692bp was recovered.
4. And (3) connecting the enzyme digestion product in the step (2) with the vector skeleton in the step (3) to obtain the recombinant plasmid.
5. Extracting total RNA of the anther of the maize ms5 and performing reverse transcription to obtain cDNA, performing PCR amplification by using the cDNA as a template and adopting a primer pair consisting of 6021Re-1F and 6021Re-1R, and recovering a PCR amplification product.
6021Re-1F:5′-GGGGTACCATGGGGAGTTCCTGCGTGAACCTC-3′;
6021Re-1R:5′-CCCAGATCTCACGGAGGTGCTGGCGAGCAGC-3′。
In 6021Re-1F and 6021Re-1R, the Kpn I and Bgl II cleavage sites are underlined, respectively.
6. And (3) double-digesting the PCR amplification product in the step 5 by using restriction enzymes Kpn I and Bgl I, and recovering the digested product.
7. The recombinant plasmid of step 4 was double digested with restriction enzymes Kpn I and Bgl II, and the vector backbone was recovered.
8. And (4) connecting the enzyme digestion product in the step (6) with the vector skeleton in the step (7) to obtain the recombinant plasmid.
9. The pJIT163-hGFP vector DNA is used as a template, a primer pair consisting of GFP-F and GFP-R is adopted for PCR amplification, and PCR amplification products are recovered.
GFP-F:5′-CCCAGATCTATGGTGAGCAAGGGCGAGGAGC-3′;
GFP-R:5′-CCCAAGCTTTTACTTGTACAGCTCGTCCATGC-3′。
In GFP-F and GFP-R, the Bgl II and HindIII cleavage sites are underlined, respectively.
10. And (3) carrying out double digestion on the PCR amplification product in the step 9 by using restriction enzymes Bgl II and HindIII, and recovering a digestion product.
11. The recombinant plasmid of step 8 was double digested with restriction enzymes Bgl II and HindIII, and the vector backbone was recovered.
12. And (3) connecting the enzyme digestion product in the step (10) with the vector skeleton in the step (11) to obtain the recombinant plasmid.
13. The recombinant plasmid obtained in step 12 was digested with restriction enzymes Sac I and HindIII, and the desired fragment of about 3400bp was recovered.
14. The pCAMBIA1300 vector was double-digested with the restriction enzymes Sac I and HindIII, and the vector backbone of about 8958bp was recovered.
15. Connecting the target fragment in the step 13 with the vector framework in the step 14 to obtain the recombinant vector p1300-ProMS2: : 6021: : GFP. According to the sequencing result, the recombinant vector p1300-Pro is subjected toMS2: : 6021: : GFP is structurally described as follows: the DNA molecule shown as sequence 4 in the sequence listing was replaced by a small fragment between the Sac I and HindIII cleavage sites of the pCAMBIA1300 vector. In the DNA molecule shown in the sequence 4, the 1 st to 915 th positions from the 5' end are an Arabidopsis thaliana MS2 promoter sequence, the 922 nd 2697 th nucleotide is a CDS sequence of the MS6021 gene, and the 2704 nd 3423 th nucleotide is a coding sequence of the gfp gene.
Second, obtaining transgenic complementation expression plant
1. The recombinant vector p1300-Pro obtained in the step oneMS2: : 6021: : GFP is introduced into Agrobacterium tumefaciens GV3101 to obtain recombinant Agrobacterium.
2. The floral dip method (see methods: Zhang X, Henriques R, Lin S, et al, Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method [ J ]]Nature Protocol, 2006, 1 (2): 641-6.), and infecting arabidopsis thaliana mutant ms2 with the recombinant agrobacterium obtained in the step 1 to obtain T0And (5) plant generation.
From T0The seeds produced by selfing the generation plants and the plants grown from them are T1And (4) generation. From T1The seeds produced by selfing the generation plants and the plants grown from them are T2And (4) generation. From T2The seeds produced by selfing the generation plants and the plants grown from them are T3And (4) generation.
3. The T of each strain obtained in the step 21The seeds are sowed on MS solid culture medium containing 20 microgram/ml hygromycin, and the plants which can normally grow are screened and transplanted into a pot for continuous growth. Selecting the transplanted plant, extracting genome DNA, and performing PCR identification by using the genome DNA as a template and primers TGC-F and TGC-R.
TGC-F:5’-TTGTTGCTCATCACCAAAGGTATGCT-3’;
TGC-R:5’-TCCATGGCGACGTCGTACCGCTCGTC-3’。
If 723bp DNA fragments can be obtained through PCR amplification, the identification result is positive, and if 723bp DNA fragments cannot be obtained, the identification result is negative.
If for a certain T1The generation plant, the PCR identification result of the plant sampled and detected is positive, the T1The generation plant is a transgenic positive complementation expression plant, and the self-bred progeny is a plant line. A total of 14 lines of plants were tested. The PCR identification of the partial plants is shown in FIG. 4. The results show that the 14 strains to be tested are all transgenic positive complementary expression strains which are respectively named as No. 1-14 transgenic strains.
Third, obtaining empty carrier plants
The pCAMBIA1300 vector is adopted to replace the recombinant vector p1300-ProMS2: : 6021: : and operating GFP according to the second step to obtain a transgenic empty vector strain.
Fourth, phenotype detection of transgenic complementation expression plant
The plants to be tested are: t of No. 1-14 transgenic line1Generation plant, Columbia ecotype Arabidopsis (wild type), Arabidopsis mutant ms2, T of transfer empty vector line1And (5) plant generation.
Pollen grains in the anther of the plant to be detected in the full-bloom stage are taken to observe the phenotype. As shown in FIG. 5, the pollen grains of wild type Arabidopsis thaliana, i.e., normal pollen grains, were elliptical and had a regular grid-like surface (A in FIG. 5); the pollen grain phenotype of the empty vector-transferred plant is the same as that of the arabidopsis ms2 mutant; whereas the pollen grain morphology of the Arabidopsis mutant ms2 shriveled with no latticed material on the surface (B in FIG. 5); the shape of the pollen grains generated by the No. 1 transgenic plant is oval, the surface is regularly distributed in a grid shape, and the shape is consistent with that of the wild Arabidopsis (C in figure 5), namely the expression of the MS6021 gene of the maize in the Arabidopsis MS2 mutant can restore the normal shape of the pollen grains of the Arabidopsis.
14 transgenic positive complementary expression strains are detected in total, the pollen grain shape of each strain is normal, and no pollen grain with abnormal shape is found.
<110> institute of genetics and developmental biology of Chinese academy of sciences
<120> plant male fertility-related protein MS6021, and coding gene and application thereof
<130> GNCYXMN161990
<160> 8
<210> 1
<211> 592
<212> PRT
<213> corn (Zea mays L.)
<400> 1
Met Gly Ser Ser Cys Val Asn Leu Ser Arg Ala Val Leu Pro Gly Phe
1 5 10 15
Gly Ala Ala Glu Gly Ser Arg Arg Arg Arg Gly Leu Leu Leu Pro Leu
20 25 30
Leu Ser Ser Ser Ser Ser Arg Arg Leu His Gly Gly Gly Ala Val Ala
35 40 45
Cys Cys Ser Ser Ser Ser Ser Ala Thr Ala Ala Gly Ser Ser Arg Pro
50 55 60
Pro Pro Pro Ser Phe Val Asp Pro Ala His Gly Asp Pro Pro Gly Ala
65 70 75 80
Ala Gly Gly Gly Ile Gly Val Ala Glu Phe Leu Gly Ala Lys Asn Phe
85 90 95
Leu Ile Thr Gly Gly Thr Gly Phe Leu Ala Lys Val Leu Ile Glu Lys
100 105 110
Ile Leu Arg Thr Asn Pro Asp Val Gly Lys Val Tyr Val Leu Ile Lys
115 120 125
Ala Lys Asp Ser Glu Ala Ala Leu Ala Arg Leu Arg Asn Glu Val Val
130 135 140
Asp Thr Glu Leu Phe Lys Cys Leu Gln Asp Ile His Gly Glu Gly Tyr
145 150 155 160
Asp Gly Phe Ile Ala Arg Lys Leu Val Pro Val Val Gly Asp Val Arg
165 170 175
Glu Ala Asn Val Gly Ile Ala Pro Asp Leu Ala Asp Glu Ile Ala Asp
180 185 190
Gln Val Asp Val Ile Ile Asn Ser Ala Ala Asn Thr Thr Phe Asp Glu
195 200 205
Arg Tyr Asp Val Ala Met Asp Ile Asn Thr Val Gly Pro Phe Arg Ile
210 215 220
Met Ser Phe Ala Gln Arg Phe Arg Arg Leu Lys Leu Phe Leu Gln Val
225 230 235 240
Ser Thr Ala Tyr Val Asn Gly Gln Arg Gln Gly Leu Val Leu Glu Lys
245 250 255
Pro Phe Arg Met Gly Asp Thr Ile Ala Lys Glu Leu Pro Gly Trp Ser
260 265 270
Ser Ser Pro Gly His Lys Ile Pro Val Leu Asp Ile Glu Ala Glu Ile
275 280 285
Lys Leu Ala Phe Tyr Ser Thr Arg His Arg Pro Asp Asp Ser Pro Ser
290 295 300
Phe Ala Gln Glu Met Lys Asp Leu Gly Leu Glu Arg Ala Lys Leu His
305 310 315 320
Gly Trp Gln Asp Thr Tyr Val Phe Thr Lys Ala Met Gly Glu Met Val
325 330 335
Ile Asn Ser Met Arg Gly Glu Ile Pro Val Val Thr Ile Arg Pro Ser
340 345 350
Val Ile Glu Ser Thr Trp Arg Asp Pro Phe Pro Gly Trp Met Glu Gly
355 360 365
Asn Arg Met Met Asp Pro Val Val Leu Tyr Tyr Gly Lys Gly Gln Leu
370 375 380
Thr Gly Phe Leu Ala Asp Pro Asp Gly Val Leu Asp Val Val Pro Ala
385 390 395 400
Asp Met Val Val Asn Ala Thr Leu Ala Ser Met Ala Lys His Gly Gly
405 410 415
Gly Ala Ala Gly Pro Gly Met His Val Tyr His Val Ser Ser Ser Thr
420 425 430
Val Asn Pro Leu Val Phe Gly Asp Leu Ser Arg Phe Leu Phe Gln His
435 440 445
Phe Thr Arg Cys Pro Tyr Ser Asp Ala Ala Gly Gln Pro Ile Leu Val
450 455 460
Pro Pro Met Arg Leu Phe Asp Thr Met Glu Gln Phe Ala Ser Tyr Val
465 470 475 480
Glu Thr Asp Ala Leu Leu Arg Ser Ala Arg Ser Thr Ser Ser Ser Ser
485 490 495
Ser Leu Ala Gln Arg Ala Arg Asp Leu Cys Ala Arg Ser Val Glu Gln
500 505 510
Thr Val His Leu Gly Ser Ile Tyr Arg Pro Tyr Thr Phe Tyr Gly Gly
515 520 525
Arg Phe Asp Asn Ala Asn Thr Glu Ala Leu Leu Ala Ala Met Ser Pro
530 535 540
Ala Glu Arg Ala Arg Phe His Phe Asp Val Arg Gly Val Asp Trp Ala
545 550 555 560
Asp Tyr Ile Thr Asn Val His Ile Pro Gly Leu Arg Lys His Val Met
565 570 575
Lys Gly Arg Gly Val Ala Ala Asn Gln Leu Leu Ala Ser Thr Ser Val
580 585 590
<210> 2
<211> 2241
<212> DNA
<213> corn (Zea mays L.)
<400> 2
cgtcttaaca cccacccacc tactactacc ctgctgcaaa ccgcaaccgc aaccgcgcgg 60
gagagcttac cctcgcgcac caccaaccaa gcccgcacct gcatttcttt gcggccgcgc 120
gcgcgcgggc caatggggag ttcctgcgtg aacctctccc gcgccgtcct ccccggcttc 180
ggcgccgccg agggatcccg ccgccgccgt ggcctccttc tcccgctact gtcgtcgtcg 240
tcgtcgaggc ggctgcacgg cggcggcgcc gtggcgtgct gctcgtcgtc gtcctccgct 300
actgctgccg gctcatcgag gccgccgccg ccgtccttcg tcgacccggc gcacggggat 360
ccgcctggag ctgccggcgg cgggatcggt gtcgccgagt ttctcggcgc caagaacttc 420
ctcatcaccg gcgggaccgg tttcctggca aaagttctta tcgagaagat tttgaggaca 480
aatcctgacg tcggcaaggt gtacgtgctc atcaaggcca aggacagcga agcagcgttg 540
gcgagattgc gaaacgaggt cgtggacacg gagctgttca aatgcctgca ggacatccac 600
ggggaaggct acgacggctt catcgcaagg aagctggtcc ccgtcgtcgg cgacgtcagg 660
gaagccaacg tcggcatcgc gcccgacctc gccgacgaga tcgccgacca ggtggacgtc 720
atcatcaact cagcggccaa caccacgttc gacgagcggt acgacgtcgc catggacatc 780
aacaccgtgg ggccgttccg gatcatgagc ttcgcgcagc gcttccgacg cctcaagctc 840
ttcttgcaag tgtctacagc ctacgtgaat gggcagaggc aaggcctggt gctggagaag 900
ccgtttcgca tgggagacac aatagccaag gagctgccgg ggtggtcttc ttctccaggg 960
cacaagatac ccgtactgga catcgaggca gagatcaagc tggccttcta ctccacaaga 1020
caccgccccg atgattctcc ctcgtttgct caagaaatga aagatttggg cctagagagg 1080
gcaaaactcc atgggtggca agacacctat gtgttcacca aggccatggg ggagatggtc 1140
atcaactcca tgcgaggaga gataccggtg gtcaccatca ggcccagcgt catcgagagc 1200
acctggaggg acccattccc gggctggatg gaagggaaca ggatgatgga tcctgtggtc 1260
ctctattacg ggaaaggcca gctgacgggg ttcctcgcag atccagatgg tgttcttgat 1320
gtggtcccgg cggacatggt ggtgaacgcg acgctggcgt cgatggccaa gcacggcggc 1380
ggcgcggcgg ggcccgggat gcacgtgtac cacgtgtcgt cgtcgacggt gaaccctctg 1440
gtgttcggcg acctgagccg gttcctgttc cagcacttca cgcggtgccc ctacagcgac 1500
gcggcggggc agcccatcct ggtgccgccc atgcgcctct tcgacaccat ggagcagttc 1560
gccagctacg tggagacgga cgcgctgctg cgcagcgccc ggtcgacctc gtcctcgtcg 1620
tcgctggcgc agcgggcgcg cgacctgtgc gccaggtccg tggagcagac cgtccacctg 1680
ggcagcatct accggcccta caccttctac ggcggccgct tcgacaacgc caacacggag 1740
gcgctgctcg cggccatgtc gccggcggag agggcgcggt tccacttcga cgtgcggggc 1800
gtggactggg cggactacat caccaacgtc cacatcccgg gactccggaa gcacgtcatg 1860
aagggcaggg gcgtcgccgc caaccagctg ctcgccagca cctccgtgtg accgcccggc 1920
atgcgcgacg gcgggcgtgt acactatctg ccaggcccag accgttgctg ctgctacatg 1980
ccattgccat gccgccgtca caccacacgg ccggtgaccg acgaccaatc ttgccgtacg 2040
ttccatcctc atactactgc tacgtacgta gcagcaacct aaggttgcgc ttgcattgca 2100
ctaaagatag atataccatg ctgttcatct ctcctccatg ttgagctgtt gattcttgcg 2160
cttgtatttc aaaacaaaat gaacgctgtg atggtcgtca gtaacaaatc tgacgaaaca 2220
tcgtggctgt ctgatagtgt c 2241
<210> 3
<211> 3619
<212> DNA
<213> corn (Zea mays L.)
<400> 3
ccaggtgaag tttggcgcgc atgcacgtta gcaggcagga agtagcagct tcgtcttaac 60
acccacccac ctactactac cctgctgcaa accgcaaccg cgcccgcgcg ggagagctta 120
ccctcgcgca ccaccaagcc cgcacctgca tttctttgcg gccgcgcgcg cgcgggccaa 180
tggggagttc ctgcgtgaac ctctcccgcg ccgtcctccc cggcttcggc gccgccgagg 240
gatcccgccg ccgccgtggc ctccttctcc cgctgctgtc gtcgtcgtcg aggcgcctgc 300
acggcggcgg cgccgtggcg tgctgctcgt cgtcgtcctc cgctactgct gccggctcat 360
cgaggccgcc gccaccgctg ccgtccttcg tcgacccggc gcacggggat ccgcctggag 420
ctgccggcgg cgggatcggt gtcgccgagt ttctcggcgc caagaacttc ctcatcaccg 480
gcgggaccgg tttcctggca aaaggtgata cgtagtatac tttgttactg tatttctctc 540
tccgatccac gcgcgttcat ggctcgtcgc ctagtcctgt gcttcatttc tctccctttc 600
tctctctgct ctctgctctt gcttgctctg cgtcagttct tatcgagaag attttgagga 660
caaatcctga cgtcggcaag gtgtacgtgc tcatcaaggc caaggacagc gaagcagcgt 720
tggcgagatt gcgaaacgag gtgtgcatgc atggcgttca tccatgcatt tgttacatat 780
atacatgcac ttgttctttc tttctttctt cacagttcac actagctagc tatttgtgta 840
atcattgatc atccaagtat atatatgtgt gcgttcgtga aggtcgtgga cacggagctg 900
ttcaaatgcc tgcaggacat ccacggggaa ggctacgacg gcttcatcgc aaggaagctg 960
gtccccgtcg tcggcgacgt cagggaagcc aacgtcggca tcgcgcccga cctcgccgac 1020
gagatcgccg accaggtgga cgtcatcatc aactcagcgg ccaacaccac gttcgacgag 1080
cggtgcgtga tcgatgctag ctagcagcta catagtctgt tcttcagtga tccatgcatc 1140
tatcgatcaa ccgcagcatc cccaccttgc attgggtttg gtcgcacagg tacgacgtcg 1200
ccatggacat caacaccgtg gggccgttcc ggatcatgag cttcgcgcag cgcttccgac 1260
gcctcaagct cttcttgcaa gtgtctacag gtaggtcgtc agagaatgac gtacgatact 1320
tgcgctgaaa ctggtgcttg tactcttcat ttcatgcaat ttcatgcata tgcactcccc 1380
agataagctc ttctcagcac ttaattatgc gcgcgtgtgt gtgtgttttg ccaagtagcc 1440
tacgtgaatg gacagaggca aggcctggtg ctggagaagc cgtttcgcat gggagacacc 1500
atagccaagg agctgccggg gtggtcttct tctccagggc acaagatacc cgtgctggac 1560
atcgaggcag agatcaagct ggccttctac tccacaagac accgccccga tgattctccc 1620
tcgtttgctc aagaaatgaa agatttgggc ctagagaggt agctagctag ctagtaagcc 1680
atgcaaacga aaagaaaagg cccaagtcga attattgata ttttttgtcg ttgtgattat 1740
atataaatta ataaattggt agggcaaaac tccatgggtg gcaagacacc tatgtgttca 1800
ccaaggccat gggggagatg gtcatcaact ccatgcgagg agagataccg gtggtcacca 1860
tcaggcccag cgtcatcgag agcacctgga gggacccatt cccgggctgg atggaaggga 1920
acaggtacgt actacctgca gtgtatacat gcatgcgtac cttcaagcta atggtagtgc 1980
tgatctctct ctctctctct ctctctctct ctctctctct cttggcatta ttggcaaaat 2040
tgttgatgaa cacaggatga tggatcctgt ggtcctctat tacgggaaag gccagctgac 2100
ggggttcctc gcagatccag atggtgttct tgatgtggta cgtacctcgc agatccagtt 2160
gagttgtagt gctccctaaa ctaaaacgtt agtattgaac aactaactta gtgtccacct 2220
gatataagcc aggtcccggc ggacatggtg gtgaacgcga cgctggcgtc gatggcgaag 2280
cacggcggcg gcgcggcggg gcccgggatg cacgtgtacc acgtgtcgtc gtcgacggtg 2340
aaccctctgg tgttcggcga cctgagccgg ttcctgttcc agcacttcac gcggtgcccc 2400
tacagcgacg cggcggggca gcccatcctg gtgccgccca tgcgcctctt cgacaccatg 2460
gagcagttcg ccagctacgt ggagacggac gcgctgctgc gcagcgcccg gtcgacctcg 2520
tcctcgtcgt cgctggcgca gcgggcgcgc gacctgtgcg ccaggtccgt ggagcagacc 2580
gtccacctgg gcagcatcta ccggccctac accttctacg gcggccgctt cgacaacgcc 2640
aacacggagg cgctgctcgc ggccatgtcg ccggcggaga gggcgcggtt ccacttcgac 2700
gtgcggggcg tggactgggc ggactacatc accaacgtcc acatccctgg actccggaag 2760
cacgtcatga agggcagggg cgtcgccgcc aaccagctgc tcgccagcac ctccgtgtga 2820
ccgcccggca tgcgcgacgg cgggcgtgta cactatctgc caggcccaga ccgttgctgc 2880
tgctacatgc cattgccatg ccgccgtcac accacacggc cggtgaccga cgaccaatct 2940
tgccgtacgt tccatcctca tactactgct acgtacgtag cagcaaccta aggttgcgct 3000
tgcattgcac taaagataga tataccatgt tgttcatctc tcctccatgt tgagctgttg 3060
attcttgcgc ttgtacttca aaacaaaatg aaggctgtga tggtggtcag taacaaatct 3120
gacgaaacat cgtggctgtc tgatagtgtc attcccgaca ctgtaagccg ttcttttacc 3180
aaaatttact ttactgatgg aaggagttca acacttcctt gcaattgatg aatggtgata 3240
cagattagca cacgcctatt tgtagtacaa gcttacgcta cacaggtgca aatggtactc 3300
cggtcttttt ggccagttcc acgactctgt aaaaagtgca taaaacagag ggcggccaga 3360
gttgtaggtg gatggccgcc cttctctgtc gcctgaaaag ggtgaaactc tgggcatagt 3420
gcttcggcat tcccctgtta tttctgtctg gcccttgatc cagcagacgt tgacatcgat 3480
tctcacgaca caggctggga aacggtaaca tcgacagctc aaaggaaata atccggtgtt 3540
cttcgcgtca catctggctc acctctccta ggggctggtt caaactatga taataggtag 3600
acaaaattgg taaatcata 3619
<210> 4
<211> 3423
<212> DNA
<213> Artificial sequence
<220>
<223>
<400> 4
caaccaagaa gatagcgcac tggttttaaa gtcgtatgtg tagttctttg ttcaccacga 60
gtttaaggtt ctctttcatg tctcattgtt ctaaatattc atcttcggtt gcatgtttaa 120
cttcatagtc cagtttatat tttccatcta gatgattggg aacattttgc ttacttttat 180
gatcttaaac agatgaacgg tctcatgtta acaacatagt actcttgact tcatgataat 240
ttcatatcat ctaatgacta aattctttgc agagtttaat ggtgttgatt gttgaaacaa 300
gagcagattg gtcaatcact gcagaaaaaa aaaaagttgg taacatgtaa gtttaacgtt 360
atttaataaa ggaggatcta agttttctac aaaagctata atttttatga tgaccatata 420
atcctcaaac ccttcaagat gtgatgtgaa ttatctaaat cccaacacga agaaatgaga 480
ttttttaaag ttagctattt atccttagtt gatttcttaa ttataggtta atggcaatat 540
tttttgaaac tgataatgcg tttctttttt ttttctgaat tctagatgat cacgtgtagg 600
aaactgataa aatgttggaa agaattcgta aggcaatctt ttatttcact tgatttttaa 660
aatatttatt tgcctataaa acagaggaag tttttcatca tcttttgtcc ttagaactaa 720
ccaatctttc attcctctta taaaaacaaa acctacttta cttgtctctt aacgataaca 780
aaataacaaa taattaattc tgttcttggt ttacttaatc ttctttctag ttaagtatat 840
tcttgttgct catcaccaaa ggtatgcttt ctaggttaag tatattacaa gtcaccaatt 900
tcttaaccaa caagcggtac catggggagt tcctgcgtga acctctcccg cgccgtcctc 960
cccggcttcg gcgccgccga gggatcccgc cgccgccgtg gcctccttct cccgctactg 1020
tcgtcgtcgt cgtcgaggcg gctgcacggc ggcggcgccg tggcgtgctg ctcgtcgtcg 1080
tcctccgcta ctgctgccgg ctcatcgagg ccgccgccgc cgtccttcgt cgacccggcg 1140
cacggggatc cgcctggagc tgccggcggc gggatcggtg tcgccgagtt tctcggcgcc 1200
aagaacttcc tcatcaccgg cgggaccggt ttcctggcaa aagttcttat cgagaagatt 1260
ttgaggacaa atcctgacgt cggcaaggtg tacgtgctca tcaaggccaa ggacagcgaa 1320
gcagcgttgg cgagattgcg aaacgaggtc gtggacacgg agctgttcaa atgcctgcag 1380
gacatccacg gggaaggcta cgacggcttc atcgcaagga agctggtccc cgtcgtcggc 1440
gacgtcaggg aagccaacgt cggcatcgcg cccgacctcg ccgacgagat cgccgaccag 1500
gtggacgtca tcatcaactc agcggccaac accacgttcg acgagcggta cgacgtcgcc 1560
atggacatca acaccgtggg gccgttccgg atcatgagct tcgcgcagcg cttccgacgc 1620
ctcaagctct tcttgcaagt gtctacagcc tacgtgaatg ggcagaggca aggcctggtg 1680
ctggagaagc cgtttcgcat gggagacaca atagccaagg agctgccggg gtggtcttct 1740
tctccagggc acaagatacc cgtactggac atcgaggcag agatcaagct ggccttctac 1800
tccacaagac accgccccga tgattctccc tcgtttgctc aagaaatgaa agatttgggc 1860
ctagagaggg caaaactcca tgggtggcaa gacacctatg tgttcaccaa ggccatgggg 1920
gagatggtca tcaactccat gcgaggagag ataccggtgg tcaccatcag gcccagcgtc 1980
atcgagagca cctggaggga cccattcccg ggctggatgg aagggaacag gatgatggat 2040
cctgtggtcc tctattacgg gaaaggccag ctgacggggt tcctcgcaga tccagatggt 2100
gttcttgatg tggtcccggc ggacatggtg gtgaacgcga cgctggcgtc gatggccaag 2160
cacggcggcg gcgcggcggg gcccgggatg cacgtgtacc acgtgtcgtc gtcgacggtg 2220
aaccctctgg tgttcggcga cctgagccgg ttcctgttcc agcacttcac gcggtgcccc 2280
tacagcgacg cggcggggca gcccatcctg gtgccgccca tgcgcctctt cgacaccatg 2340
gagcagttcg ccagctacgt ggagacggac gcgctgctgc gcagcgcccg gtcgacctcg 2400
tcctcgtcgt cgctggcgca gcgggcgcgc gacctgtgcg ccaggtccgt ggagcagacc 2460
gtccacctgg gcagcatcta ccggccctac accttctacg gcggccgctt cgacaacgcc 2520
aacacggagg cgctgctcgc ggccatgtcg ccggcggaga gggcgcggtt ccacttcgac 2580
gtgcggggcg tggactgggc ggactacatc accaacgtcc acatcccggg actccggaag 2640
cacgtcatga agggcagggg cgtcgccgcc aaccagctgc tcgccagcac ctccgtgaga 2700
tctatggtga gcaagggcga ggagctgttc accggggtgg tgcccatcct ggtcgagctg 2760
gacggcgacg taaacggcca caagttcagc gtgtccggcg agggcgaggg cgatgccacc 2820
tacggcaagc tgaccctgaa gttcatctgc accaccggca agctgcccgt gccctggccc 2880
accctcgtga ccaccttcac ctacggcgtg cagtgcttca gccgctaccc cgaccacatg 2940
aagcagcacg acttcttcaa gtccgccatg cccgaaggct acgtccagga gcgcaccatc 3000
ttcttcaagg acgacggcaa ctacaagacc cgcgccgagg tgaagttcga gggcgacacc 3060
ctggtgaacc gcatcgagct gaagggcatc gacttcaagg aggacggcaa catcctgggg 3120
cacaagctgg agtacaacta caacagccac aacgtctata tcatggccga caagcagaag 3180
aacggcatca aggtgaactt caagatccgc cacaacatcg aggacggcag cgtgcagctc 3240
gccgaccact accagcagaa cacccccatc ggcgacggcc ccgtgctgct gcccgacaac 3300
cactacctga gcacccagtc cgccctgagc aaagacccca acgagaagcg cgatcacatg 3360
gtcctgctgg agttcgtgac cgccgccggg atcactcacg gcatggacga gctgtacaag 3420
taa 3423
<210> 5
<211> 926
<212> DNA
<213> corn (Zea mays L.)
<220>
<221> misc_feature
<222> (466)..(466)
<223> n is a, c, g, or t
<400> 5
tatagatgag caaacgggcc gcccggcccg gcacggcccg ggcccgtgcc aggcacggcc 60
caaaacggca cggcacgacc aggcccacgg gccgaccggg ccgggcctgc acagtcctgc 120
gtgcctggcc acaggcccag gcacggccct tcgggccgtt tttcgggccg tgccagcccg 180
aaaagcccag gcccaaaagt ggatcgggcc agcccgaagc ccggtgatag aaaaatcata 240
gcgaacgcga agaagcccag cctgcttgtt ctcggcgacg actccagctc gcggatcagg 300
tcgagcgcga actcggcgcg gttctcgtcg tcgggcaccg ggaagccgaa ctcggcgaag 360
taggacggga gcgcggaagg cgggccgctg aagaccgtcc ggccaccgga gagcaggatg 420
aggcggtcga ggaggccgag gatgatgtcg gtgccgatgg acaccntgcg gcgctctccc 480
ccggacaccc cgcggtggcc ctcgtcgccg atgatggtgc cggccgcggc gcggaggccg 540
agctggtcga tgagcgcctg cacgcgcgcg cgcttcttgg ccggcgacag cgcccgcggg 600
aggcggaact cggcggcgaa ggagagcgtc tcggcgacgg tgagcatggg gaacagcagg 660
ccctccctcg cgtccccgga gatgccccgc tccgctgccg ctggccgctc ccgtgaccgg 720
gccggtccgt gcctgccgct tttaggcggg ccgggccgtg ccgcccggcg ggcttagccg 780
gtagcccagg cacggcctgg tggaatggtc cgggccggcc cgggcacgca tccagccgtg 840
ccgggccgtg cctgggccgg gccaaaaaac cgggccacgt gccgggctac cgggctctgg 900
gctgcatgct catctatacc ggtgac 926
<210> 6
<211> 4545
<212> DNA
<213> corn (Zea mays L.)
<220>
<221> misc_feature
<222> (3393)..(3393)
<223> n is a, c, g, or t
<400> 6
ccaggtgaag tttggcgcgc atgcacgtta gcaggcagga agtagcagct tcgtcttaac 60
acccacccac ctactactac cctgctgcaa accgcaaccg cgcccgcgcg ggagagctta 120
ccctcgcgca ccaccaagcc cgcacctgca tttctttgcg gccgcgcgcg cgcgggccaa 180
tggggagttc ctgcgtgaac ctctcccgcg ccgtcctccc cggcttcggc gccgccgagg 240
gatcccgccg ccgccgtggc ctccttctcc cgctgctgtc gtcgtcgtcg aggcgcctgc 300
acggcggcgg cgccgtggcg tgctgctcgt cgtcgtcctc cgctactgct gccggctcat 360
cgaggccgcc gccaccgctg ccgtccttcg tcgacccggc gcacggggat ccgcctggag 420
ctgccggcgg cgggatcggt gtcgccgagt ttctcggcgc caagaacttc ctcatcaccg 480
gcgggaccgg tttcctggca aaaggtgata cgtagtatac tttgttactg tatttctctc 540
tccgatccac gcgcgttcat ggctcgtcgc ctagtcctgt gcttcatttc tctccctttc 600
tctctctgct ctctgctctt gcttgctctg cgtcagttct tatcgagaag attttgagga 660
caaatcctga cgtcggcaag gtgtacgtgc tcatcaaggc caaggacagc gaagcagcgt 720
tggcgagatt gcgaaacgag gtgtgcatgc atggcgttca tccatgcatt tgttacatat 780
atacatgcac ttgttctttc tttctttctt cacagttcac actagctagc tatttgtgta 840
atcattgatc atccaagtat atatatgtgt gcgttcgtga aggtcgtgga cacggagctg 900
ttcaaatgcc tgcaggacat ccacggggaa ggctacgacg gcttcatcgc aaggaagctg 960
gtccccgtcg tcggcgacgt cagggaagcc aacgtcggca tcgcgcccga cctcgccgac 1020
gagatcgccg accaggtgga cgtcatcatc aactcagcgg ccaacaccac gttcgacgag 1080
cggtgcgtga tcgatgctag ctagcagcta catagtctgt tcttcagtga tccatgcatc 1140
tatcgatcaa ccgcagcatc cccaccttgc attgggtttg gtcgcacagg tacgacgtcg 1200
ccatggacat caacaccgtg gggccgttcc ggatcatgag cttcgcgcag cgcttccgac 1260
gcctcaagct cttcttgcaa gtgtctacag gtaggtcgtc agagaatgac gtacgatact 1320
tgcgctgaaa ctggtgcttg tactcttcat ttcatgcaat ttcatgcata tgcactcccc 1380
agataagctc ttctcagcac ttaattatgc gcgcgtgtgt gtgtgttttg ccaagtagcc 1440
tacgtgaatg gacagaggca aggcctggtg ctggagaagc cgtttcgcat gggagacacc 1500
atagccaagg agctgccggg gtggtcttct tctccagggc acaagatacc cgtgctggac 1560
atcgaggcag agatcaagct ggccttctac tccacaagac accgccccga tgattctccc 1620
tcgtttgctc aagaaatgaa agatttgggc ctagagaggt agctagctag ctagtaagcc 1680
atgcaaacga aaagaaaagg cccaagtcga attattgata ttttttgtcg ttgtgattat 1740
atataaatta ataaattggt agggcaaaac tccatgggtg gcaagacacc tatgtgttca 1800
ccaaggccat gggggagatg gtcatcaact ccatgcgagg agagataccg gtggtcacca 1860
tcaggcccag cgtcatcgag agcacctgga gggacccatt cccgggctgg atggaaggga 1920
acaggtacgt actacctgca gtgtatacat gcatgcgtac cttcaagcta atggtagtgc 1980
tgatctctct ctctctctct ctctctctct ctctctctct cttggcatta ttggcaaaat 2040
tgttgatgaa cacaggatga tggatcctgt ggtcctctat tacgggaaag gccagctgac 2100
ggggttcctc gcagatccag atggtgttct tgatgtggta cgtacctcgc agatccagtt 2160
gagttgtagt gctccctaaa ctaaaacgtt agtattgaac aactaactta gtgtccacct 2220
gatataagcc aggtcccggc ggacatggtg gtgaacgcga cgctggcgtc gatggcgaag 2280
cacggcggcg gcgcggcggg gcccgggatg cacgtgtacc acgtgtcgtc gtcgacggtg 2340
aaccctctgg tgttcggcga cctgagccgg ttcctgttcc agcacttcac gcggtgcccc 2400
tacagcgacg cggcggggca gcccatcctg gtgccgccca tgcgcctctt cgacaccatg 2460
gagcagttcg ccagctacgt ggagacggac gcgctgctgc gcagcgcccg gtcgacctcg 2520
tcctcgtcgt cgctggcgca gcgggcgcgc gacctgtgcg ccaggtccgt ggagcagacc 2580
gtccacctgg gcagcatcta ccggccctac accttctacg gcggccgctt cgacaacgcc 2640
aacacggagg cgctgctcgc ggccatgtcg ccggcggaga gggcgcggtt ccacttcgac 2700
gtgcggggcg tggactgggc ggactacatc accaacgtcc acatccctgg actccggaag 2760
cacgtcatga agggcagggg cgtcgccgcc aaccagctgc tcgccagcac ctccgtgtga 2820
ccgcccggca tgcgcgacgg cgggcgtgta cactatctgc caggcccaga ccgttgctgc 2880
tgctacatgc cattgccatg ccgccgtcac accacacggc cggtgactat agatgagcaa 2940
acgggccgcc cggcccggca cggcccgggc ccgtgccagg cacggcccaa aacggcacgg 3000
cacgaccagg cccacgggcc gaccgggccg ggcctgcaca gtcctgcgtg cctggccaca 3060
ggcccaggca cggcccttcg ggccgttttt cgggccgtgc cagcccgaaa agcccaggcc 3120
caaaagtgga tcgggccagc ccgaagcccg gtgatagaaa aatcatagcg aacgcgaaga 3180
agcccagcct gcttgttctc ggcgacgact ccagctcgcg gatcaggtcg agcgcgaact 3240
cggcgcggtt ctcgtcgtcg ggcaccggga agccgaactc ggcgaagtag gacgggagcg 3300
cggaaggcgg gccgctgaag accgtccggc caccggagag caggatgagg cggtcgagga 3360
ggccgaggat gatgtcggtg ccgatggaca ccntgcggcg ctctcccccg gacaccccgc 3420
ggtggccctc gtcgccgatg atggtgccgg ccgcggcgcg gaggccgagc tggtcgatga 3480
gcgcctgcac gcgcgcgcgc ttcttggccg gcgacagcgc ccgcgggagg cggaactcgg 3540
cggcgaagga gagcgtctcg gcgacggtga gcatggggaa cagcaggccc tccctcgcgt 3600
ccccggagat gccccgctcc gctgccgctg gccgctcccg tgaccgggcc ggtccgtgcc 3660
tgccgctttt aggcgggccg ggccgtgccg cccggcgggc ttagccggta gcccaggcac 3720
ggcctggtgg aatggtccgg gccggcccgg gcacgcatcc agccgtgccg ggccgtgcct 3780
gggccgggcc aaaaaaccgg gccacgtgcc gggctaccgg gctctgggct gcatgctcat 3840
ctataccggt gaccgacgac caatcttgcc gtacgttcca tcctcatact actgctacgt 3900
acgtagcagc aacctaaggt tgcgcttgca ttgcactaaa gatagatata ccatgttgtt 3960
catctctcct ccatgttgag ctgttgattc ttgcgcttgt acttcaaaac aaaatgaagg 4020
ctgtgatggt ggtcagtaac aaatctgacg aaacatcgtg gctgtctgat agtgtcattc 4080
ccgacactgt aagccgttct tttaccaaaa tttactttac tgatggaagg agttcaacac 4140
ttccttgcaa ttgatgaatg gtgatacaga ttagcacacg cctatttgta gtacaagctt 4200
acgctacaca ggtgcaaatg gtactccggt ctttttggcc agttccacga ctctgtaaaa 4260
agtgcataaa acagagggcg gccagagttg taggtggatg gccgcccttc tctgtcgcct 4320
gaaaagggtg aaactctggg catagtgctt cggcattccc ctgttatttc tgtctggccc 4380
ttgatccagc agacgttgac atcgattctc acgacacagg ctgggaaacg gtaacatcga 4440
cagctcaaag gaaataatcc ggtgttcttc gcgtcacatc tggctcacct ctcctagggg 4500
ctggttcaaa ctatgataat aggtagacaa aattggtaaa tcata 4545
<210> 7
<211> 3807
<212> DNA
<213> corn (Zea mays L.)
<400> 7
ccctcccctc acgcgcgcgg cgcttattat aaattgctcc tccccgcccg gcggcagaaa 60
gatggcctag ctagctagcc gggactggga cttctttggc gcgttaaaac ctgccttctt 120
ggcagcccag ctcgcagtcg caggtcactc actagctagc tagctttggc cctcgtcatc 180
tcgttccgcc caggtgaaag tttggcgcgc atgcacgtta gcaggcagga agtagcagct 240
tcgtcttaac acccacccac ctactactac cctgctgcaa accgcaaccg caaccgcgcg 300
ggagagctta ccctcgcgca ccaccaacca agcccgcacc tgcatttctt tgcggccgcg 360
cgcgcgcggg ccaatgggga gttcctgcgt gaacctctcc cgcgccgtcc tccccggctt 420
cggcgccgcc gagggatccc gccgccgccg tggcctcctt ctcccactgc tgtcgtcgtc 480
gtcgtcgagg cggctgcacg gcggcggcgc ggtggcgtgc tgctcgtcgt cgtcctccgc 540
tactgctgcc ggctcatcga ggccgccgcc accgctgccg tccttcgtcg acccggcgca 600
cggggatccg cctggagctg ccggcggcgg gatcggtgtc gccgagtttc tcggcgccaa 660
gaacttcctc atcaccggcg ggaccggttt cctggcaaaa ggtgatacgt agtatacttt 720
gttgctgtat ttctctctcc gatccacgcg cgttcatggc tcgtcgccgc ctagtcctgt 780
gcttcatttc tctccctttc tctctgctct ctgctgttgc ttgctctgcg tcagttctta 840
tcgagaagat tttgaggaca aaccctgacg tcggcaaggt gtacgtgctc atcaaggcca 900
aggacagcga agcagcgttg gcgagattgc gaaacgaggt gtgcatgtgc atggcgttca 960
tccatgtatt tgttacatac ttgcacttgt tctttctttc ttcacactag ctagctattt 1020
gtgtcatcat tgatcatcca agtatatgtg tgcgttcgtg aaggtcgtgg acacggagct 1080
gttcaaatgc ctgcaggaca tccacgggga aggctacgac ggcttcatcg caaggaagct 1140
ggtccccgtc gtcggcgacg tcagggaaga gccaacgtcg gcatcgcgcc cgacctcgcc 1200
gacgagatcg ccgaccaggt ggacgtcatc atcaactcgg cggccaacac cacgttcgac 1260
gagcggtgcg tgatcgatga tgctagcagc tacatagtct gttcttcagc gatccatgca 1320
tctatcgatc aaccgcagca tccccacctt gcattgtgtt tggtcgcaca ggtacgacgt 1380
cgccatggac atcaacaccg ttgggccgtt ccggatcatg agcttcgcgc agcgcttccg 1440
acgcctcaag ctcttcttgc aagtgtctac aggtaggtcg tcagaatgac gtacgatcga 1500
tacttgcgct gaaactggtg cttgtactct tcatttcatg caatttcatg catgcactcc 1560
ccagataagc tcttcaattc tcagcactta attatgcgtg tgtgtgtttt gccaagtagc 1620
ctacgtgaat gggcagaggc aaggcctggt gctggagaag ccgtttcgca tgggagacac 1680
catagccaag gagctgccgg ggtggtcttc ttctccaggg cacaagatac ccgtgctgga 1740
catcgaagca gagatcaagc tggccttcta ctccacaaga caccgccccg atgattctcc 1800
ctcgtttgct caagaaatga aagatttggg cctagagagg tagctagcta gctagtaagg 1860
catgcatcta gtactacata tatatgcagc aaaaacgaaa agaaaaggcc caagtcgatc 1920
gaattattgg tatttttgtc gttgtgatta tatataaatt aataaattgg tagggcaaaa 1980
ctccatgggt ggcaagacac ctatgtgttc accaaggcca tgggggagat ggtcatcaac 2040
tccatgcgag gagagatacc ggtggtcacc atcaggccca gcgtcatcga gagcacctgg 2100
agggacccat tcccgggctg gatggaaggg aacaggtact agctacctgc agtgtataca 2160
tgcatgcata ccttcaagct aatggtagtg atactgatga tctctctcct ggcattattg 2220
gcaaaattgt tgatgaacac aggatgatgg atcctgtggt cctctactac gggaaaggcc 2280
agctgacggg gttcctcgca gatccagatg gtgttcttga tgtggtacgt acctcgcaga 2340
tccagttgag ttgtagtgct ccctaaacta aaacgttagt attgaacaac taacttagtg 2400
tccacctgat ataagccagg tcccggcgga catggtggtg aacgctacgc tggcgtcgat 2460
ggccaagcac ggcggcggcg gcgcggcggg gcccgggatg cacgtgtacc acgtgtcgtc 2520
gtcgacggtg aacccgctgg tgttcggcga cctgagccgg ttcctgttcc agcacttcac 2580
gcggtgcccc tacagcgacg cggcggggca gcccatcctg gtgccgccca tgcgcctctt 2640
cgacaccatg gagcagttcg ccagctacgt ggagacggac gcgctgctgc gcagcgcccg 2700
gtcgacctcg tcctcgtcgt cgctggcgca gcgggcgcgc gacctgtgcg ccaggtccgt 2760
ggagcagacc gtccacctgg gcagcatcta ccggccctac accttctacg gcggccgctt 2820
cgacaacgcc aacacggagg cgctgctcgc ggccatgtcg ccggcggaga gggcgcggtt 2880
ccacttcgac gtgcggggcg tggactgggc ggactacatc accaacgtcc acatccctgg 2940
actccggaag cacgtcatga agggcagggg cgtcgccgcc aaccagctgc tcgccagcac 3000
ctccgtgtga ccgccccggc atgcgcgacg gcgggcgtgt acactatctg ccaggcccag 3060
accgttgctg ctgctacatg ccattgccat gccgccgtca caccacacgg ccggtgaccg 3120
acgaccaatc ttgccgtacg ttccatcctc atactactgc tacgtacgta gcagcaacct 3180
aaggttgcgc ttgcattgca ctaaagatag atataccatg ttgttcatct ctcctccatg 3240
ttgagctgtt gattcttgcg cttgtacttc aaaacaaaat gaaggctgtg atggtggtca 3300
gtaacaaatc tgacgaaaca tcgtggctgt ctgatagtgt cattcccgac actgtaagcc 3360
gttcttttac caaaatttac tttactgatg gaaggagttc aacacttcct tgcaattgat 3420
gaatggtgat acagattagc acacgcctat ttgtagtaca agcttacgct acacaggtgc 3480
aaatggtact ccggtctttt tggccagttc cacgactctg taaaaagtgc ataaaacaga 3540
gggcggccag agttgtaggt ggatggccgc ccttctctgt cgcctgaaaa gggtgaaact 3600
ctgggcatag tgcttcggca ttcccctgtt atttctgtct ggcccttgat ccagcagacg 3660
ttgacatcga ttctcacgac acaggctggg aaacggtaac atcgacagct caaaggaaat 3720
aatccggtgt tcttcgcgtc acatctggct cacctctcct aggggctggt tcaaactatg 3780
ataataggta gacaaaattg gtaaatc 3807
<210> 8
<211> 1949
<212> DNA
<213> corn (Zea mays L.)
<400> 8
aggcaaatgg gaggacgctg ttgtgtacac gcaacacaag cgggctaccc cgacgcgcca 60
cccatgaggc catgaccgga cttccaagaa gcgcactcac gcgctttgca tgtctcgcca 120
acggcgcaca ccatcatcgg ccgggcggct cccttttcgt ttcgtacgct ccatctcaca 180
aagatggacg gagagatggc gcggcgttgc cctcccctca cgcgcgcggc gcttattata 240
aattgctcct ccccgcccgg cggcagaaag atggcctggc tagctagctg ggacttcttt 300
ggcgcgttaa aacctgcctt cttggcagcc cagctcgcag tcgcagtcgc aggtcactca 360
ctagctagct tgggccctcg tcatctcgtt ccgcccaggt gaaagtttgg cgcgcatgca 420
cgttagcagg caggaagtag cagcttcgtc ttaacaccca cccacctact actaccctgc 480
tgcaaaccgc aaccgcaacc gcgcgggaga gcttaccctc gcgcaccacc aaccaagccc 540
gcacctgcat ttctttgcgg ccgcgcgcgc gcgggccaat ggggagttcc tgcgtgaacc 600
tctcccgcgc cgtcctcccc ggcttcggcg ccgccgaggg atcccgccgc cgccgtggcc 660
tccttctccc gctgctgtcg tcgtcgtcgt cgaggcggct gcacggcggc ggcgcggtgg 720
cgtgctgctc gtcgtcgtcc tccgctactg ctgccggctc atcgaggccg ccgccaccgc 780
tgccgtcctt cgtcgacccg gcgcacgggg atccgcctgg agctgccggc ggcgggatcg 840
gtgtcgccga gtttctcggc gccaagaact tcctcatcac cggcgggacc ggtttcctgg 900
caaaaggtga tacgtagtat actttgttac tgtatttctc tctccgatcc acgcgcgttc 960
atggctcgtc gcctaggcgg agagggcgcg gttccacttc gacgtgcggg gcgtggactg 1020
ggcggactac atcaccaacg tccacatccc tggactccgg aagcacgtca tgaagggcag 1080
gggcgtcgcc gccaaccagc tgctcgccag cacctccgtg tgaccgcccg gcatgcgcga 1140
cggcgggcgt gtacactatc tgccaggccc agaccgttgc tgctgctaca tgccattgcc 1200
atgccgccgt cacaccacac ggccggtgac cgacgaccaa tcttgccgta cgttccatcc 1260
tcatactact gctacgtacg tagcagcaac ctaaggttgc gcttgcattg cactaaagat 1320
agatatacca tgttgttcat ctctcctcca tgttgagctg ttgattcttg cgcttgtact 1380
tcaaaacaaa atgaaggctg tgatggtggt cagtaacaaa tctgacgaaa catcgtggct 1440
gtctgatagt gtcattcccg acactgtaag ccgttctttt accaaaattt actttactga 1500
tggaaggagt tcaacacttc cttgcaattg atgaatggtg atacagatta gcacacgcct 1560
atttgtagta caagcttacg ctacacaggt gcaaatggta ctccggtctt tttggccagt 1620
tccacgactc tgtaaaaagt gcataaaaca gagggcggcc agagttgtag gtggatggcc 1680
gcccttctct gtcgcctgaa aagggtgaaa ctctgggcat agtgcttcgg cattcccctg 1740
ttatttctgt ctggcccttg atccagcaga cgttgacatc gattctcacg acacaggctg 1800
ggaaacggta acatcgacag ctcaaaggaa ataatccggt gttcttcgcg tcacatctgg 1860
ctcacctctc ctaggggctg gttcaaacta tgataatagg tagacaaaat tggtaaatca 1920
tatgcaatag gcgtgcacta agaagtctg 1949

Claims (6)

1. Use of any of the following in regulating male fertility of a plant;
1) the protein is composed of an amino acid sequence shown as a sequence 1 in a sequence table;
2) a gene encoding the protein of 1);
3) contains 2) recombinant expression vector, expression cassette or recombinant bacteria of the gene, wherein the plant is arabidopsis thaliana or corn.
2. The use of claim 1, wherein: the gene is as follows: (1) the coding region is shown as the DNA molecule from the 133 th and 1911 th nucleotides at the 5' end of the sequence 2 in the sequence table;
(2) DNA molecule shown in sequence 2 in the sequence table;
(3) the DNA molecule shown in sequence 3 in the sequence table, wherein the plant is arabidopsis thaliana or corn.
3. Use of any of the following for breeding male sterile or male fertile plants;
1) the protein is composed of an amino acid sequence shown as a sequence 1 in a sequence table;
2) coding 1) the protein gene, and the plant is arabidopsis thaliana or corn.
4. A method of breeding a transgenic plant comprising the steps of: introducing the gene of claim 1 or 2 into a starting plant to obtain a male-fertile transgenic plant; the starting plant is a plant which shows male sterility due to the suppression of the gene expression according to claim 1 or 2, and the plant is Arabidopsis thaliana or maize.
5. A method of breeding male sterile plants comprising the steps of: inhibiting the expression of the gene of claim 1 or 2 in a target plant to obtain a male sterile plant, wherein the plant is arabidopsis thaliana or maize.
6. The method of claim 4 or 5, wherein the plant is Arabidopsis thaliana or maize.
CN201611164100.3A 2016-12-15 2016-12-15 Plant male fertility-related protein MS6021 and coding gene and application thereof Active CN106749574B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611164100.3A CN106749574B (en) 2016-12-15 2016-12-15 Plant male fertility-related protein MS6021 and coding gene and application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611164100.3A CN106749574B (en) 2016-12-15 2016-12-15 Plant male fertility-related protein MS6021 and coding gene and application thereof

Publications (2)

Publication Number Publication Date
CN106749574A CN106749574A (en) 2017-05-31
CN106749574B true CN106749574B (en) 2019-12-24

Family

ID=58892806

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611164100.3A Active CN106749574B (en) 2016-12-15 2016-12-15 Plant male fertility-related protein MS6021 and coding gene and application thereof

Country Status (1)

Country Link
CN (1) CN106749574B (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110386967B (en) * 2018-03-26 2021-04-06 中国农业科学院作物科学研究所 Plant male fertility-related protein SiMS1, and coding gene and application thereof
CN109266777A (en) * 2018-11-16 2019-01-25 北京科技大学 The discovery of corn recessive nucleus male sterility mutated gene ms34 neomorph and its exploitation and application of functional label
CN111909250B (en) * 2019-05-10 2022-08-09 中国农业大学 Protein INVAN6, coding gene thereof and application thereof in breeding male sterile line of corn
CN113416747B (en) * 2020-03-03 2023-09-12 山东舜丰生物科技有限公司 Method for creating temperature-sensitive male sterile plant
CN111690047A (en) * 2020-07-13 2020-09-22 中国科学院遗传与发育生物学研究所 Cloning and application of maize nucleus male fertility gene IPE2
CN114656538B (en) * 2020-12-22 2023-03-24 中国农业大学 Protein MS28, coding gene thereof and application thereof in breeding of male sterile line of corn
CN114672468B (en) * 2020-12-24 2023-04-18 中国农业大学 FAR2 protein, FAR2 gene and method for improving saline-alkali tolerance of plants by using FAR2 protein and FAR2 gene
CN113943356B (en) * 2021-01-26 2023-03-10 中国农业大学 Protein phd11, coding gene thereof and application thereof in breeding of male sterile line of corn
CN112680458B (en) * 2021-03-12 2021-06-22 北京科技大学 Male sterile gene ZmMYB33 and application thereof in creating male sterile line of corn
CN113512547B (en) * 2021-04-21 2023-05-02 中国热带农业科学院橡胶研究所 Rubber tree ubiquitin gene promoter proHbUBI1 and cloning and application thereof
CN112980847B (en) * 2021-04-21 2023-05-02 中国热带农业科学院橡胶研究所 Rubber tree ubiquitin gene promoter proHbUBI3 and cloning and application thereof
CN112899247B (en) * 2021-04-28 2021-09-24 北京科技大学 Male sterile gene ZmTKPR1 and application thereof in creating male sterile line of corn
CN114685639B (en) * 2022-05-10 2023-05-26 中国农业大学 Protein and application thereof in influencing male fertility of plants
CN115109796B (en) * 2022-06-10 2024-01-16 安徽省农业科学院水稻研究所 Construction method and application of recessive genic male sterile rice germplasm
CN117247967B (en) * 2023-11-10 2024-02-20 北京首佳利华科技有限公司 Male sterile gene ZmPKSA and application thereof in creating maize male sterile line

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101406137A (en) * 2008-10-24 2009-04-15 西北农林科技大学 Method for producing cytoplasmic male sterility of fresh corn silk
CN102260338A (en) * 2010-05-25 2011-11-30 北京大学 Plant male fertility related protein, and coding gene and application thereof
CN102618510A (en) * 2012-03-29 2012-08-01 南京农业大学 Plant male fertility related protein and coded gene and application thereof
CN102776202A (en) * 2011-05-13 2012-11-14 中国科学院亚热带农业生态研究所 Cultivation method of male sterile plant

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101406137A (en) * 2008-10-24 2009-04-15 西北农林科技大学 Method for producing cytoplasmic male sterility of fresh corn silk
CN102260338A (en) * 2010-05-25 2011-11-30 北京大学 Plant male fertility related protein, and coding gene and application thereof
CN102776202A (en) * 2011-05-13 2012-11-14 中国科学院亚热带农业生态研究所 Cultivation method of male sterile plant
CN102618510A (en) * 2012-03-29 2012-08-01 南京农业大学 Plant male fertility related protein and coded gene and application thereof

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
《Genbank》;PRJNA249074;《Genbank》;20140802;序列1-594 *
《The Arabidopsis MALE STERILITY 2 protein shares similarity with reductases in elongation/condensation complexes》;Aarts M G M等;《The Plant Journal》;20030829;第615-623页 *
PRJNA249074.《Genbank》.《Genbank》.2014, *

Also Published As

Publication number Publication date
CN106749574A (en) 2017-05-31

Similar Documents

Publication Publication Date Title
CN106749574B (en) Plant male fertility-related protein MS6021 and coding gene and application thereof
EP2893024B1 (en) Fluorescence activated cell sorting (facs) enrichment to generate plants
WO2017121411A1 (en) Plant male fertility-related protein, and coding gene and application thereof
CN102803291B (en) There is the plant of the Correlated Yield Characters of enhancing and/or the abiotic stress tolerance of enhancing and prepare its method
CN107304428A (en) Wheat restoring gene and its application
CN111032684A (en) Method for increasing grain productivity
CN110603264A (en) Methods for increasing grain yield
CN108864266B (en) Protein SSH1 related to rice graininess and grain type as well as encoding gene and application thereof
CN112457386A (en) Protein EAD1 related to control of ear length and row grain number of corn as well as coding gene and application thereof
CN110386967B (en) Plant male fertility-related protein SiMS1, and coding gene and application thereof
CN106589085B (en) Plant starch synthesis related protein OsFLO8, and coding gene and application thereof
CN110066327B (en) Application of protein TaWRKY13 in regulation and control of plant stress resistance
CN108794610B (en) Corn cross-incompatibility related protein ZmGa1S, and coding gene and application thereof
CN102477091B (en) Rice male sterile protein and coding gene and application thereof
CN104911191B (en) A kind of sterility changing gene FG3 and its application
CN108441499A (en) Male fertile related gene HT2925 and its application
CN108329383B (en) Protein related to corn hybridization incompatibility and coding gene and application thereof
CN114072512A (en) Sterile gene and related construct and application thereof
CN108660139B (en) Plant fertility regulation gene NP2, and coding protein and application thereof
Droc et al. Mutant resources for functional analysis of the rice genome
CN106883291B (en) Plant type related protein PROG2 and encoding gene and application thereof
CN111304219B (en) GL1 gene separated from rice WZ1 and application thereof in increasing rice grain length
US6617494B2 (en) Methods for identifying transgenic plants using morphological markers
CN111909250B (en) Protein INVAN6, coding gene thereof and application thereof in breeding male sterile line of corn
CN112724210A (en) Plant amyloplast development related protein OsSSG7 and coding gene and application thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant