CN106747443B - 一种溶胶凝胶法引入碳化锆制备复相陶瓷的方法 - Google Patents
一种溶胶凝胶法引入碳化锆制备复相陶瓷的方法 Download PDFInfo
- Publication number
- CN106747443B CN106747443B CN201611030333.4A CN201611030333A CN106747443B CN 106747443 B CN106747443 B CN 106747443B CN 201611030333 A CN201611030333 A CN 201611030333A CN 106747443 B CN106747443 B CN 106747443B
- Authority
- CN
- China
- Prior art keywords
- powder
- silicon
- zirconium carbide
- preparing
- sol
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/624—Sol-gel processing
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3231—Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3244—Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/38—Non-oxide ceramic constituents or additives
- C04B2235/3852—Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
- C04B2235/386—Boron nitrides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/42—Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
- C04B2235/422—Carbon
- C04B2235/425—Graphite
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/42—Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
- C04B2235/428—Silicon
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/44—Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
- C04B2235/441—Alkoxides, e.g. methoxide, tert-butoxide
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/48—Organic compounds becoming part of a ceramic after heat treatment, e.g. carbonising phenol resins
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/54—Particle size related information
- C04B2235/5418—Particle size related information expressed by the size of the particles or aggregates thereof
- C04B2235/5436—Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/658—Atmosphere during thermal treatment
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/96—Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Dispersion Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Ceramic Products (AREA)
Abstract
本发明提供了一种溶胶凝胶法引入高温第二相碳化锆制备硅硼碳氮‑碳化锆复相陶瓷的方法,属于硅硼碳氮陶瓷基复合材料技术领域。本发明的材料以正丙醇锆、糠醇、盐酸、乙酰丙酮和乙醇为原料,溶胶凝胶引入第二相所占硅硼碳氮的质量比为5~20:100,所述的正丙醇锆:糠醇:盐酸摩尔比为1:2:1,所述的硅粉与六方氮化硼粉体的质量比为1:0.1~1.2。方法是碳化锆前驱体溶液的制备,硅硼碳氮陶瓷复合粉末的制备,粉末前驱体的制备,粉末的制备,最后将粉末放在热压中进行热压烧结,烧结温度为1900℃,烧结时间为60min,烧结压力为60MPa,烧结气氛为氩气。溶胶凝胶所引入的前驱体碳热还原反应生成碳化锆,保持了硅硼碳氮基体的性能。
Description
技术领域
本发明涉及一种溶胶凝胶法引入超高温第二相碳化锆制备硅硼碳氮陶瓷基复合材料的方法,属于硅硼碳氮陶瓷基复合材料技术领域。
背景技术
硅硼碳氮陶瓷材料本身的共价键结构赋予其较高的热稳定性、抗高温氧化、抗高温蠕变等性能,加之其具有密度低、弹性模量低等优点,是一种新型的多功能高温防热材料,用于航天器的机头锥帽、机翼前缘、舵面、盖板和喷管等。但是,在实际应用中,其高温性能还有进一步提高的空间和需求。碳化锆陶瓷具有高熔点,高强度、高硬度等优点,但是其烧结性较差。
发明内容
本发明的目的是为了解决上述现有技术存在的问题,进而提供一种溶胶凝胶法引入超高温第二相碳化锆制备硅硼碳氮陶瓷基复合材料。
本发明的目的是通过以下技术方案实现的:
一种溶胶凝胶法引入超高温碳化锆制备硅硼碳氮陶瓷基复合材料,以正丙醇锆、糠醇、盐酸、乙酰丙酮和乙醇为原料制成,其中,正丙醇锆为氧化锆的先驱体,正丙醇锆与乙酰丙酮发生反应生成凝胶,乙醇为溶剂,糠醇为碳的前驱体,盐酸调节PH值和促进溶胶凝胶反应,溶胶凝胶引入碳化锆所占硅硼碳氮的质量比为5~20:100,所述的正丙醇锆:糠醇:盐酸摩尔比为1:2:1。所述的硅粉与六方氮化硼粉体的质量比为1:0.1~1.2。
一种溶胶凝胶法引入超高温第二相碳化锆制备硅硼碳氮陶瓷基复合材料的方法,由以下步骤实现:
步骤一、碳化锆前驱体溶液(溶胶凝胶)的制备:将正丙醇锆、乙酰丙酮、糠醇和盐酸加入到乙醇溶剂中,其中正丙醇锆:糠醇:盐酸:乙酰丙酮:乙醇的摩尔比为1:2:1:1:40,磁力搅拌40h~50h,制成碳化锆前驱体溶液;
步骤二、将硅粉、石墨和六方氮化硼放入到球磨机中,球料比为20:1,球磨时间为45h~55h,得到硅硼碳氮陶瓷复合粉末;
所述硅粉与石墨的质量比为1:0.1~1.5;所述硅粉与六方氮化硼粉体的质量比为1:0.1~1.2;所述硅粉的纯度为99.9%,粒径为1μm~20μm;所述石墨的纯度为99%,粒径为1μm~20μm;所述六方氮化硼的纯度为99%,粒径为1μm~20μm;所述的磨球直径为10mm;
步骤三、将步骤二得到的硅硼碳氮陶瓷复合粉末引入到步骤一得到的碳化锆前驱体溶液中,继续搅拌24h;然后在水浴锅中进行干燥,待乙醇完全挥发,置入干燥箱中,在温度为90~110℃条件下干燥30min~200min,得到粉末前驱体;
步骤四、将步骤三得到的粉末前驱体在管式炉中500~600℃进行裂解,升温速度为5℃/min,保温时间为2小时,得到粉末。
步骤五、将步骤四得到的粉末放在热压炉中进行压力烧结,烧结温度为1900℃,烧结时间为9min,烧结压力为60MPa,烧结气氛为氩气,得到硅硼碳氮陶瓷基复合材料。
溶胶凝胶法通过碳热/硼热还原反应引入高温纳米第二相,可以很好的解决高温陶瓷的烧结性问题,同时硅硼碳氮陶瓷基复合材料的高温性能可以进一步提高,得到综合性能优良的硅硼碳氮-碳化锆系复相陶瓷。
本发明制备的硅硼碳氮陶瓷基复合材料经测试,其各项技术指标如下:抗弯强度为236.0MPa~351.0MPa,弹性模量为253.0GPa~337.0GPa,断裂韧性为2.9MPa·m1/2~4.6MPa·m1/2,断裂过程中表现出穿晶断裂行为。此外,硅硼碳氮陶瓷基复合材料的抗氧化性能和耐烧蚀性能均有一定程度的提高。
本发明的硅硼碳氮陶瓷基复合材料制备中所用原料易得价廉,工艺简单,得到的硅硼碳氮陶瓷基复合材料综合性能好,适于制造航天防热用核心零部件。
附图说明
图1为硅硼碳氮-碳化锆在热压烧结炉中1900℃烧结60分钟,压力60MPa的XRD图谱。
图2为硅硼碳氮-碳化锆在热压烧结炉中1900℃烧结60分钟,压力60MPa的断口形貌照片。
图3为硅硼碳氮-碳化锆在热压烧结炉中1900℃烧结60分钟,压力60MPa的明场像TEM图像。
具体实施方式
下面将对本发明做进一步的详细说明:本实施例在以本发明技术方案为前提下进行实施,给出了详细的实施方式,但本发明的保护范围不限于下述实施例。
本实施例所涉及的一种溶胶凝胶法引入超高温高温第二相碳化锆制备硅硼碳氮陶瓷基复合材料,以正丙醇锆、糠醇、盐酸、乙酰丙酮和乙醇为原料制成,其中,正丙醇锆为氧化锆的先驱体,正丙醇锆与乙酰丙酮发生反应生成凝胶,乙醇为溶剂,糠醇为碳的前驱体,盐酸调节PH值和促进溶胶凝胶反应,溶胶凝胶引入第二相所占硅硼碳氮的质量比为5~20:100,所述的正丙醇锆:糠醇:盐酸:乙酰丙酮:乙醇摩尔比为1:2:1:1:40。所述的硅粉与六方氮化硼粉体的质量比为1:0.1~1.2。
所述的硅粉纯度为99%~99.9%,粒径为1μm~20μm;所述的石墨纯度为99%~99.9%,粒径为1μm~20μm;所述的六方氮化硼粉体纯度为99%~99.9%,粒径为1μm~20μm。
溶胶凝胶引入碳化锆所占硅硼碳氮的质量比为15:100。
一种溶胶凝胶法引入碳化锆制备硅硼碳氮陶瓷基复合材料的方法,步骤如下:
步骤一、碳化锆前驱体溶液(溶胶凝胶)的制备:将正丙醇锆、乙酰丙酮、糠醇和盐酸加入到乙醇溶剂中,其中正丙醇锆:糠醇:盐酸的摩尔比为1:2:1,磁力搅拌40h~50h,制成碳化锆前驱体溶液;
步骤二、将硅粉、石墨和六方氮化硼放入到球磨机中,球料比为20:1,球磨时间为45h~55h,得到硅硼碳氮陶瓷非晶粉末;
所述硅粉与石墨的质量比为1:(0.1~1.5);所述硅粉与六方氮化硼粉体的质量比为1:(0.1~1.2);所述硅粉的纯度为99.9%,粒径为1μm~20μm;所述石墨的纯度为99%,粒径为1μm~20μm;所述六方氮化硼的纯度为99%,粒径为1μm~20μm;所述的磨球直径为10mm;
步骤三、将步骤二得到的硅硼碳氮陶瓷复合粉末引入到步骤一得到的碳化锆前驱体溶液中,继续搅拌24h;为了保证试样的均匀,在水浴锅中进行干燥。待乙醇完全挥发,置入干燥箱中,在温度为90~110℃条件下干燥30min~200min,得到粉末前驱体。
步骤四、将步骤三得到的粉末前驱体在管式炉中500~600℃进行裂解。升温速度为5℃/min,保温时间为2小时,得到粉末。
步骤五、将步骤四得到的粉末放在热压炉中进行压力烧结。烧结温度为1900℃,烧结时间为60min,烧结压力为60MPa,烧结气氛为氩气。得到硅硼碳氮陶瓷基复合材料。
所述步骤一中,磁力搅拌时间为48h。
所述步骤二中,球磨时间为50h。
所述步骤三中,在温度为100℃条件下干燥150min。
所述步骤四中,粉末前驱体在管式炉中550℃进行裂解。
所述步骤五中,烧结温度为1900℃,烧结时间为60min,烧结压力为60MPa。
以上所述,仅为本发明较佳的具体实施方式,这些具体实施方式都是基于本发明整体构思下的不同实现方式,而且本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求书的保护范围为准。
Claims (5)
1.一种溶胶凝胶法引入碳化锆制备复相陶瓷的方法,其特征在于,
步骤一、碳化锆前驱体溶液的制备:将正丙醇锆、乙酰丙酮、糠醇和盐酸加入到乙醇溶剂中,其中正丙醇锆:糠醇:盐酸的摩尔比为1:2:1,磁力搅拌40h~50h,制成碳化锆前驱体溶液;
步骤二、将硅粉、石墨和六方氮化硼放入到球磨机中,球料比为20:1,球磨时间为45h~55h,得到硅硼碳氮陶瓷复合粉末;
所述硅粉与石墨的质量比为1:0.1~1.5;所述硅粉与六方氮化硼粉体的质量比为1:0.1~1.2;所述硅粉的纯度为99.9%,粒径为1μm~20μm;所述石墨的纯度为99%,粒径为1μm~20μm;所述六方氮化硼的纯度为99%,粒径为1μm~20μm;磨球直径为10mm;
步骤三、将步骤二得到的硅硼碳氮陶瓷复合粉末引入到步骤一得到的碳化锆前驱体溶液中,继续搅拌24h;然后在水浴锅中进行干燥,待乙醇完全挥发,置入干燥箱中,在温度为90~110℃条件下干燥30min~200min,得到粉末前驱体;
步骤四、将步骤三得到的粉末前驱体在管式炉中500~600℃进行裂解,升温速度为5℃/min,保温时间为2小时,得到粉末;
步骤五、将步骤四得到的粉末放在热压炉中进行压力烧结,烧结温度为1900℃,烧结时间为60min,烧结压力为60MPa,烧结气氛为氩气,得到硅硼碳氮-碳化锆陶瓷基复合材料。
2.根据权利要求1所述的溶胶凝胶法引入碳化锆制备复相陶瓷的方法,其特征在于,所述步骤一中,磁力搅拌时间为48h。
3.根据权利要求1所述的溶胶凝胶法引入碳化锆制备复相陶瓷的方法,其特征在于,所述步骤二中,球磨时间为50h。
4.根据权利要求1所述的溶胶凝胶法引入碳化锆制备复相陶瓷的方法,其特征在于,所述步骤三中,在温度为100℃条件下干燥150min。
5.根据权利要求1所述的溶胶凝胶法引入碳化锆制备复相陶瓷的方法,其特征在于,所述步骤四中,粉末前驱体在管式炉中550℃进行裂解。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201611030333.4A CN106747443B (zh) | 2016-11-16 | 2016-11-16 | 一种溶胶凝胶法引入碳化锆制备复相陶瓷的方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201611030333.4A CN106747443B (zh) | 2016-11-16 | 2016-11-16 | 一种溶胶凝胶法引入碳化锆制备复相陶瓷的方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106747443A CN106747443A (zh) | 2017-05-31 |
CN106747443B true CN106747443B (zh) | 2020-05-26 |
Family
ID=58970488
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201611030333.4A Active CN106747443B (zh) | 2016-11-16 | 2016-11-16 | 一种溶胶凝胶法引入碳化锆制备复相陶瓷的方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106747443B (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112174669B (zh) * | 2020-10-10 | 2022-07-26 | 黑龙江大学 | 一种溶胶凝胶法合成SiZrBOC陶瓷的制备方法 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100267541A1 (en) * | 2002-05-29 | 2010-10-21 | The Regents Of The University Of Ca | Nano-ceramics and method thereof |
CN103788726B (zh) * | 2012-11-02 | 2017-05-24 | 中冶建筑研究总院有限公司 | 一种钢结构表面的防静电涂料及其制备方法 |
CN105948748B (zh) * | 2016-04-28 | 2019-01-29 | 哈尔滨工业大学 | 一种硅硼碳氮锆陶瓷复合材料及其制备方法 |
-
2016
- 2016-11-16 CN CN201611030333.4A patent/CN106747443B/zh active Active
Also Published As
Publication number | Publication date |
---|---|
CN106747443A (zh) | 2017-05-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104150940B (zh) | 氮化硅与碳化硅复相多孔陶瓷及其制备方法 | |
CN103130508B (zh) | 一种制备织构化硼化物基超高温陶瓷的方法 | |
CN103011827A (zh) | 一种原位引入硼为添加剂的二硼化锆陶瓷的制备方法 | |
CN105198443A (zh) | 氮化硼复相陶瓷的过渡相辅助低温烧结方法 | |
CN104045350B (zh) | 一种采用反应烧结工艺制备氮化硅-碳化硅复合陶瓷材料的方法 | |
CN106915961A (zh) | 一种石墨烯‑氧化锆复合材料及其制备方法 | |
CN112390628A (zh) | 一种氧化铝靶材的制备方法 | |
CN112028635A (zh) | 一种超高温陶瓷复合材料及制备方法 | |
CN103214264B (zh) | 一种氮化硅纳米线增强氮化硅多孔陶瓷的方法 | |
CN101717262B (zh) | 溶胶凝胶-溶剂热法制备纳米莫来石粉体的方法 | |
CN102976760A (zh) | 添加稀土氧化物的硼化锆-碳化硅复相陶瓷材料及其制备方法 | |
CN103964860B (zh) | 一种以纳米硅溶胶为烧结助剂热压制备的氮化硼基透波复合材料的制备方法 | |
CN106747443B (zh) | 一种溶胶凝胶法引入碳化锆制备复相陶瓷的方法 | |
CN101700980B (zh) | 溶胶凝胶-水热法制备纳米莫来石粉体的方法 | |
CN107164803A (zh) | 一种简单控制相变制备β‑氮化硅晶须的方法 | |
CN112062574B (zh) | 一种高性能纳米碳化硅陶瓷及其制备方法和应用 | |
CN111848179B (zh) | 一种可在超高温环境中使用的高强度氮化硼陶瓷的制备方法 | |
CN111592354B (zh) | 一种高性能环保复合建筑陶瓷材料及其制备方法 | |
CN112062576A (zh) | 一种石墨烯增韧的高熵硅化物陶瓷及其制备方法和应用 | |
CN105483487A (zh) | 一种含锆的碳化硼-铝合金复合材料及其制备方法 | |
CN104162661A (zh) | 一种Al2O3-TiC-TiN微米复合陶瓷刀具材料及其微波烧结方法 | |
CN101838157B (zh) | 碳/碳复合材料纳米碳化硅-莫来石复合外涂层的制备方法 | |
CN102392149B (zh) | 一种微波烧结制备纳米稀土改性钢结硬质合金的方法 | |
CN102503144B (zh) | 含纳米氧化锌的熔融石英陶瓷材料的制备方法 | |
CN110589831B (zh) | 一种低温制备硅/碳化硅材料的方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |