CN106747391A - 一种基于流延工艺环行器基板的制备方法 - Google Patents

一种基于流延工艺环行器基板的制备方法 Download PDF

Info

Publication number
CN106747391A
CN106747391A CN201710005416.6A CN201710005416A CN106747391A CN 106747391 A CN106747391 A CN 106747391A CN 201710005416 A CN201710005416 A CN 201710005416A CN 106747391 A CN106747391 A CN 106747391A
Authority
CN
China
Prior art keywords
ball milling
incubated
hours
thickness
circulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710005416.6A
Other languages
English (en)
Inventor
张曦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN201710005416.6A priority Critical patent/CN106747391A/zh
Publication of CN106747391A publication Critical patent/CN106747391A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2641Compositions containing one or more ferrites of the group comprising rare earth metals and one or more ferrites of the group comprising alkali metals, alkaline earth metals or lead
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P11/00Apparatus or processes specially adapted for manufacturing waveguides or resonators, lines, or other devices of the waveguide type
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3293Tin oxides, stannates or oxide forming salts thereof, e.g. indium tin oxide [ITO]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/32Non-reciprocal transmission devices
    • H01P1/38Circulators

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Soft Magnetic Materials (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

本发明公开了一种基于流延工艺环行器基板的制备方法,属于电子材料技术领域。本发明包括下述步骤:1.主料配方:采用Y3‑xCaxSnxFe5‑ xO12,x=0.06;2.一次球磨;3.预烧:在1000℃~1200℃条件下预烧,保温1~3小时;4.掺杂:加入以下添加剂:0.2wt%Bi2O3,0.10wt%BaTiO3;5.二次球磨:粉料加入40~50wt%的有机粘合剂和40~50wt%的无水乙醇,球磨4~8小时;6.流延成型:将浆料通过流延得到厚度为100~120μm的生膜带;7.叠层:根据厚度需要,生膜带叠片为8~15层,在6MPa下压制成型;8.烧结:在空气氛围中与1360~1440℃下保温4小时。采用本方法制备可以得到不用厚度的光滑平整的环行器用铁氧体介质基板,并具有适用于X波段特性,具有温度稳定性好,低线宽,介质损耗低等优点。

Description

一种基于流延工艺环行器基板的制备方法
技术领域
本发明属于电子材料技术领域,特别涉及具有窄线宽和适用于X波段环行器的YIG铁氧体材料的基板制备技术领域。
背景技术
铁氧体微带环行器是当代通信系统中的一个重要元器件,在微波市场中和快速增长的无线通信市场中扮演着非常重要的角色,大量应用于航天、通信、医疗等领域,是各种移动通信设备中不可或缺的关键器件。X波段(8~12GHz)微带铁氧体环形器在雷达系统中具有重要作用,可以和微带介质腔稳频振荡器及微带混频器共同组成X波段多普勒雷达的集成前端,具有小型、轻便等优点,更适合用于便携设备和飞行器。
为了满足环行器性能要求,铁氧体厚膜片通常由大块材料经精密磨加工而成,这不仅效率不高,而且会导致成本较高。采用流延工艺研制铁氧体厚膜,并辅以减薄工艺对铁氧体厚膜进行精细加工,不仅能够降低铁氧体厚膜片成型和加工难度,而且能够有效提高成品率。但流延工艺制备的厚膜气孔率通常较高,密度相对较低,微波磁损耗较高。
发明内容
本发明的目的是提供一种具有适用于X波段 (4πMs为1800Gauss左右),而且具有温度稳定性好、低线宽、介电损耗小等优点的一种基于流延工艺X波段铁氧体环行器基板的制备方法。
为达上述目的,本发明的一个实施例中提供了X波段环行器用YIG 铁氧体厚膜材料制备方法,其特征在于,包括下述步骤:
1.主料配方:采用Y3-xCaxSnxFe5-xO12,x=0.06;
2.一次球磨:采用行星式球磨机,利用锆球,在241r/min的条件下
3.预烧:在1000℃~1200℃条件下预烧,保温1~3小时;
4.掺杂:加入以下添加剂:0.2wt%Bi2O3,0.10wt%BaTiO3
5.二次球磨:粉料加入40~50wt%的有机粘合剂和40~50wt%的无水乙醇,球磨4~8小时;
6.流延成型:将浆料通过流延得到厚度为100~120μm的生膜带;
7.叠层:根据厚度需要,生膜带叠片为8~15层,在6MPa下压制成型;
8.烧结:在空气氛围中与1360~1440℃下保温4小时。
综上所述,本发明具有以下优点:
1、本发明采用氧化物陶瓷流延工艺,结合致密化烧结技术,研制了适用于X波段微带环行器基于YIG铁氧体材料的厚膜基板的制备方法。石榴石型YIG(Y3Fe5O12)铁氧体材料由于其具有良好的电磁与旋磁性能,而广泛地应用在微波器件中,如环行器、隔离器等。利用厚膜流延工艺可以制备饱和磁化强度在1800Gauss,温度稳定性好,铁磁共振线宽窄,低介电损耗的铁氧体微波器件,结合仿真,可以得出本发明有利于拓宽X波段铁氧体环行器带宽,具有低回波损耗、低插入损耗,以及高隔离度等优点。
附图说明
图1为本发明一个实施例1中制备YIG铁氧体材料的扫描电镜照片;
图2为本发明一个实施例2中制备YIG铁氧体材料的扫描电镜照片;
图3为本发明一个实施例3中制备YIG铁氧体材料的扫描电镜照片;
图4为本发明一个实施例1、2中制备YIG铁氧体材料的饱和磁感应强度照片;
图5为本发明一个实施例1、2中制备YIG铁氧体材料的密度照片;
图6为本发明一个实施例1、2中制备YIG铁氧体材料的剩磁照片;
图7为本发明一个实施例1、2中制备YIG铁氧体材料的矫顽力照片;
图8为本发明一个实施例3中制备YIG铁氧体材料的饱和磁感应强度照片。
具体实施方式
本发明提供了一种基于流延工艺环行器基板的制备方法,本发明的YIG铁氧体厚膜材料主配方按分子式计算,添加剂成分按质量百分比计算。本发明所述的基于YIG铁氧体利用流延工艺制备的铁氧体厚膜包括以下步骤:
实施例1:
1)主料配方:采用Y3-xCaxSnxFe5-xO12,x=0.06;
2)一次球磨:采用行星式球磨机,利用锆球,在241r/min的条件下,球磨4~8小时;
3.预烧:在1000℃~1200℃条件下预烧,保温1~3小时;
4.掺杂:加入以下添加剂:0.2wt%Bi2O3,0.10wt%BaTiO3
5.二次球磨:采用行星式球磨机,粉料在原有基础上加入40~50wt%的有机粘合剂和40~50wt%的无水乙醇,利用锆球,在241r/min的条件下,球磨4~8小时;
6.流延成型:将上述步骤所得浆料通过流延得到厚度为100~120μm的生膜带;
7.叠层:根据厚度需要,生膜带叠片为8~15层,在6MPa下压制成型;
8.烧结:在空气氛围中与1400℃下保温4小时。
9.测试:经过以上工艺制备出的YIG铁氧体厚膜,采用扫描电子显微镜(SEM)观测样品显微结构,采用振动样品磁强计(VSM)测试样品比饱和磁化强度,采用排水法测试样品密度,根据密度和比饱和磁化强度计算饱和磁化强度,采用8232测试样品饱和磁感应强度、剩磁、矫顽力以及矩形比。
实施例2:
1)主料配方:采用Y3-xCaxSnxFe5-xO12,x=0.09;
2)一次球磨:采用行星式球磨机,利用锆球,在241r/min的条件下,球磨4~8小时;
3.预烧:在1000℃~1200℃条件下预烧,保温1~3小时;
4.掺杂:加入以下添加剂:0.2wt%Bi2O3,0.10wt%BaTiO3
5.二次球磨:采用行星式球磨机,粉料在原有基础上加入40~50wt%的有机粘合剂和40~50wt%的无水乙醇,利用锆球,在241r/min的条件下,球磨4~8小时;
6.流延成型:将上述步骤所得浆料通过流延得到厚度为100~120μm的生膜带;
7.叠层:根据厚度需要,生膜带叠片为8~15层,在6MPa下压制成型;
8.烧结:在空气氛围中与1400℃下保温4小时。
实施例3:
1.主料配方:采用Y3-xCaxSnxFe5-xO12,x=0.06;
2.一次球磨:采用行星式球磨机,利用锆球,在241r/min的条件下,球磨4~8小时;
3.预烧:在1000℃~1200℃条件下预烧,保温1~3小时;
4.掺杂:加入以下添加剂:0.2wt%Bi2O3,0.10wt%BaTiO3
5.二次球磨:采用行星式球磨机,粉料在原有基础上加入40~50wt%的有机粘合剂和40~50wt%的无水乙醇,利用锆球,在241r/min的条件下,球磨4~8小时;
6.流延成型:将上述步骤所得浆料通过流延得到厚度为100~120μm的生膜带;
7.叠层:根据厚度需要,生膜带叠片为8~15层,在6MPa下压制成型;
8.烧结:在空气氛围中与1420℃下保温4小时。

Claims (2)

1.一种基于流延工艺环行器基板的制备方法,其特征在于,包括下述步骤:
(1)主料配方:采用Y3-xCaxSnxFe5-xO12,x=0.06;
(2)一次球磨:采用行星式球磨机,利用锆球,在241r/min的条件下
(3)预烧:在1000℃~1200℃条件下预烧,保温1~3小时;
(4)掺杂:加入以下添加剂:0.2wt%Bi2O3,0.10wt%BaTiO3
(5)二次球磨:粉料加入40~50wt%的有机粘合剂和40~50wt%的无水乙醇,球磨4~8小时;
(6)流延成型:将浆料通过流延得到厚度为100~120μm的生膜带;
(7)叠层:根据厚度需要,生膜带叠片为8~15层,在6MPa下压制成型;
(8)烧结:在空气氛围中与1360~1440℃下保温4小时。
2.如权利要求1所述的一种基于流延工艺环行器基板的制备方法,其特征在于,
步骤(1)中,铁氧体材料的主配方为Y3-xCaxSnxFe5-xO12,x=0.06;
步骤(3)中,在1000℃~1200℃条件下预烧,保温1~3小时;
步骤(4)中,添加剂:0.2wt%Bi2O3,0.10wt%BaTiO3
步骤(8)中,在空气氛围中与1360~1440℃下保温4小时。
CN201710005416.6A 2017-01-04 2017-01-04 一种基于流延工艺环行器基板的制备方法 Pending CN106747391A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710005416.6A CN106747391A (zh) 2017-01-04 2017-01-04 一种基于流延工艺环行器基板的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710005416.6A CN106747391A (zh) 2017-01-04 2017-01-04 一种基于流延工艺环行器基板的制备方法

Publications (1)

Publication Number Publication Date
CN106747391A true CN106747391A (zh) 2017-05-31

Family

ID=58950096

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710005416.6A Pending CN106747391A (zh) 2017-01-04 2017-01-04 一种基于流延工艺环行器基板的制备方法

Country Status (1)

Country Link
CN (1) CN106747391A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113666732A (zh) * 2021-08-03 2021-11-19 北京无线电测量研究所 一种石榴石型微波铁氧体片及其制备方法
CN114573334A (zh) * 2022-03-18 2022-06-03 电子科技大学 高功率高居里温度低线宽石榴石铁氧体及制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113666732A (zh) * 2021-08-03 2021-11-19 北京无线电测量研究所 一种石榴石型微波铁氧体片及其制备方法
CN114573334A (zh) * 2022-03-18 2022-06-03 电子科技大学 高功率高居里温度低线宽石榴石铁氧体及制备方法

Similar Documents

Publication Publication Date Title
TWI750199B (zh) 對溫度不敏感的介電常數石榴石
Laur et al. Self-biased Y-junction circulators using lanthanum-and cobalt-substituted strontium hexaferrites
Oliver et al. Integrated self-biased hexaferrite microstrip circulators for millimeter-wavelength applications
JP2017001945A (ja) 合成ガーネット材料、改質された合成ガーネット組成物、および合成ガーネットを製造する方法
CN105236948B (zh) Ka波段环行器用NiCuZn铁氧体厚膜材料制备方法
CN115385680B (zh) 一种高介低线宽微波旋磁铁氧体材料及其制备方法
Peng et al. Microwave sintered Sr1− xLaxFe12− xCoxO19 (x= 0–0.5) ferrites for use in low temperature co-fired ceramics technology
TW202012312A (zh) 具有高居里溫度及介電常數之磁性材料
CN111732427B (zh) 自偏置环行器用低铁磁共振线宽六角铁氧体材料及其制备方法
Wang et al. Crystallographically textured Zn2W-type barium hexaferrite for microwave and millimeter wave applications
Liu et al. Textured M-type barium hexaferrite Ba (ZnSn) xFe12− 2xO19 with c-axis anisotropy and high squareness ratio
Matters-Kammerer et al. Material properties and RF applications of high k and ferrite LTCC ceramics
CN106747391A (zh) 一种基于流延工艺环行器基板的制备方法
Laur et al. Modeling and characterization of self-biased circulators in the mm-wave range
Yang et al. Effects of Bi 2 O 3–MnO 2 additives on tunable microstructure and magnetic properties of low temperature co-fired NiCuZn ferrite ceramics
Dai et al. Influences of different Bi2O3 additive amounts on static magnetic characteristics, micromorphology and ferromagnetic resonance linewidth of M-type Sr hexaferrites
CN117326860A (zh) 一种单轴型小线宽六角铁氧体材料及其制备方法
CN112759380A (zh) 一种微波铁氧体材料及其制备方法和应用
CN115057697B (zh) 一种低线宽的w型六角晶系微波铁氧体材料的制备方法
Smith et al. Screen-printable, self-biased SrM/PDMS composites for integrated magnetic microwave devices
Guo et al. Effects of Bi2O3–CaCu3Ti4O12 composite additives on micromorphology, static magnetic properties, and FMR linewidth ΔH of NCZ ferrites
Joseph et al. Self-biased CPW circulator with low insertion loss
CN113461414A (zh) 适用于毫米波微带环形器的铁氧体及其制备方法和应用
Peng et al. Synthesis and characteristics of La3+–Co2+ substituted Sr-hexaferrites for microwave LTCC circulators
Zhang et al. Investigation on permeability–frequency characteristics and microstructure of composite ferrites

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20170531

WD01 Invention patent application deemed withdrawn after publication