CN106735728A - 一种陶瓷内衬复合钢管的连接方法 - Google Patents

一种陶瓷内衬复合钢管的连接方法 Download PDF

Info

Publication number
CN106735728A
CN106735728A CN201611070044.7A CN201611070044A CN106735728A CN 106735728 A CN106735728 A CN 106735728A CN 201611070044 A CN201611070044 A CN 201611070044A CN 106735728 A CN106735728 A CN 106735728A
Authority
CN
China
Prior art keywords
welding
ceramic
composite steel
steel tube
solder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201611070044.7A
Other languages
English (en)
Other versions
CN106735728B (zh
Inventor
朱巍巍
姜海峰
崔佳
刘耀东
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changchun University of Technology
Original Assignee
Changchun University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changchun University of Technology filed Critical Changchun University of Technology
Priority to CN201611070044.7A priority Critical patent/CN106735728B/zh
Publication of CN106735728A publication Critical patent/CN106735728A/zh
Application granted granted Critical
Publication of CN106735728B publication Critical patent/CN106735728B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/02Seam welding; Backing means; Inserts
    • B23K9/028Seam welding; Backing means; Inserts for curved planar seams
    • B23K9/0282Seam welding; Backing means; Inserts for curved planar seams for welding tube sections
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/16Arc welding or cutting making use of shielding gas
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C29/00Joining metals with the aid of glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • C03C3/066Glass compositions containing silica with less than 40% silica by weight containing boron containing zinc
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/003Joining burned ceramic articles with other burned ceramic articles or other articles by heating by means of an interlayer consisting of a combination of materials selected from glass, or ceramic material with metals, metal oxides or metal salts
    • C04B37/005Joining burned ceramic articles with other burned ceramic articles or other articles by heating by means of an interlayer consisting of a combination of materials selected from glass, or ceramic material with metals, metal oxides or metal salts consisting of glass or ceramic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/04Tubular or hollow articles
    • B23K2101/06Tubes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • C04B2235/3274Ferrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/405Iron group metals

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Structural Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Products (AREA)

Abstract

本发明公开了一种陶瓷内衬复合钢管的连接方法,属于焊接技术领域。该方法首先对复合钢管进行“V”型坡口加工,坡口角度为70‑90°;然后在焊口两侧的陶瓷内衬层上预制玻璃焊料并进行预烧结;预烧结后两段钢管对接装配,并保证装配间隙在0.05‑0.2mm,之后进行电弧焊接;打底焊采用氩弧焊,填充和盖面采用焊条电弧焊,并且打底焊和填充焊的时间间隔应小于1min;氩弧焊工艺参数为:焊接电流80~120A,焊接速度5‑10cm/min;焊条电弧焊工艺参数为:焊接电流90~120A,焊接速度5‑10cm/min。本发明将玻璃封接和电弧焊接复合在一起,能够在焊接外侧钢管的同时,实现内衬陶瓷层之间的可靠连接。

Description

一种陶瓷内衬复合钢管的连接方法
技术领域:
本发明涉及焊接技术领域,具体涉及一种陶瓷内衬复合钢管的连接方法。
背景技术:
在石油工业中,管道的腐蚀严重影响油、气、水集输系统的可靠性和使用寿命。由于石油天然气中含有大量H2S、CO2、Cl-等腐蚀介质,因此运输管道的内腐蚀问题十分突出。腐蚀破坏所引起的恶性事故会造成巨大的经济损失和严重的社会后果。
陶瓷内衬复合钢管采用自蔓延高温合成-离心法制备(中国专利,申请号01139227.4),该复合钢管由三层组成:外侧金属层、过渡层、氧化铝陶瓷层。陶瓷内衬复合钢管具有优异的耐腐蚀、耐结垢、耐机械冲击等性能,可有效解决石油工业中运输管道的内防腐问题,具有巨大的经济、社会效益。
然而,要想将陶瓷内衬复合钢管应用于石油工业中,必须解决其连接问题以及连接接头位置的防腐问题。传统的电弧焊接仅能实现外侧金属层之间的冶金连接,而难以实现内衬陶瓷层之间的连接,这将导致腐蚀介质流入焊缝腐蚀钢管。任峰德等(中国专利,申请号201210573115.0)采用激光焊接陶瓷内衬层、激光熔覆陶瓷层、氩弧焊过渡金属层以及电弧焊金属层实现了陶瓷内衬复合钢管的可靠连接。杨胶溪等(中国专利,申请号201510448405.6)首先对过渡层及陶瓷层进行激光深熔焊接,使过渡层及陶瓷层达到熔化对接,然后添加一种自熔性Ni基耐蚀合金粉末进行激光填粉焊接,最终实现了复合钢管的高强度连接。但以上两种连接方式中激光焊接成本较高,且激光焊接设备复杂,运输、安装、调试均十分不便。
发明内容:
本发明的目的在于提供一种陶瓷内衬复合钢管的连接方法,该方法成本低,实施简便,特别是便于施工现场操作。
本发明的具体技术方案为:
一种陶瓷内衬复合钢管的连接方法,所述陶瓷内衬复合钢管由外至内依次为外侧低碳钢金属层、纯铁过渡层和内衬陶瓷层,其中内衬陶瓷层的组成为:Al2O3为80-90wt.%,FeAl2O4为5-10wt.%,SiO2为1-5wt.%,残余单质Fe为1-5wt.%;该陶瓷内衬复合钢管的连接方法包括如下步骤:
(1)坡口加工:对陶瓷内衬复合钢管进行“V”型坡口加工,坡口角度为70-90°,钝边为陶瓷层厚度,如图1;
(2)玻璃焊料的预制:第一种方式为:将玻璃焊料制备焊料浆料后涂覆于焊口对应的陶瓷层内壁上;第二种方式为:在玻璃焊料中加入石蜡后轧制成柔性片状焊料,并将该片状焊料放置于焊口对应的陶瓷层内壁上;
(3)预烧结:对预制好玻璃焊料的陶瓷内衬复合钢管进行预烧结处理,加热温度为500-550℃,升温速度为5-15℃/min,保温时间为20-30min,冷却方式为随加热装置冷却或在空气中冷却;
(4)接头装配:两根预烧结好的陶瓷内衬复合钢管按对接方式进行装配,错边量小于0.5mm,间隙宽度为0.05mm-0.2mm;
(5)电弧焊接:接头装配完成后对焊口进行预热处理,然后进行焊接;打底焊采用氩弧焊,填充和盖面采用焊条电弧焊;其中,所述氩弧焊工艺参数为:焊接电流80~120A,焊接电压为10-18V,焊接速度5-10cm/min,焊丝直径为2.0mm;所述焊条电弧焊(手工电弧焊)工艺参数为:焊接电流90~120A,焊接电压20-28V,焊接速度5-15cm/min,焊条直径为3.2mm。
上述步骤(2)中,所述玻璃焊料的制备原料包括基础成分和低膨胀填料,其中:所述低膨胀填料为PbTiO3或ZrSiO4,低膨胀填料占基础成分的5%-15wt.%;基础成分按重量百分含量计的组成为:Bi2O3:30-60%,ZnO:5-20%,B2O3:10-30%,BaO:5-20%,SiO2:5-10%,Fe2O3:1-5%,GeO2:1-5%。所述玻璃焊料是将基础成分和低膨胀填料混合并球磨成粉后制得;所述玻璃焊料在内衬陶瓷层表面的润湿角小于20°,对应温度为550-600℃,热膨胀系数为7×10-6/℃~8×10-6/℃。
上述步骤(2)中,玻璃焊料的第一种预制方式为:将粉状玻璃焊料、乙醇(30-40wt.%)和粘结剂(1-5wt.%)混合均匀并调成膏状焊料浆料,采用毛刷或喷涂设备将焊料浆料涂覆于焊口对应的陶瓷层内壁上,涂覆宽度(沿管轴向方向的长度)为4-5mm,涂覆厚度为2-3mm;玻璃焊料的第二种预制方式为:在粉状玻璃焊料中加入石蜡(玻璃焊料:石蜡=9:1(重量比例)),在加热的情况下混合均匀,然后采用轧机将其轧制成厚度为2-3mm、宽度为4-5mm的片状焊料,再将片状焊料放置于焊口位置对应的钢管内壁上。
上述步骤(3)预烧结过程中的加热方式可为炉中加热或履带式加热器加热。
上述步骤(5)中,所述预热处理过程为:接头装配完成后,对焊口两侧50-100cm距离范围内的复合钢管进行预热处理,预热温度为50-200℃。
上述步骤(5)中,打底焊与填充焊的时间间隔小于1min。
本发明的优点和有益效果如下:
(1)本发明方法是针对外侧为低碳钢金属层、内衬为氧化铝陶瓷层的陶瓷内衬复合钢管,将玻璃封接和电弧焊接复合在一起,通过选择合适的工艺参数,能够在焊接外侧钢管的同时,实现内衬陶瓷层之间的可靠连接;
(2)本发明方法中选用了特定配方的玻璃焊料,该焊料在内衬陶瓷层表面的润湿角小于20°,且热膨胀系数(7×10-6/℃~8×10-6/℃)与内衬陶瓷层十分匹配;并且该玻璃焊料能够保证利用电弧焊的焊接余热实现内衬陶瓷层的连接,同时保证封接强度;
(3)本发明有效利用了电弧焊的焊接余热,减少能量的浪费;
(4)本发明的预处理步骤均可在焊前完成,现场施工时只需进行常规的焊接操作即可,具有简便、易行的特点。
附图说明:
图1为陶瓷内衬复合钢管接头装配结构示意图。
图2为实施例1中接头示意图。
图3为实施例1中陶瓷内衬复合钢管焊后宏观照片;其中:(a)为外侧焊缝;(b)内侧焊缝。
图4为实施例1中陶瓷层焊缝的微观结构照片。
具体实施方式:
以下结合附图和实施例详述本发明。
实施例1
母材:陶瓷内衬复合钢管,由外至内依次为外侧低碳钢金属层、过渡层和内衬陶瓷层(外径:76mm,总壁厚:9mm,陶瓷层厚度:2mm);内衬陶瓷层的组成为(wt.%):Al2O3为80-90%,FeAl2O4为5-10%,SiO2为1-5%,残余单质Fe为1-5%。
(1)材料准备;对陶瓷内衬复合钢管进行坡口加工。坡口角度:90°;钝边:陶瓷层厚度。
(2)玻璃焊料;所用基础玻璃的成分为(wt.%):Bi2O3:45%,ZnO:10%,B2O3:25%,BaO:8%,SiO2:6%,Fe2O3:4%,GeO2:2%。基础玻璃与PbTiO3填料的比例为9:1。两者经球磨成粉后作为玻璃焊料使用。
(3)玻璃焊料预制;将乙基纤维素溶解于松油醇中(乙基纤维素:松油醇=1:10(质量比)用作粘结剂。将玻璃粉、乙醇和粘结剂混合调成膏状焊料浆料,焊料浆料中粘结剂占1wt.%,乙醇占30wt.%。采用毛刷将玻璃浆料涂覆于焊口的陶瓷层内壁。涂覆宽度为5mm,涂覆厚度为2mm。
(4)预烧结;对预制好玻璃焊料的陶瓷内衬复合钢管进行预烧结处理,加热方式为马弗炉中加热,预烧结温度为530℃,升温速度为5℃/min,保温时间为30min,保温结束后在空气中冷却。预烧结一方面使玻璃焊料致密化,减少焊后玻璃焊料中的气孔;另一方面使玻璃焊料固定于复合钢管内壁,防止运输及焊接过程中玻璃焊料脱落。
(5)接头装配;按图2所示进行装配,间隙宽度约0.2mm,以便利用毛细作用使玻璃焊料熔化后自动流入内衬陶瓷层之间的间隙。
(6)焊前预热;接头装配完成后,对焊口两侧100cm距离范围内的复合钢管进行预热处理,预热温度为50℃。预热的目的是降低复合钢管在焊后的冷却速度,增加玻璃焊料在高温的停留时间,进而降低玻璃焊缝中的气孔含量。预热温度过低不能起到上述作用,预热温度过高将使玻璃焊料过度流散。
(7)电弧焊接;焊接道次为3,打底焊采用手工氩弧焊,以防止未焊透问题,填充及盖面焊均采用手工电弧焊。并且打底焊与填充焊的时间间隔小于1min,其原因是前两个焊接道次对玻璃焊料的温度影响较大,快速进行第二道焊有助于增加玻璃焊料在软化温度以上的停留时间,进而改善玻璃焊料的成型质量。氩弧焊工艺参数为:焊接电流100A,焊接电压为18V,焊接速度6cm/min,焊丝型号ER50-6,焊丝直径为2.0mm;手工电弧焊工艺参数为:焊接电流110A,焊接电压22V,焊接速度6cm/min,焊条型号E5015,焊丝直径为3.2mm。图3为陶瓷内衬复合钢管焊后宏观照片,外层焊缝和内层焊缝均成型良好。图4为陶瓷层焊缝的微观结构照片,从图中可见玻璃焊料层中无气孔、裂纹等缺陷,表明内衬陶瓷层之间实现了冶金连接。

Claims (8)

1.一种陶瓷内衬复合钢管的连接方法,其特征在于:所述陶瓷内衬复合钢管由外至内依次为外侧低碳钢金属层、纯铁过渡层和内衬陶瓷层;所述内衬陶瓷层的组成为:Al2O3为80-90wt.%,FeAl2O4为5-10wt.%,SiO2为1-5wt.%,单质Fe为1-5wt.%;该陶瓷内衬复合钢管的连接方法包括如下步骤:
(1)坡口加工:对陶瓷内衬复合钢管进行“V”型坡口加工,坡口角度为70-90°,钝边为陶瓷层厚度;
(2)玻璃焊料的预制:第一种方式为:将玻璃焊料制备焊料浆料后涂覆于焊口对应的陶瓷层内壁上;第二种方式为:在玻璃焊料中加入石蜡后轧制成柔性片状焊料,并将该片状焊料放置于焊口对应的陶瓷层内壁上;
(3)预烧结:对预制好玻璃焊料的陶瓷内衬复合钢管进行预烧结处理,加热温度为500-550℃,升温速度为5-15℃/min,保温时间为20-30min,冷却方式为随加热装置冷却或在空气中冷却;
(4)接头装配:两根预烧结好的陶瓷内衬复合钢管按对接方式进行装配,错边量小于0.5mm,间隙宽度为0.05mm-0.2mm;
(5)电弧焊接:接头装配完成后对焊口进行预热处理,然后进行焊接;打底焊采用氩弧焊,填充和盖面采用焊条电弧焊;其中,所述氩弧焊工艺参数为:焊接电流80~120A,焊接电压为10-18V,焊接速度5-10cm/min,焊丝直径为2.0mm;所述焊条电弧焊工艺参数为:焊接电流90~120A,焊接电压20-28V,焊接速度5-15cm/min,焊条直径为3.2mm。
2.根据权利要求1所述的陶瓷内衬复合钢管的连接方法,其特征在于:步骤(2)中,所述玻璃焊料的制备原料包括基础成分和低膨胀填料,其中:所述低膨胀填料为PbTiO3或ZrSiO4,低膨胀填料占基础成分的5%-15wt.%;基础成分按重量百分含量计的组成为:Bi2O3:30-50%,ZnO:5-20%,B2O3:10-30%,BaO:5-20%,SiO2:5-10%,Fe2O3:1-5%,GeO2:1-5%。
3.根据权利要求2所述的陶瓷内衬复合钢管的连接方法,其特征在于:所述玻璃焊料是将基础成分和低膨胀填料混合并球磨成粉后制得。
4.根据权利要求2所述的陶瓷内衬复合钢管的连接方法,其特征在于:所述玻璃焊料在内衬陶瓷层表面的润湿角小于20°,对应温度为550-600℃,热膨胀系数为7×10-6/℃~8×10-6/℃。
5.根据权利要求2所述的陶瓷内衬复合钢管的连接方法,其特征在于:步骤(2)中,玻璃焊料的第一种预制方式为:将粉状玻璃焊料、乙醇和粘结剂混合均匀并调成膏状焊料浆料,该膏状焊料浆料中,乙醇占30-40wt.%,粘结剂占1-5wt.%;采用毛刷或喷涂设备将焊料浆料涂覆于焊口对应的陶瓷层内壁上,涂覆宽度为4-5mm,涂覆厚度为2-3mm;玻璃焊料的第二种预制方式为:按照玻璃焊料:石蜡=9:1的重量比例在粉状玻璃焊料中加入石蜡,在加热的情况下混合均匀,然后采用轧机将其轧制成厚度为2-3mm、宽度为4-5mm的柔性片状焊料,再将该片状焊料放置于焊口位置对应的钢管内壁上。
6.根据权利要求1所述的陶瓷内衬复合钢管的连接方法,其特征在于:步骤(3)预烧结过程中的加热方式为炉中加热或履带式加热器加热。
7.根据权利要求1所述的陶瓷内衬复合钢管的连接方法,其特征在于:步骤(5)中,所述预热处理过程为:接头装配完成后,对焊口两侧50-100cm距离范围内的复合钢管进行预热处理,预热温度为50-200℃。
8.根据权利要求1所述的陶瓷内衬复合钢管的连接方法,其特征在于:步骤(5)中,打底焊与填充焊的时间间隔小于1min。
CN201611070044.7A 2016-11-29 2016-11-29 一种陶瓷内衬复合钢管的连接方法 Active CN106735728B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611070044.7A CN106735728B (zh) 2016-11-29 2016-11-29 一种陶瓷内衬复合钢管的连接方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611070044.7A CN106735728B (zh) 2016-11-29 2016-11-29 一种陶瓷内衬复合钢管的连接方法

Publications (2)

Publication Number Publication Date
CN106735728A true CN106735728A (zh) 2017-05-31
CN106735728B CN106735728B (zh) 2018-12-14

Family

ID=58905097

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611070044.7A Active CN106735728B (zh) 2016-11-29 2016-11-29 一种陶瓷内衬复合钢管的连接方法

Country Status (1)

Country Link
CN (1) CN106735728B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109202314A (zh) * 2018-08-31 2019-01-15 中国科学院金属研究所 一种max基陶瓷材料的电弧热扩散复合焊接方法
CN109420818A (zh) * 2017-08-28 2019-03-05 宝山钢铁股份有限公司 一种地下储气库用套管的焊接方法
CN110055485A (zh) * 2019-04-30 2019-07-26 国网宁夏电力有限公司 一种电力线表面疏水陶瓷涂层及其制备方法
CN113213961A (zh) * 2021-06-07 2021-08-06 张文宏 一种陶瓷内衬复合钢管孔加工工艺
CN113307647A (zh) * 2021-04-16 2021-08-27 长春工业大学 一种氮化铝陶瓷覆铜板的间接钎焊方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6127199A (ja) * 1984-07-17 1986-02-06 Nippon Steel Corp 片面溶接用裏当材
CN101439982A (zh) * 2007-11-22 2009-05-27 曾松 陶瓷-不锈钢的封接工艺
KR20100089610A (ko) * 2009-02-04 2010-08-12 정무수 수직상향 일렉트로 가스용접용 세라믹 용접지지구
JP2010274318A (ja) * 2009-05-29 2010-12-09 Tsuchiya Co Ltd スパッタ付着防止シート
CN102515535A (zh) * 2011-12-21 2012-06-27 中国计量学院 一种tft-lcd封接用无铅低膨胀系数玻璃粉及其制备方法
CN104276837A (zh) * 2013-07-12 2015-01-14 中国科学院上海硅酸盐研究所 金属玻璃化的封接方法
CN105665897A (zh) * 2016-03-24 2016-06-15 鲁西工业装备有限公司 一种双相不锈钢埋弧自动焊焊接方法及其应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6127199A (ja) * 1984-07-17 1986-02-06 Nippon Steel Corp 片面溶接用裏当材
CN101439982A (zh) * 2007-11-22 2009-05-27 曾松 陶瓷-不锈钢的封接工艺
KR20100089610A (ko) * 2009-02-04 2010-08-12 정무수 수직상향 일렉트로 가스용접용 세라믹 용접지지구
JP2010274318A (ja) * 2009-05-29 2010-12-09 Tsuchiya Co Ltd スパッタ付着防止シート
CN102515535A (zh) * 2011-12-21 2012-06-27 中国计量学院 一种tft-lcd封接用无铅低膨胀系数玻璃粉及其制备方法
CN104276837A (zh) * 2013-07-12 2015-01-14 中国科学院上海硅酸盐研究所 金属玻璃化的封接方法
CN105665897A (zh) * 2016-03-24 2016-06-15 鲁西工业装备有限公司 一种双相不锈钢埋弧自动焊焊接方法及其应用

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109420818A (zh) * 2017-08-28 2019-03-05 宝山钢铁股份有限公司 一种地下储气库用套管的焊接方法
CN109202314A (zh) * 2018-08-31 2019-01-15 中国科学院金属研究所 一种max基陶瓷材料的电弧热扩散复合焊接方法
CN109202314B (zh) * 2018-08-31 2020-10-16 中国科学院金属研究所 一种max基陶瓷材料的电弧热扩散复合焊接方法
CN110055485A (zh) * 2019-04-30 2019-07-26 国网宁夏电力有限公司 一种电力线表面疏水陶瓷涂层及其制备方法
CN113307647A (zh) * 2021-04-16 2021-08-27 长春工业大学 一种氮化铝陶瓷覆铜板的间接钎焊方法
CN113307647B (zh) * 2021-04-16 2022-05-31 长春工业大学 一种氮化铝陶瓷覆铜板的间接钎焊方法
CN113213961A (zh) * 2021-06-07 2021-08-06 张文宏 一种陶瓷内衬复合钢管孔加工工艺

Also Published As

Publication number Publication date
CN106735728B (zh) 2018-12-14

Similar Documents

Publication Publication Date Title
CN106735728B (zh) 一种陶瓷内衬复合钢管的连接方法
CN103433636B (zh) 压焊复合法制造双金属冶金复合管的方法
CN102009251B (zh) 管道全位置的全自动外焊机焊接方法
CN100503130C (zh) 自动送粉激光感应复合熔覆方法及装置
CN101623790B (zh) 白铜焊件焊接方法
CN103071878B (zh) 硬质合金和低合金高强度钢的钎焊方法
CN101637838B (zh) 一种用渗透钎焊法制备碳化钨耐磨蚀复合涂层的方法
CN102101210A (zh) 一种610MPa水电站压力钢管用高强钢焊接方法
CN106270965A (zh) 一种x80级管线钢环形焊缝的焊接工艺
CN107931887B (zh) 一种封头专用不锈钢气体保护焊药芯焊丝及其制备方法
CN110695499A (zh) 一种用于奥氏体不锈钢管道的mag焊焊接工艺
CN101885101B (zh) 一种铸造紫铜氧枪喷头的焊接方法
CN107695509A (zh) 基于搅拌摩擦焊/熔焊复合焊的钛钢复合管焊接方法
CN106756979A (zh) 基于界面钉扎作用提高异质金属接头强度的冷喷焊接方法
CN109590180A (zh) 一种钢管3pe全粉末化涂层的喷涂工艺
CN107030359A (zh) 双金属机械复合管端部电阻点焊工艺
CN106513943B (zh) 一种金属粉芯药芯焊丝高效焊接方法
CN104588964A (zh) 异种金属管材及其制备方法和应用
CN107511552A (zh) 一种蜂窝板及其加工方法
CN101670477B (zh) 抗硫化氢井下隔热油管的焊接方法
CN107470743A (zh) 深海石油机械工件的表面堆焊工艺
CN104175022A (zh) 一种管道及结构用管等压力钢管高速埋弧焊用烧结焊剂
CN104759724B (zh) 使用激光加热连接超长硬质合金的焊接方法
CN104959728A (zh) 一种吸铝管电击坑的修补剂及其修补方法
CN106695068A (zh) 一种钢制管道焊口内壁防腐堆焊方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant