CN106732690B - Ag@AgCl/TiO2-氧化石墨烯复合材料的制备方法 - Google Patents

Ag@AgCl/TiO2-氧化石墨烯复合材料的制备方法 Download PDF

Info

Publication number
CN106732690B
CN106732690B CN201611030190.7A CN201611030190A CN106732690B CN 106732690 B CN106732690 B CN 106732690B CN 201611030190 A CN201611030190 A CN 201611030190A CN 106732690 B CN106732690 B CN 106732690B
Authority
CN
China
Prior art keywords
agcl
tio
graphene oxide
composite material
oxide composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201611030190.7A
Other languages
English (en)
Other versions
CN106732690A (zh
Inventor
涂文懋
潘红飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University of Technology WUT
Original Assignee
Wuhan University of Technology WUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University of Technology WUT filed Critical Wuhan University of Technology WUT
Priority to CN201611030190.7A priority Critical patent/CN106732690B/zh
Publication of CN106732690A publication Critical patent/CN106732690A/zh
Application granted granted Critical
Publication of CN106732690B publication Critical patent/CN106732690B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/06Halogens; Compounds thereof
    • B01J27/135Halogens; Compounds thereof with titanium, zirconium, hafnium, germanium, tin or lead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0233Compounds of Cu, Ag, Au
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0274Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04 characterised by the type of anion
    • B01J20/0288Halides of compounds other than those provided for in B01J20/046
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/288Treatment of water, waste water, or sewage by sorption using composite sorbents, e.g. coated, impregnated, multi-layered
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Catalysts (AREA)

Abstract

本发明属于无机功能材料技术领域,具体公开了一种Ag@AgCl/TiO2‑氧化石墨烯复合材料的制备方法。该方法将Ag@AgCl纳米颗粒与GO混合后,直接与TiO2在碱性条件下水热反应得到Ag@AgCl/TiO2‑氧化石墨烯复合材料。与普通光催化材料相比,Ag@AgCl/TiO2‑氧化石墨烯复合材料在可见光区域和紫外光区域均可以发生有效的光催化反应,更充分地利用光源;该复合材料具有较大的比表面积和强吸附能力,可以更好地吸附污染物;还原氧化石墨烯的存在可以有效地抑制光生电子对的复合,从而很大程度地提高光催化性能。Ag@AgCl/TiO2‑氧化石墨烯复合材料所使用的原料便宜易得,制备和复合过程简单易行,是一种很有潜力的光催化材料。

Description

Ag@AgCl/TiO2-氧化石墨烯复合材料的制备方法
技术领域
本发明属于无机功能材料技术领域,具体涉及一种Ag@AgCl/TiO2-氧化石墨烯复合材料的制备方法。
背景技术
纳米TiO2具有化学性质稳定、耐光腐蚀及较强的光催化氧化能力等优点,被广泛应用于光催化降解各种污染物。二氧化钛纳米管(TiO2NTs)是TiO2的存在形式之一,具有高比表面积的优点,与其他形式的TiO2相比,TiO2纳米管表现出更高的光催化能力。但是,由于TiO2具有较大的禁带宽度(3.0-3.2eV),纯TiO2的光催化量子效率低,只能在紫外光驱动下发生有效的光催化反应。基于此,很多学者通过改性TiO2的手段或者将其与金属或者其他波段下的光催化材料复合,以提高其光催化性能。
纳米贵金属具有表面等离子体共振效应,在可见光区域能够表现出明显的特征吸收,特别是Ag、Au等贵金属纳米粒子在可见光区域有较强的吸收。由于Ag@AgCl在可见光照射下特殊的等离子效应,该复合纳米颗粒表现出优良的稳定性和光催化性能。目前多将Ag@AgCl负载在不同载体上制成三元复合催化剂,例如将Ag@AgCl负载在TiO2纳米管阵列上,得到复合光催化材料;或者将Ag@AgCl和石墨烯复合,用于光催化降解和SERS探测。
石墨烯(graphene)是由碳原子通过共价键形成的具有单原子层厚度的二维平面型蜂窝状π体系材料。氧化石墨(GO)由于其骨架上存在的各种含氧基团,为构筑复合功能材料提供了条件。同时,其极大的比表面积、优异的化学和热稳定性、优良的电学性能使之可以作为催化剂的优良载体。具体表现为:(1)rGO作为π体系材料,与有机污染物之间存在一定的π-π堆积作用,且有很大的比表面积,这使得污染物易于吸附在催化剂表面,加快光催化的进程;(2)rGO具有比较好的电子传输性能,在该复合物中rGO作为电子受体,这使得光生电子可以通过rGO表面迅速的传输出去,从而促进了电荷的有效分离,提高材料整体的光催化活性。
基于上述原因,本发明选择将这三种材料进行复合,制备出光催化性能优良的Ag@AgCl/TiO2-氧化石墨烯复合材料。
发明内容
本发明的目的在于提供一种光催化性能优良的Ag@AgCl/TiO2-氧化石墨烯复合材料的制备方法,该复合材料综合了纳米TiO2、Ag@AgCl以及氧化石墨烯的优点,在可见光区域和紫外光区域均可以发生有效地光催化反应,能更充分地利用光源,并且更好地吸附污染物。本发明实现上述目的的技术方案如下:
Ag@AgCl/TiO2-氧化石墨烯复合材料的制备方法,包括以下步骤:
(1)将AgNO3溶液滴加到PDDA溶液中配制成Ag+分散液;
(2)将NaCl溶液和葡萄糖溶液滴加到Ag+分散液中搅拌均匀,加热混合溶液进行水热反应,离心分离后将产物溶于去离子水中得到Ag@AgCl溶胶;
(3)将Hummers法制备的氧化石墨烯分散在去离子水中,得GO分散液;
(4)将GO分散液和Ag@AgCl溶胶按比例混合并搅拌,离心分离得到Ag@AgCl/GO;
(5)将Ag@AgCl/GO分散在碱性溶液中,再加入TiO2粉末并搅拌,加热混合溶液进行水热反应,产物经离心分离、水洗、烘干、研磨得粉末;
(6)将粉末置于保护性气氛中煅烧得Ag@AgCl/TiO2-氧化石墨烯复合材料。
按照上述方案,步骤(1)中Ag+分散液中AgNO3与PDDA的质量比为1:7.4。
优选的,步骤(1)中配制Ag+分散液所使用的AgNO3溶液质量分数为3.4mg/mL,所使用的PDDA溶液质量分数为25mg/mL,两者以1:1的体积比混合。
按照上述方案,步骤(2)中混合溶液中所含Ag+、NaCl、葡萄糖的质量比为40:23:100。
按照上述方案,步骤(2)水热反应温度为180℃,保温时间为24h,水热反应结束后离心分离,分别用乙醇和去离子水洗涤产物三次,按照反应液:去离子水6:1的体积比将所得产物溶于对应量的去离子水中。
按照上述方案,步骤(3)将氧化石墨烯加入去离子水中,超声0.5h后再搅拌1h,形成浓度为1g/L的GO分散液。
按照上述方案,步骤(4)中按照1:1-2.5的体积比将GO分散液和Ag@AgCl溶胶混合,磁力搅拌12h后离心水洗。
按照上述方案,步骤(5)中将Ag@AgCl/GO分散在10mol/L的NaOH溶液中,再加入与GO质量比为5-25:1的TiO2粉末搅拌均匀得混合溶液,加热至180℃水热反应48h,反应完成后首先将产物离心分离并水洗至中性,接着将产物分散在0.1mol/L的HCl溶液中,再次离心分离并水洗至中性,将最终分离所得产物置于75℃烘干研磨得粉末。
按照上述方案,步骤(6)将粉末置于氮气或氩气气氛中,在400℃煅烧2h即得。
优选的,步骤(4)中GO分散液和Ag@AgCl溶胶混合时的体积比为1:2,步骤(5)所得混合溶液中GO与TiO2质量比为1:10。
本发明使用水热法制备得到Ag@AgCl/TiO2-氧化石墨烯复合材料,并将氧化石墨烯部分还原,该复合材料以GO为基底,具有高的比表面积,可以有效地吸附污染物、并且还原氧化石墨烯能抑制电子空穴对的复合,从而有效的提高光催化效率;TiO2NTs在紫外光驱动下发生有效的光催化反应,Ag@AgCl在可见光驱动下发生有效的光催化反应。将两者结合,可以拓宽材料的光谱吸收范围,从而有效的提高光催化效率。
与现有技术相比,本发明具有以下有益效果:(1)与普通光催化材料相比,该复合材料在可见光区域和紫外光区域均可以发生有效地光催化反应,能更充分地利用光源;(2)该复合材料具有大的比表面积和强吸附能力,可以更好地吸附污染物,还原氧化石墨烯的存在可以有效地抑制光生电子对的复合,从而很大程度地提高光催化性能;(3)制备使用的原料便宜易得,制备和复合过程简单易行。
附图说明
图1为本发明实施例1制备的中间产物Ag@AgCl块状纳米颗粒的SEM图,其中1-a比例尺为300nm,1-b比例尺为200nm;
图2为本发明实施例2制备的Ag@AgCl/TiO2-氧化石墨烯复合材料的SEM图;
图3为本发明实施例3制备的Ag@AgCl/TiO2-氧化石墨烯复合材料的TEM图,其中3-a比例尺为10nm,3-b为比例尺为50nm。
图4为本发明实施例5制备的Ag@AgCl/TiO2-氧化石墨烯复合材料的SEM图。
图5为本发明实施例7制备的Ag@AgCl/TiO2-氧化石墨烯复合材料的SEM图。
具体实施方式
为了更好地理解本发明的内容,以下将结合具体实例来进一步说明。但是应该指出,本发明的实施并不限于以下几种实施方式。
1.考察不同Ag@AgCl用量对Ag@AgCl/TiO2-氧化石墨烯复合材料的影响。
实施例1
(1)首先将0.068g AgNO3和0.5g PDDA分别溶于20ml去离子水中,再将AgNO3溶液滴加到PDDA溶液中去,搅拌15分钟,得到Ag+分散液;
(2)将0.0234g NaCl和0.1g葡萄糖分别溶于20mL和60mL去离子水中配制成溶液,将配制好的NaCl溶液和葡萄糖溶液滴加到上述Ag+分散液中,搅拌一小时后,将混合溶液转移到反应釜中,加热至180℃保温水热反应24h,反应结束后离心。离心产物用乙醇和去离子水各洗涤三次,洗涤后的产物溶于去离子水中得到Ag@AgCl溶胶。配制Ag@AgCl溶胶时,按照每120ml反应液得到的产物溶于20ml去离子水的比例进行。从图1-a和图1-b中可以看出Ag@AgCl颗粒均为立方体结构,颗粒尺寸大约为80-120nm。
(3)将石墨粉倒入NaNO3和浓硫酸的混合溶液中,在冰浴条件下搅拌半小时后,少量缓慢加入KMNO4粉末,体系温度不超过5℃,低温反应2h。将烧杯转移至水浴锅中,保持35℃的情况下,滴加一定量的去离子水,搅拌2h后,用恒压滴液漏斗滴加热水,并加热使体系温度上升至98℃,高温反应15分钟后,加入适量H2O2,最后水洗、离心、冷冻干燥得到 GO。将制备好的GO加入到去离子水中,超声半小时搅拌一小时,形成均匀的浓度为1g/L 的GO分散液。
(4)量取40ml步骤(3)制备的GO分散液和40mL步骤(2)制备的Ag@AgCl溶胶,将两者混合磁力搅拌12h,离心水洗得到Ag@AgCl/GO。
(5)将步骤(4)中离心水洗后的Ag@AgCl/GO倒入100ml浓度为10mol/L的NaOH 溶液中,再加入0.4g TiO2粉末,磁力搅拌1小时超声15min后,将溶液转移到反应釜中,升温至180℃保温水热反应48h。将水热反应所得产物离心水洗至中性,再将产物分散在浓度为0.1mol/L的HCl溶液中搅拌30min,再次离心水洗至中性,将产物置于75℃烘干并研磨成粉末。
(6)将步骤(5)所得粉末置于氮气氛围中,升温至400℃煅烧2h,最终得到 Ag@AgCl/TiO2-氧化石墨烯复合材料。
(7)取0.1g制备得到的Ag@AgCl/TiO2-氧化石墨烯复合材料粉末,将其加入到100ml 亚甲基蓝溶液中(20mg/L),避光环境下超声30min、磁力搅拌30min后,在可见光下照射(用氙灯模拟)。每隔10min取1.6ml液体,离心后实时用紫外—可见光分光光度计测试上层液体的紫外—可见光吸收光谱并与TiO2粉末比较。
结合图2和图3可以看出,GO、TiO2NTs和Ag@AgCl很好地复合在一起。从图2的SEM可以看出,GO将TiO2NTs和Ag@AgCl包于其中,并连成一片;图3的TEM图中可以看出, GO并没有形成包覆,只是将TiO2NTs和Ag@AgCl捆绑在一起,在不影响TiO2NTs和 Ag@AgCl光照的前提下复合。TiO2NTs的长度大致在300—400nm。
实施例2-4
实施例2-4其他步骤和参数与实施例1相同,不同之处在于:步骤(4)中Ag@AgCl溶胶的用量分别为60mL(实施例2)、80mL(实施例3)和100ml(实施例4)。
对比实施例1-4,根据复合材料光催化降解亚甲基蓝的结果看,随着Ag@AgCl含量的增加,光催化效率呈先增高后降低的趋势。在Ag@AgCl溶胶用量为80ml时,光催化效率最高,在20min之内,光催化效率即达到80%以上,在40min左右亚甲基蓝基本被降解完。而当Ag@AgCl溶胶用量为100ml时,复合材料在20min时降解率还不到60%;在40min时,还有20%左右的残余量。可能是因为过量的Ag@AgCl影响复合材料的吸附能力和TiO2对光的吸收。因此可以判断,在Ag@AgCl溶胶用量为80ml时,即实施例3中制得的复合材料的光催化性能最好。
2.考察不同TiO2用量对Ag@AgCl/TiO2-氧化石墨烯复合材料的影响。
实施例5-7
实施例5-7其他参数步骤与实施例3相同,不同之处在于:步骤(5)中TiO2粉末的用量分别为0.2g(实施例5)、0.6g(实施例6)和1g(实施例7)。
对比图4和图5,当TiO2用量为0.2g时,氧化石墨几乎将TiO2纳米管包覆,很影响其对光的吸收;而当TiO2用量为1g时,TiO2过量,部分TiO2未形成管状,且没有与氧化石墨复合。
再对比其光催化性能,当TiO2用量为0.4g时,光催化性能最好,在20min之内,光催化效率即达到80%以上,在40min左右亚甲基蓝基本被降解完。当TiO2用量为0.6g时,光催化性能有所下降。而当TiO2用量为0.2g和1g的时候,光催化性能急剧下降,前者是因为过量的氧化石墨严重影响了光响应材料对光的吸收,后者是因为没有很好的形成复合物。因此,在TiO2用量为0.4g时,即实施例3中所制得的复合材料的光催化性能最好。
3.考察不同煅烧气氛对Ag@AgCl/TiO2-氧化石墨烯复合材料的影响。
水热法制备的TiO2纳米管需要通过煅烧来恢复其光催化活性,但由于氧化石墨的存在, 400℃下煅烧需要通保护气。考虑到TiO2可能掺氮以及GO在氢气氛下会被还原,因此分别采用高纯氮气、高纯氩气以及5%体积比的氢气气氛进行煅烧。
实施例8-9
实施例8-9其他参数步骤与实施例3相同,不同之处在于:步骤(6)煅烧时采用的保护气氛分别为高纯氩气(实施例8)和5%体积比的氢气(实施例9)。
通过对比实施例3和实施例8-9,氢气气氛下煅烧的复合材料的光催化性能有所提高,可能是因为氢气将氧化石墨烯还原得更加彻底,从而提高了其对光生电子的转移能力,而氩气和氮气气氛下煅烧的复合材料的光催化性能几乎没有区别,说明在氮气气氛中,400℃煅烧不会有氮掺杂。因此,在氢气气氛中煅烧,即实施例9所制得的复合材料光催化性能最好。
4.Ag@AgCl/TiO2-氧化石墨烯复合材料对其他染料的光催化性能表征。
实施例10采用另外一种类型的染料-----罗丹明B表征复合材料的光催化性能。取0.1g 实施例9制备得到的Ag@AgCl/TiO2-氧化石墨烯复合材料粉末,将其加入到100ml罗丹明B 溶液中(20mg/L),避光环境下超声30min、磁力搅拌30min后,在可见光下照射(用氙灯模拟)。每隔10min取1.6ml液体,离心后实时用紫外—可见光分光光度计测试上层液体的紫外—可见光吸收光谱并与TiO2粉末比较。
测试结果表明,该复合材料对于罗丹明B同样表现出很好的光催化性能,40min左右也能将罗丹明B基本降解完毕。
5.Ag@AgCl/TiO2-氧化石墨烯复合材料作为光催化材料的可重复利用性实验。
实施例11将光催化性能表征过后的实施例9中的Ag@AgCl/TiO2-氧化石墨烯复合材料再次吸附亚甲基蓝(20mg/L),进行光催化性能检测(光催化降解一次为一个循环),考察 Ag@AgCl/TiO2-氧化石墨烯复合材料使用次数对光催化活性的影响。
经过五次循环之后,Ag@AgCl/TiO2-氧化石墨烯复合材料的光催化效率依旧保持在95%以上,具有良好的循环性能。
上述实例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他任何在未背离本发明的精神实质与原理下所做的改变、修饰、替代、组合、简化,均为等效的置换方式,都包含在本发明的保护范围之内。

Claims (10)

1.Ag@AgCl/TiO2-氧化石墨烯复合材料的制备方法,其特征在于,包括以下步骤:
(1)将AgNO3溶液滴加到PDDA溶液中配制成Ag+分散液;
(2)将NaCl溶液和葡萄糖溶液滴加到Ag+分散液中搅拌均匀,加热混合溶液进行水热反应,离心分离后将产物溶于去离子水中得到Ag@AgCl溶胶;
(3)将Hummers法制备的氧化石墨烯分散在去离子水中,得GO分散液;
(4)将GO分散液和Ag@AgCl溶胶按比例混合并搅拌,离心分离得到Ag@AgCl/GO;
(5)将Ag@AgCl/GO分散在碱性溶液中,再加入TiO2粉末并搅拌,加热混合溶液进行水热反应,产物经离心分离、水洗、烘干、研磨得粉末;
(6)将粉末置于保护性气氛中煅烧得Ag@AgCl/TiO2-氧化石墨烯复合材料。
2.根据权利要求1所述的Ag@AgCl/TiO2-氧化石墨烯复合材料的制备方法,其特征在于:步骤(1)中Ag+分散液中AgNO3与PDDA的质量比为1:7.4。
3.根据权利要求1所述的Ag@AgCl/TiO2-氧化石墨烯复合材料的制备方法,其特征在于:步骤(1)中配制Ag+分散液所使用的AgNO3溶液质量分数为3.4mg/mL,所使用的PDDA溶液质量分数为25mg/mL,两者以1:1的体积比混合。
4.根据权利要求1所述的Ag@AgCl/TiO2-氧化石墨烯复合材料的制备方法,其特征在于:步骤(2)中混合溶液所含Ag+、NaCl、葡萄糖的质量比为40:23:100。
5.根据权利要求1所述的Ag@AgCl/TiO2-氧化石墨烯复合材料的制备方法,其特征在于:步骤(2)水热反应温度为180℃,保温时间为24h,水热反应结束后离心分离,分别用乙醇和去离子水洗涤产物三次,按照反应液:去离子水6:1的体积比将所得产物溶于对应量的去离子水中。
6.根据权利要求1所述的Ag@AgCl/TiO2-氧化石墨烯复合材料的制备方法,其特征在于:步骤(3)将氧化石墨烯加入去离子水中,超声0.5h后再搅拌1h,形成浓度为1g/L的GO分散液。
7.根据权利要求1所述的Ag@AgCl/TiO2-氧化石墨烯复合材料的制备方法,其特征在于:步骤(4)中按照1:1-2.5的体积比将GO分散液和Ag@AgCl溶胶混合,磁力搅拌12h后离心水洗。
8.根据权利要求1所述的Ag@AgCl/TiO2-氧化石墨烯复合材料的制备方法,其特征在于:步骤(5)中将Ag@AgCl/GO分散在10mol/L的NaOH溶液中,再加入与GO质量比为5-25:1的TiO2粉末搅拌均匀得混合溶液,加热至180℃水热反应48h,反应完成后首先将产物离心分离并水洗至中性,接着将产物分散在0.1mol/L的HCl溶液中,再次离心分离并水洗至中性,将最终分离所得产物置于75℃烘干研磨得粉末。
9.根据权利要求1所述的Ag@AgCl/TiO2-氧化石墨烯复合材料的制备方法,其特征在于:步骤(6)将粉末置于氮气或氩气气氛中,在400℃煅烧2h即得。
10.根据权利要求1所述的Ag@AgCl/TiO2-氧化石墨烯复合材料的制备方法,其特征在于:步骤(4)中GO分散液和Ag@AgCl溶胶混合时的体积比为1:2,步骤(5)所得混合溶液中GO与TiO2质量比为1:10。
CN201611030190.7A 2016-11-15 2016-11-15 Ag@AgCl/TiO2-氧化石墨烯复合材料的制备方法 Active CN106732690B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611030190.7A CN106732690B (zh) 2016-11-15 2016-11-15 Ag@AgCl/TiO2-氧化石墨烯复合材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611030190.7A CN106732690B (zh) 2016-11-15 2016-11-15 Ag@AgCl/TiO2-氧化石墨烯复合材料的制备方法

Publications (2)

Publication Number Publication Date
CN106732690A CN106732690A (zh) 2017-05-31
CN106732690B true CN106732690B (zh) 2019-05-17

Family

ID=58971433

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611030190.7A Active CN106732690B (zh) 2016-11-15 2016-11-15 Ag@AgCl/TiO2-氧化石墨烯复合材料的制备方法

Country Status (1)

Country Link
CN (1) CN106732690B (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107376951B (zh) * 2017-07-31 2020-01-14 武汉理工大学 一种太阳光催化多孔玻璃及其制备方法
CN107335462A (zh) * 2017-08-10 2017-11-10 南京理工大学 Ag@AgX/g‑C3N4/TiO2光催化复合材料的制备方法
CN107804900B (zh) * 2017-10-27 2021-02-09 东华理工大学 一种钛基型稳光电电极及其制备方法和应用
GB201801480D0 (en) 2018-01-30 2018-03-14 Anaphite Ltd Process for producing composite material
CN109174141A (zh) * 2018-10-12 2019-01-11 宝鸡文理学院 一种复合纳米光催化材料的制备方法
CN111781190A (zh) * 2020-07-20 2020-10-16 济南大学 一种复合金sers基底的制备及其应用
CN114950498B (zh) * 2022-05-16 2023-12-22 江苏农林职业技术学院 一种可循环利用的高效光催化材料及其制备方法和应用
CN115414964B (zh) * 2022-08-26 2024-03-22 陕西科技大学 一种聚合物改性煤矸石复合Ag系光催化剂及其制备方法
CN116392979A (zh) * 2023-06-08 2023-07-07 成都昱恒新瑞科技有限公司 可见光驱动的分离膜、制备方法、在有机废水的应用

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101537350B (zh) * 2009-04-27 2010-11-03 武汉理工大学 可见光活性的Ag/AgCl/TiO2纳米管阵列等离子体光催化剂及其制备方法
US20150198519A1 (en) * 2014-01-14 2015-07-16 Regents Of The University Of Minnesota Corrosion sensing systems and methods including electrochemical cells activated by exposure to damaging fluids
CN104357815B (zh) * 2014-09-24 2018-02-27 江苏大学 一种制备自清洁型表面拉曼增强基底的方法
CN104941615A (zh) * 2015-06-01 2015-09-30 天津工业大学 一种Ag/AgCl/TiO2纳米管的制备方法
CN105013516A (zh) * 2015-07-01 2015-11-04 杭州臣工环保科技有限公司 一种负载型多级结构银-卤化银-二氧化钛复合可见光催化材料及其制备方法
CN105797754A (zh) * 2016-04-22 2016-07-27 东北师范大学 一种氯化银-二氧化钛纳米管复合材料及其制备方法和应用

Also Published As

Publication number Publication date
CN106732690A (zh) 2017-05-31

Similar Documents

Publication Publication Date Title
CN106732690B (zh) Ag@AgCl/TiO2-氧化石墨烯复合材料的制备方法
Sun et al. Molecularly imprinted Ag/Ag3VO4/g-C3N4 Z-scheme photocatalysts for enhanced preferential removal of tetracycline
Borjigin et al. A solar light-induced photo-thermal catalytic decontamination of gaseous benzene by using Ag/Ag3PO4/CeO2 heterojunction
Liang et al. Au and Pt co-loaded g-C3N4 nanosheets for enhanced photocatalytic hydrogen production under visible light irradiation
Shang et al. Photocorrosion inhibition and high-efficiency photoactivity of porous g-C3N4/Ag2CrO4 composites by simple microemulsion-assisted co-precipitation method
Cai et al. Synthesis of TiO2@ WO3/Au nanocomposite hollow spheres with controllable size and high visible-light-driven photocatalytic activity
Song et al. Carbon nitride nanoplatelet photocatalysts heterostructured with B-doped carbon nanodots for enhanced photodegradation of organic pollutants
Yang et al. Preparation and enhanced visible-light photocatalytic activity of silver deposited graphitic carbon nitride plasmonic photocatalyst
Li et al. Construction of CoP/B doped g-C3N4 nanodots/g-C3N4 nanosheets ternary catalysts for enhanced photocatalytic hydrogen production performance
US20180179079A1 (en) Titanium-dioxide-based double-layer hollow material, preparation method thereof, and application thereof in photocatalytic treatment of hydrogen sulfide
Hu et al. Insight into the kinetics and mechanism of visible-light photocatalytic degradation of dyes onto the P doped mesoporous graphitic carbon nitride
Mou et al. Chemical interaction in nitrogen‐doped graphene quantum dots/graphitic carbon nitride heterostructures with enhanced photocatalytic H2 evolution
Van Dao et al. Ionic liquid-assisted preparation of Ag-CeO2 nanocomposites and their improved photocatalytic activity
Liu et al. Boosting visible‐light photocatalytic performance for CO2 reduction via hydroxylated graphene quantum dots sensitized MIL‐101 (Fe)
Yan et al. Construction of 2D/2D Bi2WO6/BN heterojunction for effective improvement on photocatalytic degradation of tetracycline
Hu et al. Engineering 2D compressed layered g-C3N4 nanosheets by the intercalation of BiVO4-Bi2WO6 composites for boosting photocatalytic activities
Wang et al. Structure-dependent adsorptive or photocatalytic performances of solid and hollow dendritic mesoporous silica & titania nanospheres
Xu et al. Fabrication of Bi2O3 QDs decorated TiO2/BiOBr dual Z-scheme photocatalysts for efficient degradation of gaseous toluene under visible-light
Maimaiti et al. Synthesis and photocatalytic CO 2 reduction performance of aminated coal-based carbon nanoparticles
Dadigala et al. Synthesis and characterization of C–TiO 2/FeTiO 3 and CQD/C–TiO 2/FeTiO 3 photocatalysts with enhanced photocatalytic activities under sunlight irradiation
Zhang et al. Hierarchically nanostructured Ag/ZnO/nBC for VOC photocatalytic degradation: Dynamic adsorption and enhanced charge transfer
Jiang et al. Self-assembled synthesis of porous sulfur-doped g-C3N4 nanotubes with efficient photocatalytic degradation activity for tetracycline
Pan et al. Interface engineering of sandwich SiO2@ α-Fe2O3@ COF core-shell S-scheme heterojunctions for efficient photocatalytic oxidation of gas-phase H2S
Vignesh et al. Interfacial coupling effects in α-Fe2O3/g-C3N4 composite magnetically separable heterojunction with upgraded Z-scheme photocatalytic performance of mixed organic pollutant degradation
Ding et al. Enhanced photocatalytic activity and mechanism insight of MnOx/MIL-101

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant