CN106732328A - 三维结构金属氧化物/石墨相碳化氮复合材料及其制备 - Google Patents

三维结构金属氧化物/石墨相碳化氮复合材料及其制备 Download PDF

Info

Publication number
CN106732328A
CN106732328A CN201611066950.XA CN201611066950A CN106732328A CN 106732328 A CN106732328 A CN 106732328A CN 201611066950 A CN201611066950 A CN 201611066950A CN 106732328 A CN106732328 A CN 106732328A
Authority
CN
China
Prior art keywords
metal oxide
composite
dimensional structure
nanometer sheet
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201611066950.XA
Other languages
English (en)
Other versions
CN106732328B (zh
Inventor
张兰
张宁
童萍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuzhou University
Original Assignee
Fuzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuzhou University filed Critical Fuzhou University
Priority to CN201611066950.XA priority Critical patent/CN106732328B/zh
Publication of CN106732328A publication Critical patent/CN106732328A/zh
Application granted granted Critical
Publication of CN106732328B publication Critical patent/CN106732328B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0222Compounds of Mn, Re
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0233Compounds of Cu, Ag, Au
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/024Compounds of Zn, Cd, Hg
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28069Pore volume, e.g. total pore volume, mesopore volume, micropore volume
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G25/00Refining of hydrocarbon oils in the absence of hydrogen, with solid sorbents
    • C10G25/003Specific sorbent material, not covered by C10G25/02 or C10G25/03
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/48Sorbents characterised by the starting material used for their preparation
    • B01J2220/4806Sorbents characterised by the starting material used for their preparation the starting material being of inorganic character
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/202Heteroatoms content, i.e. S, N, O, P

Abstract

本发明公开了一种三维结构的金属氧化物/石墨相碳化氮复合材料及其制备方法与应用,该复合材料由g‑C3N4纳米片和金属氧化物复合而成;其中,g‑C3N4纳米片所占质量分数为1%‑25%。本发明所得复合材料是以剥离后具有类似石墨烯二维结构的碳化氮材料为模板,加入金属氧化物前驱体和稳定剂,在搅拌条件下于高压反应釜中制备而成。与纯的金属氧化物相比,该复合材料的比表面积显著增大,且克服了金属氧化物易团聚的缺点,使得吸附量大大增加,在去除柴油中硫化物等方面有着良好的应用前景。

Description

三维结构金属氧化物/石墨相碳化氮复合材料及其制备
技术领域
本发明属于材料技术领域,具体涉及一种作为吸附材料的三维结构金属氧化物/石墨相碳化氮复合材料及其制备方法与应用。
背景技术
随着汽车逐渐成为人们常用的代步工具,燃油的消耗量也在日益增加。由于高硫燃油在消耗过程中会产生可以形成酸雨的SOx,而酸雨会对水生系统、陆地生态系统、人类身体健康、建筑物、机械和市政设施形成危害。所以,燃油精炼产业在提炼过程中的一个很重要的步骤是从燃油中高效的去除硫化物。世界上很多国家引进了“超低硫柴油”的概念,即柴油中硫的含量必须在超低水平(10-15 ppm),其目的是减少柴油机排放有害废气,改善空气质量。在过去的几十年里,各种用来降低柴油机有害硫排放的技术被用来除去燃油中的硫化物,例如,加氢脱硫、微生物脱硫、吸附脱硫、萃取脱硫和氧化脱硫,其中,用固体吸附剂吸附脱硫是目前最有前途的脱硫方法之一。然而,当前的脱硫材料有许多令人不满意的地方,比如,活性炭的选择性较差,MOFs材料的骨架易坍塌。因此,需要开发新的易于合成、选择性好、吸附过程简单、不需要添加其他成分且在大的硫化物浓度范围内都表现出很强吸附性的除硫材料。
金属氧化物由于良好的热稳定性以及基于分子筛效应和其他化学反应机理,在选择性吸附和分离具有特定大小或形状的目标物方面有很大的应用潜力。但是,金属氧化物具有的分散性差、比表面积小和容易团聚等缺点会直接影响吸附效果。而考虑到金属氧化物拥有宽的带隙能,可以作为一个通用的主晶格来掺杂不同元素,因此,寻找一个可以提升金属氧化物分散性、防止金属氧化物团聚且可以增大比表面积的支持材料,即可解决金属氧化物的上述缺陷。有文章报道可以把金属氧化物负载在具有二维平面和大比表面积的石墨烯上。但是,由于石墨烯没有可以键合的基团,大部分此类化合物的制备方法是先与具有含氧基团(可以作为成核位点)的氧化石墨烯生成金属氢氧化物/氧化石墨烯复合材料,再在高温和肼还原的双重条件下生成金属氧化物/石墨烯复合材料。此方法具有以下不足之处:(1)用肼做还原剂,在有氧存在时,肼和金属氧化物以及氧气会反应生成氮气和水,即发生副反应;(2)肼为疑似致癌物和爆炸物,对实验员和环境有害;(3)反应过程繁琐。因此,需要找到一个自身含有可作为成核位点基团的二维材料做支持材料。
基于以上所述,寻找一个既具有大比表面积又具有成核位点的二维材料使得金属氧化物的性能显著增加是目前的工作之重。具有好的水溶性和超薄石墨结构的C3N4(g-C3N4)纳米片是在常温常压条件下所有CN结构化合物中最稳定的化合物。在g-C3N4平面上含有-N/-NH基团,在边缘含有-NH2基团可作为成核位点。与此同时,g-C3N4在水中拥有好的分散性,并具有大的比表面积、高的结构稳定性、好的生物相容性、无毒等优点,且其作为一个路易斯碱可以和金属离子通过螯合作用相结合,其二维平面结构可以负载金属氧化物,以增加金属氧化物的比表面积和防止团聚。值得注意的是,由于g-C3N4自身拥有-N/-NH/-NH2基团,可以作为成核中心固定金属离子和金属氧化物,而不需要进一步的反应,整个合成过程简单。
在本发明第一次通过原位水热法合成了一种新型的金属氧化物/g-C3N4 吸附材料,其综合了金属氧化物和g-C3N4的多重优点,如高的表面积-体积比、良好的分散性、好的结构稳定性、热稳定性、容易制备等,并可克服金属氧化物易团聚的缺点,可用于去除柴油中的硫化物。
发明内容
本发明的目的在于提供一种新型的三维结构金属氧化物/石墨相碳化氮复合材料及其制备方法与应用,该材料具有高比表面积、大孔容,能够高效快速的去除柴油中的硫化物,并有着优异的重现性和稳定性,且其制备工艺简单,成本低,具有良好的应用前景。
为实现上述目的,本发明采用如下技术方案:
一种三维结构金属氧化物/石墨相碳化氮复合材料,其是由金属氧化物和g-C3N4纳米片复合而成;其中,g-C3N4纳米片所占质量分数为1%-25%。
所述三维结构金属氧化物/石墨相碳化氮复合材料是在搅拌条件下,以水为溶剂,采用原位水热法制备而成,其制备方法包括如下步骤:
1)g-C3N4纳米片溶液的制备
a. 将三聚氰胺粉末置于马弗炉中,以2.5-3.0℃/min的速度升温至550-600℃,保温处理2-4h,然后以2.5-3.0℃/min的速度降至室温,得淡黄色g-C3N4固体;
b. 将0.1-0.3g所得g-C3N4固体研磨成粉末后,加入200mL超纯水,100-200W超声剥离1-4h后将所得溶液于1000-3000rpm条件下离心3-5min,收集上清液;
c. 将所得上清液于40-60℃条件下旋转蒸发至浓缩液浓度为0.05-0.2 mol/L,即得g-C3N4纳米片溶液;
2)三维结构金属氧化物/g-C3N4复合材料的制备
a. 将0.1-5.0g金属化合物溶于10-30mL超纯水中,制成浓度为0.05-1.0 mol/L的溶液A;另将0.1-5.0g稳定剂溶于10-30 mL步骤1)所得g-C3N4纳米片溶液中,制成浓度为0.05-1.0 mol/L的溶液B;然后将溶液A、B按体积比1:1搅拌混合10-30min,再转移到反应釜中,30-160℃下反应1-24h;
b. 反应完成后,将所得产物依次用超纯水和无水乙醇各洗涤3次,然后于3000-8000rpm条件下离心3-5 min,再于30-70℃下真空干燥过夜,即得所述复合材料。
其中,所述金属化合物包括高锰酸钾、六水合硝酸锌、二水合氯化铜中的任意一种;所述稳定剂包括氯化钠、六亚甲基四胺、氢氧化钠中的任意一种。
所述三维结构金属氧化物/石墨相碳化氮复合材料可作为吸附材料,用于去除柴油中的噻吩及噻吩衍生物等硫化物。
本发明的显著优点在于:
1)本发明充分利用了金属氧化物的结构、吸附特性及有缺陷的g-C3N4纳米片表面含大量氨基功能团的特性,直接以水为溶剂,使用原位水热法制备出具有三维结构的复合材料,其制备方法简单、经济,不需要添加联氨作为还原剂,也不使用任何无机溶剂,为该复合材料商品化大规模生产提供了可能。
2)与纯的金属氧化物相比,本发明所制备的三维结构金属氧化物/石墨相碳化氮复合材料具有比表面积大、孔容积大的优点,可克服金属氧化物易团聚的缺点,并能快速去除柴油中噻吩及噻吩衍生物等硫化物,具有良好的重现性和稳定性,应用前景好。
3)本发明复合材料在水中具有良好的分散性,并具有很好的热稳定性、结构稳定性,能够实现多次重复利用,可极大地降低使用成本。
附图说明
图1为实施例1所得MnO2/g-C3N4复合材料的扫描电镜图。
图2为实施例1所得MnO2/g-C3N4复合材料对噻吩的突破曲线图。
具体实施方式
为了使本发明所述的内容更加便于理解,下面结合具体实施方式对本发明所述的技术方案做进一步的说明,但是本发明不仅限于此。
实施例1
1)g-C3N4纳米片溶液的制备
a. 将20g白色三聚氰胺粉末平铺在50mL坩埚底部,盖紧盖子,置于马弗炉中,以3.0℃/min的速度升温至600℃,保温处理2h,然后以3.0℃/min的速度降至室温,得淡黄色g-C3N4固体;
b. 将0.3g所得g-C3N4固体研磨成粉末后,倒入250mL平底烧瓶中,并加入200mL超纯水,150W超声剥离3h后将所得溶液于3000rpm条件下离心5min,收集上清液,去除下层未剥离的固体;
c. 将所得上清液于60℃旋转蒸发仪上旋转蒸发至体积为50mL,得到浓度为0.1mol/L的g-C3N4纳米片溶液;
2)三维结构金属氧化物/g-C3N4复合材料的制备
a. 将4.75g高锰酸钾溶于30mL超纯水中,制成浓度为1.0 mol/L的溶液A;另将0.48g氯化钠溶于30 mL步骤1)所得g-C3N4纳米片溶液中,制成浓度为0.27mol/L的溶液B;然后将溶液A、B按体积比1:1搅拌混合30min,再转移到反应釜中,160℃下反应12h;
b. 反应完成后,将所得产物依次用超纯水和无水乙醇各洗涤3次,然后于5000rpm条件下离心5 min,再于60℃下真空干燥过夜,即得三维结构MnO2/g-C3N4复合材料,其中g-C3N4的质量分数为1.66%。
图1为所得MnO2/g-C3N4复合材料的扫描电镜图。从图1可以看出,所得MnO2/g-C3N4为三维层状结构,且材料的厚度比较均一。
称取5.0mg上述制备的MnO2/g-C3N4复合材料,将其分别加入到5.0 mL含噻吩浓度为0.03ng/mL-2.0 ng/mL的不同异辛烷溶液中,常温下吸附3h,待吸附达到饱和后,在5000rpm下离心5 min,所得上清液用紫外可见分光光度计在230 nm波长下测定剩余噻吩的吸光度值,根据标准曲线计算出剩余噻吩的含量,从而计算出复合材料的吸附量,再利用langmuir模型拟合计算。
图2为实施例1所得MnO2/g-C3N4复合材料对噻吩的突破曲线图,其中Ct为某一时间点取出的吸附后的柴油中的硫含量;C0为柴油初始硫浓度。从图2可以看到,所得MnO2/g-C3N4复合材料对噻吩具有很好的吸附效果。其在浓度为0.4mg mL-1时,饱和吸附量可达36.81 g S/kg MnO2/g-C3N4,即96.79 g TP/kg MnO2/g-C3N4
实施例2
1)g-C3N4纳米片溶液的制备
a. 将20g白色三聚氰胺粉末平铺在50mL坩埚底部,盖紧盖子,置于马弗炉中,以2.5℃/min的速度升温至550℃,保温处理4h,然后以2.5℃/min的速度降至室温,得淡黄色g-C3N4固体;
b. 将0.1g所得g-C3N4固体研磨成粉末后,倒入250mL平底烧瓶中,并加入200mL超纯水,100W超声剥离4h后将所得溶液于1000rpm条件下离心4min,收集上清液,去除下层未剥离的固体;
c. 将所得上清液于40℃旋转蒸发仪上旋转蒸发至体积为50mL,得到浓度为0.2mol/L的g-C3N4纳米片溶液;
2)三维结构金属氧化物/g-C3N4复合材料的制备
a. 将0.45g六水合硝酸锌溶于30mL超纯水中,制成浓度为0.05mol/L的溶液A;另将0.21g六亚甲基四胺溶于30 mL步骤1)所得g-C3N4纳米片溶液中,制成浓度为0.05mol/L的溶液B;然后将溶液A、B按体积比1:1搅拌混合10min,再转移到反应釜中,90℃下反应4h;
b. 反应完成后,将所得产物依次用超纯水和无水乙醇各洗涤3次,然后于3000rpm条件下离心3 min,再于30℃下真空干燥过夜,即得三维结构ZnO/g-C3N4复合材料,其中g-C3N4的质量分数为12.15%。
实施例3
1)g-C3N4纳米片溶液的制备
a. 将20g白色三聚氰胺粉末平铺在50mL坩埚底部,盖紧盖子,置于马弗炉中,以2.8℃/min的速度升温至580℃,保温处理3h,然后以2.8℃/min的速度降至室温,得淡黄色g-C3N4固体;
b. 将0.2g所得g-C3N4固体研磨成粉末后,倒入250mL平底烧瓶中,并加入200mL超纯水,200W超声剥离1h后将所得溶液于2000rpm条件下离心3min,收集上清液,去除下层未剥离的固体;
c. 将所得上清液于50℃旋转蒸发仪上旋转蒸发至体积为50mL,得到浓度为0.05mol/L的g-C3N4纳米片溶液;
2)三维结构金属氧化物/g-C3N4复合材料的制备
a. 将1.71g二水合氯化铜溶于10mL超纯水中,制成浓度为1.0mol/L的溶液A;另将0.8g氢氧化钠于20 mL步骤1)所得g-C3N4纳米片溶液中,制成浓度为1.0 mol/L的溶液B;然后将溶液A、B按体积比1:1搅拌混合20min,再转移到反应釜中,60℃下反应8h;
b. 反应完成后,将所得产物依次用超纯水和无水乙醇各洗涤3次,然后于8000rpm条件下离心4 min,再于70℃下真空干燥过夜,即得三维结构CuO/g-C3N4复合材料,其中g-C3N4的质量分数为7.01%。
以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。

Claims (3)

1.一种三维结构金属氧化物/石墨相碳化氮复合材料,其特征在于:由金属氧化物和g-C3N4纳米片复合而成;其中,g-C3N4纳米片所占质量分数为1%-25%。
2. 一种如权利要求1所述的三维结构金属氧化物/石墨相碳化氮复合材料的制备方法,其特征在于:包括如下步骤:
1)g-C3N4纳米片溶液的制备
a. 将三聚氰胺粉末置于马弗炉中,以2.5-3.0℃/min的速度升温至550-600℃,保温处理2-4h,然后以2.5-3.0℃/min的速度降至室温,得淡黄色g-C3N4固体;
b. 将0.1-0.3g所得g-C3N4固体研磨成粉末后,加入200mL超纯水,100-200W超声剥离1-4h后将所得溶液于1000-3000rpm条件下离心3-5min,收集上清液;
c. 将所得上清液于40-60℃条件下旋转蒸发至浓缩液浓度为0.05-0.2 mol/L,即得g-C3N4纳米片溶液;
2)三维结构金属氧化物/g-C3N4复合材料的制备
a. 将0.1-5.0g金属化合物溶于10-30mL超纯水中,制备成浓度为0.05-1.0 mol/L的溶液A;另将0.1-5.0g稳定剂溶于10-30 mL步骤1)所得g-C3N4纳米片溶液中,制备成浓度为0.05-1.0 mol/L的溶液B;然后将溶液A、B按体积比1:1搅拌混合10-30min,再转移到反应釜中,30-160℃下反应1-24h;
b. 反应完成后,将所得产物依次用超纯水和无水乙醇各洗3次,然后于3000-8000rpm条件下离心3-5 min,再于30-70℃下真空干燥过夜,即得所述复合材料。
3.一种如权利要求1所述的三维结构金属氧化物/石墨相碳化氮复合材料的应用,其特征在于:作为吸附材料用于去除柴油中的硫化物。
CN201611066950.XA 2016-11-29 2016-11-29 三维结构金属氧化物/石墨相碳化氮复合材料及其制备 Active CN106732328B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611066950.XA CN106732328B (zh) 2016-11-29 2016-11-29 三维结构金属氧化物/石墨相碳化氮复合材料及其制备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611066950.XA CN106732328B (zh) 2016-11-29 2016-11-29 三维结构金属氧化物/石墨相碳化氮复合材料及其制备

Publications (2)

Publication Number Publication Date
CN106732328A true CN106732328A (zh) 2017-05-31
CN106732328B CN106732328B (zh) 2019-06-07

Family

ID=58905057

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611066950.XA Active CN106732328B (zh) 2016-11-29 2016-11-29 三维结构金属氧化物/石墨相碳化氮复合材料及其制备

Country Status (1)

Country Link
CN (1) CN106732328B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107930671A (zh) * 2017-12-06 2018-04-20 福州大学 一种三元金属硫化物/石墨相氮化碳复合光催化材料及其制备方法和应用
CN108772097A (zh) * 2018-07-02 2018-11-09 西北大学 一种金属-固体酸碱多功能核壳催化剂的制备方法
CN109709182A (zh) * 2019-03-04 2019-05-03 济南大学 一种g-C3N4-MnO2纳米复合材料的光致电化学法超灵敏检测谷胱甘肽
CN110252370A (zh) * 2019-05-23 2019-09-20 江苏大学 一种二维ZnO/g-C3N4复合光催化剂的制备方法及用途
CN110496593A (zh) * 2018-05-18 2019-11-26 南京理工大学 层状石墨相氮化碳/蒙脱土复合材料及其制备方法和应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102950016A (zh) * 2012-10-29 2013-03-06 华东理工大学 一种ZnO/g-C3N4复合光催化剂的制备方法
CN105921097A (zh) * 2016-06-01 2016-09-07 南京航空航天大学 一种介孔石墨相氮化碳的制备方法及其应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102950016A (zh) * 2012-10-29 2013-03-06 华东理工大学 一种ZnO/g-C3N4复合光催化剂的制备方法
CN105921097A (zh) * 2016-06-01 2016-09-07 南京航空航天大学 一种介孔石墨相氮化碳的制备方法及其应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
NING ZHANG ET AL.: "In situ hydrothermal growth of ZnO/g-C3N4 nanoflowers coated solid-phase microextraction fibers coupled with GC-MS for determination of pesticides residues", 《ANALYTICA CHIMICA ACTA》 *
SURYA PRASAD ADHIKARI ET AL.: "Deposition of ZnO flowers on the surface of g-C3N4 sheets via hydrothermal process", 《CERAMICS INTERNATIONAL》 *
XIAOYA YUAN ET AL.: "Facile Synthesis of g-C3N4 Nanosheets/ZnO Nanocomposites with Enhanced Photocatalytic Activity in Reduction of Aqueous Chromium(VI) under Visible Light", 《NANOMATERIALS》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107930671A (zh) * 2017-12-06 2018-04-20 福州大学 一种三元金属硫化物/石墨相氮化碳复合光催化材料及其制备方法和应用
CN110496593A (zh) * 2018-05-18 2019-11-26 南京理工大学 层状石墨相氮化碳/蒙脱土复合材料及其制备方法和应用
CN108772097A (zh) * 2018-07-02 2018-11-09 西北大学 一种金属-固体酸碱多功能核壳催化剂的制备方法
CN109709182A (zh) * 2019-03-04 2019-05-03 济南大学 一种g-C3N4-MnO2纳米复合材料的光致电化学法超灵敏检测谷胱甘肽
CN110252370A (zh) * 2019-05-23 2019-09-20 江苏大学 一种二维ZnO/g-C3N4复合光催化剂的制备方法及用途

Also Published As

Publication number Publication date
CN106732328B (zh) 2019-06-07

Similar Documents

Publication Publication Date Title
CN106732328A (zh) 三维结构金属氧化物/石墨相碳化氮复合材料及其制备
Guo et al. 2D/2D Z-scheme heterojunction of CuInS2/g-C3N4 for enhanced visible-light-driven photocatalytic activity towards the degradation of tetracycline
Zhao et al. A novel Z-scheme CeO2/g-C3N4 heterojunction photocatalyst for degradation of Bisphenol A and hydrogen evolution and insight of the photocatalysis mechanism
Liu et al. Boron doped C3N4 nanodots/nonmetal element (S, P, F, Br) doped C3N4 nanosheets heterojunction with synergistic effect to boost the photocatalytic hydrogen production performance
Wang et al. The effects of bismuth (III) doping and ultrathin nanosheets construction on the photocatalytic performance of graphitic carbon nitride for antibiotic degradation
Zhu et al. Enhanced photocatalytic performance of BiOBr/NH 2-MIL-125 (Ti) composite for dye degradation under visible light
CN108483444A (zh) 一种α-FeOOH纳米棒负载的多孔生物炭复合材料的制备方法
Hu et al. Superior sorption capacities of Ca-Ti and Ca-Al bimetallic oxides for U (VI) from aqueous solutions
Huang et al. Hydrothermal synthesis of gC 3 N 4/CdWO 4 nanocomposite and enhanced photocatalytic activity for tetracycline degradation under visible light
CN102553523B (zh) 一种负载纳米零价铁的活性碳纤维及其制备方法和用途
Wang et al. Adsorptive catalysis of hierarchical porous heteroatom-doped biomass: from recovered heavy metal to efficient pollutant decontamination
CN105903439A (zh) 三维层状石墨相碳化氮/mof复合材料及其制备方法
CN102350314B (zh) 一种木质纤维素与有机钙基蒙脱土复合的染料废水吸附剂
Li et al. Spinel NiFe2O4 nanoparticles decorated BiOBr nanosheets for improving the photocatalytic degradation of organic dye pollutants
CN112892611B (zh) 鱼鳞片管状氮化碳及其制备方法和应用
Sun et al. Graphene modified Cu-BTC with high stability in water and controllable selective adsorption of various gases
Lu et al. Novel CaCO3/g-C3N4 composites with enhanced charge separation and photocatalytic activity
CN107837816B (zh) Fe2O3/g-C3N4复合体系及制备方法和应用
Liu et al. A facile fabrication of nanoflower-like Co3O4 catalysts derived from ZIF-67 and their catalytic performance for CO oxidation
CN104944474B (zh) 一种纳米MnFe2O4/石墨烯复合材料的制备方法
CN110451597A (zh) 一种纳米零价铁@分子筛复合材料及其制备方法与用途
Cheng et al. One-step hydrothermal synthesis of BiVO 4–Bi 2 O 3 p–n heterojunction composites and their enhanced photocatalysis properties
CN111229154A (zh) 一种MgFe2O4/Fe2O3复合物及其制备方法和应用
Sun et al. Confined synthesis of g-C3N4 modified porous carbons for efficient removal of Cd ions
Liu et al. In situ formation of BiVO4/MoS2 heterojunction: Enhanced photogenerated carrier transfer rate through electron transport channels constructed by graphene oxide

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant