CN106729621A - 一种多肽纳米微球、制备方法及其在抗肿瘤药物中的应用 - Google Patents

一种多肽纳米微球、制备方法及其在抗肿瘤药物中的应用 Download PDF

Info

Publication number
CN106729621A
CN106729621A CN201611159286.3A CN201611159286A CN106729621A CN 106729621 A CN106729621 A CN 106729621A CN 201611159286 A CN201611159286 A CN 201611159286A CN 106729621 A CN106729621 A CN 106729621A
Authority
CN
China
Prior art keywords
nano
polypeptide
peptide
microballoon
prepared
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201611159286.3A
Other languages
English (en)
Inventor
林秀坤
许焕丽
刘晓卉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Capital Medical University
Original Assignee
Capital Medical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Capital Medical University filed Critical Capital Medical University
Priority to CN201611159286.3A priority Critical patent/CN106729621A/zh
Publication of CN106729621A publication Critical patent/CN106729621A/zh
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/1703Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1605Excipients; Inactive ingredients
    • A61K9/1617Organic compounds, e.g. phospholipids, fats

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Epidemiology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Immunology (AREA)
  • Zoology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Medicinal Preparation (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本发明涉及一种多肽纳米微球、制备方法及其在抗肿瘤药物中的应用,该纳米微球包括纳米载体和由载体包裹或吸附的多肽CS5931。本发明将多肽CS5931制备为纳米微球,其稳定性显著增强,在25℃条件下保存一周而不降解,经MTT法检测,该纳米微球抗肿瘤活性大大提高。

Description

一种多肽纳米微球、制备方法及其在抗肿瘤药物中的应用
技术领域
本发明属于肿瘤分子生物学领域,特别是涉及一种多肽纳米微球、制备方法及其在抗肿瘤药物中的应用。
背景技术
多肽在生命过程中具有关键作用,多肽药物是发展最快的领域之一,随着多肽合成技术及多肽重组表达技术的发展,越来越多的多肽药物应用于临床治疗。多肽药物具有制备方便、活性强、容易修饰、不易产生耐药性等优点,但也存在体内容易降解、半衰期短等问题。此外,许多大分子多肽具有良好的抑瘤作用,但由于其难于进入细胞发挥作用,无法作为抗肿瘤药物应用,限制了这类药物的应用。因此,迫切需要采用新的技术提高多肽穿透细胞膜/核膜的能力,提高这类药物的血浆半衰期,这一技术的突破对发展多肽/蛋白药物具有重要价值。
海鞘多肽CS5931是我们研究团队由海洋生物海鞘中获得的抗肿瘤多肽,前期研究表明,CS5931由58个氨基酸组成,分子量5931Da,可以通过线粒体途径诱导多种肿瘤细胞凋亡,对肝癌、结肠癌及肺癌等都具有很强的杀伤活性,对小鼠肝癌和人结肠癌裸鼠移植性肿瘤的抑瘤率分别达到59%和70%。CS5931具有发展成为新型抗肿瘤药物的潜力。但我们前期研究发现CS5931可以主要作用于肿瘤细胞膜表面的烯醇式酶1(Enolase1),能进入细胞内的量很少。但多肽作为药物应用,极易受到体内蛋白酶的攻击而降解,多数多肽的半衰期仅为十至几十分钟。我们测定了CS5931的半衰期,发现其在兔体内的血浆半衰期仅为22min。因此,增加多肽的半衰期对进一步提高其抗肿瘤效果具有重要意义。
纳米技术是近年来发展最快的领域之一,在生物科学的研究方面,纳米技术也获得了广泛应用,包括新型纳米药物的研发、纳米医用材料的应用都取得了突破性进展。本发明将多肽CS5931制备为纳米微球,可大大提高其抗肿瘤活性。
发明内容
本发明的目的是提供了一种多肽CS5931纳米微球,并提供了该纳米微球的制备方法及其在抗肿瘤药物中的应用。
本发明是通过以下技术方案实现的:
一种多肽纳米微球,其特征在于:包括纳米载体和由载体包裹或吸附的多肽CS5931。
优选的,所述多肽CS5931由58个氨基酸组成,分子量5931Da,N末端序列为:MVVPCDGQSECPDGNT。
优选的,所述纳米载体为植物油或十二烷制备的纳米颗粒,所述植物油包括大豆油,橄榄油或其它可食用非调和油。
更优选的,所述纳米载体与多肽CS5931的体积重量比为10:1-3ml/g。
更进一步的,所述的多肽微球的制备方法,包括以下步骤:将多肽CS5931溶于5-15倍体积蒸馏水制备为水溶液,加入植物油或十二烷,将超声探头置于水油液面分界处,超声处理制备成纳米微球,采用超滤膜分离纳米微球,即得。
优选的,所述的多肽纳米微球的制备方法,其特征在于包括以下步骤:将多肽CS5931溶于10倍体积蒸馏水制备为多肽水溶液,多肽水溶液按体积比3:2加入植物油或十二烷,将超声探头置于水油液面分界处,反应温度为20℃,超声强度为150W/cm2,超声时间为3min,采用超滤膜分离纳米微球,收集微球体积小于200纳米的微球,即得。
本发明还提供了上述的多肽纳米微球在抗肿瘤治疗药物中的应用。
相对于现有技术,本发明具有以下有益效果:
1)多肽CS5931具有一定的抗肿瘤活性,但其稳定性差,同时不能直接进入细胞发挥抗肿瘤作用;本发明将多肽CS5931制备成稳定的纳米微球,其稳定性显著增强,在室温(25℃)条件下保存一周而不降解。这很好地解决了多肽的保存问题,为多肽药物的应用开辟了新的途径。
2)本发明将具有显著抗肿瘤活性的多肽CS5931制备为多肽纳米微球,经MTT法检测,该纳米微球具有更高的抗肿瘤活性,其半数抑制浓度(IC50)约为多肽CS5931的十分之一,抗肿瘤活性显著增强。
附图说明
下面结合附图对本发明进一步说明。
附图1为本发明的多肽CS5931纳米微球用戊二醛固定后的电镜扫描图。
附图2为本发明的多肽CS5931纳米微球的甲醛变性PAGE凝胶电泳图,图中,M:蛋白Marker;1:Cs5931凝胶电泳;2:Cs5931纳米微球凝胶电泳。
附图3为本发明的多肽CS5931纳米微球对结肠癌HCT116和肝癌Bel7402细胞增殖作用图;
具体实施方式
下面结合实施例对本发明进一步说明。
实施例1.多肽CS5931纳米微球的制备方案
多肽CS5931参照以下文献方法进行制备:
MarDrugs.2016Mar21;14(3).pii:E47.doi:10.3390/md14030047.
将多肽CS5931溶于10倍体积蒸馏水制备为多肽水溶液,多肽水溶液按体积比3:2加入保护油层(大豆油),将超声探头置于水油液面分界处(≈150W/cm2),反应温度设定为20℃,超声时间为3Min。采用20kDa的超滤膜分离纳米微球,纳米微球分离出来后经DLS和SME方法分析其大小及粒径分布。多肽CS5931纳米颗粒用戊二醛固定后用扫描电镜分析,实施结果见附图1所示,标尺:100纳米。结果表明应用此方法可制备为200纳米直径大小的多肽CS5931纳米微球,且成均质分布在溶液中。
实施例2.多肽CS5931纳米微球体外稳定性检测
为检测多肽CS5931纳米微球的体外稳定性,将制备得到多肽CS5931样品和采用本发明制备的多肽纳米微球样品,分别在25℃条件下放置0-7天,期间用紫外分光广度计在280纳米处监测蛋白的紫外吸收值变化,结果表明,多肽CS5931放置7天后,吸收度显著降低,但其纳米微球,吸收度没有变化,说明多肽CS5931制备为纳米微球后稳定性显著升高。进一步我们采用甲醛变性PAGE凝胶电泳检测多肽CS5931的完整性,以评价多肽CS5931纳米微球在室温条件下的保存时间。实施结果见附图2,结果表明:多肽CS5931应用实施例1的方法制备为纳米颗粒后可以在室温25℃条件下存放7天而保持多肽的完整性,但未经处理的多肽CS5931在室温条件下存放7天完全降解。
实施例3.多肽CS5931纳米微球体外抗肿瘤活性检测
消化收集处于对数生长期的结肠癌HCT116和肝癌Bel7402细胞,每孔3000个细胞接种于96孔板,24h后,分别加入不同浓度的未处理的多肽及纳米微球(0.25、0.5、1、2、4µM)、阴性对照采用PBS缓冲液,分别于44h加入0.5mg/mLMTT,4h后每孔加入DMSO150µL,溶解后于490nm处测吸收。计算不同浓度的抑制率,并计算IC50。存活率计算公式如下:存活率(%)=OD实验/OD对照×100。
不同浓度的多肽及纳米微球对结肠癌HCT116和肝癌Bel7402细胞的抑制曲线如图3所示。可以看出,多肽能剂量依赖性抑制HCT116和肝癌Bel7402细胞生长,IC50分别为7.9和9.5µM,而多肽制备为纳米微球后抗肿瘤活性大大升高,且对这两种细胞的IC50分别为0.75,1.1µM。

Claims (6)

1.一种多肽纳米微球,其特征在于:包括纳米载体和由载体包裹或吸附的多肽CS5931。
2.根据权利要求1所述的多肽纳米微球,其特征在于:所述多肽CS5931由58个氨基酸组成,分子量5931Da,N末端序列为:MVVPCDGQSECPDGNT。
3.根据权利要求1所述的多肽纳米微球,其特征在于:所述纳米载体为由植物油或十二烷制备的纳米颗粒,所述植物油包括大豆油,橄榄油或其它可食用非调和油。
4.根据权利要求1所述的多肽纳米微球,其特征在于:所述纳米载体与多肽CS5931的体积重量比为10:1-3ml/g。
5.一种如权利要求3所述的多肽微球的制备方法,其特征在于包括以下步骤:将多肽CS5931溶于5-15倍体积蒸馏水制备为水溶液,加入植物油或十二烷,将超声探头置于水油液面分界处,超声处理制备成纳米微球,反应温度为20℃,超声强度为150W/cm2,超声时间为3Min,采用超滤膜分离纳米微球,收集微球体积小于200纳米的微球,即得。
6.一种如权利要求1-5任一所述的多肽纳米微球在制备抗肿瘤药物中的应用。
CN201611159286.3A 2016-12-15 2016-12-15 一种多肽纳米微球、制备方法及其在抗肿瘤药物中的应用 Pending CN106729621A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611159286.3A CN106729621A (zh) 2016-12-15 2016-12-15 一种多肽纳米微球、制备方法及其在抗肿瘤药物中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611159286.3A CN106729621A (zh) 2016-12-15 2016-12-15 一种多肽纳米微球、制备方法及其在抗肿瘤药物中的应用

Publications (1)

Publication Number Publication Date
CN106729621A true CN106729621A (zh) 2017-05-31

Family

ID=58887577

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611159286.3A Pending CN106729621A (zh) 2016-12-15 2016-12-15 一种多肽纳米微球、制备方法及其在抗肿瘤药物中的应用

Country Status (1)

Country Link
CN (1) CN106729621A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108743919A (zh) * 2018-07-11 2018-11-06 首都医科大学 一种癌症治疗药物及应用
CN110839866A (zh) * 2019-10-18 2020-02-28 安徽强旺生物工程有限公司 一种复合肽盐及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103880937A (zh) * 2013-12-30 2014-06-25 林秀坤 一种萨氏海鞘抗肿瘤多肽及制备方法和应用
CN104436217A (zh) * 2014-12-25 2015-03-25 首都医科大学 一种微小rna纳米微球的制备及其在抗肿瘤方面的应用
CN104805111A (zh) * 2015-05-21 2015-07-29 中国水产科学研究院黄海水产研究所 一种海鞘多肽cs5931的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103880937A (zh) * 2013-12-30 2014-06-25 林秀坤 一种萨氏海鞘抗肿瘤多肽及制备方法和应用
CN104436217A (zh) * 2014-12-25 2015-03-25 首都医科大学 一种微小rna纳米微球的制备及其在抗肿瘤方面的应用
CN104805111A (zh) * 2015-05-21 2015-07-29 中国水产科学研究院黄海水产研究所 一种海鞘多肽cs5931的制备方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
CHENG L等: "A Novel Polypeptide Extracted From Ciona savignyi Induces Apoptosis Through a Mitochondrial-Mediated Pathway in Human Colorectal Carcinoma Cells", 《CLIN COLORECTAL CANCER》 *
ZHAO J等: "Cloning, characterization and expression of a cDNA encoding a granulin-like polypeptide in Ciona savignyi", 《BIOCHIMIE》 *
李 聪等: "诱导细胞凋亡的海洋抗肿瘤药物研究进展", 《药学学报》 *
赵进: "萨氏海鞘多肽CS5931的克隆、表达、纯化及其抗肿瘤机制研究", 《中国博士学位论文全文数据库基础科学辑》 *
陆美娇等: "蛋白多肽类药物口服纳米给药:现状、问题与前景", 《中国组织工程研究》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108743919A (zh) * 2018-07-11 2018-11-06 首都医科大学 一种癌症治疗药物及应用
CN110839866A (zh) * 2019-10-18 2020-02-28 安徽强旺生物工程有限公司 一种复合肽盐及其制备方法

Similar Documents

Publication Publication Date Title
Zhang et al. A targeting black phosphorus nanoparticle based immune cells nano-regulator for photodynamic/photothermal and photo-immunotherapy
Liu et al. Defect modified zinc oxide with augmenting sonodynamic reactive oxygen species generation
Gao et al. A COF-based nanoplatform for highly efficient cancer diagnosis, photodynamic therapy and prognosis
Gong et al. Nanoscale CaH2 materials for synergistic hydrogen-immune cancer therapy
Hu et al. Indocyanine green-loaded polydopamine-reduced graphene oxide nanocomposites with amplifying photoacoustic and photothermal effects for cancer theranostics
US20190224238A1 (en) Tumor therapeutic drug
Yuan et al. Rational design of platinum–bismuth sulfide Schottky heterostructure for sonocatalysis‐mediated hydrogen therapy
CN108187046A (zh) 一种改性透明质酸遮蔽的金属有机框架、纳米粒子、纳米粒子的制备方法及其应用
He et al. Biomineralized synthesis of palladium nanoflowers for photothermal treatment of cancer and wound healing
Liu et al. Dye‐Sensitized Rare Earth Nanoparticles with Up/Down Conversion Luminescence for On‐Demand Gas Therapy of Glioblastoma Guided by NIR‐II Fluorescence Imaging
Huang et al. Shape-controllable tellurium-driven heterostructures with activated robust immunomodulatory potential for highly efficient radiophotothermal therapy of colon cancer
Long et al. Ball-in-ball ZrO 2 nanostructure for simultaneous CT imaging and highly efficient synergic microwave ablation and tri-stimuli-responsive chemotherapy of tumors
Zhao et al. 2D Piezoelectric BiVO4 artificial nanozyme with adjustable vanadium vacancy for ultrasound enhanced piezoelectric/sonodynamic therapy
Zheng et al. Engineering Dynamic Defect of CeIII/CeIV‐Based Metal‐Organic Framework through Ultrasound‐Triggered Au Electron Trapper for Sonodynamic Therapy of Osteomyelitis
CN106729621A (zh) 一种多肽纳米微球、制备方法及其在抗肿瘤药物中的应用
Bommakanti et al. An overview of synthesis, characterization, applications and associated adverse effects of bioactive nanoparticles
Li et al. In situ synthesis of multifunctional tellurium nanorods stabilized by polypeptide-engineered for photothermal-sonodynamic combination therapy of tumors
Liu et al. 2D-PROTACs with augmented protein degradation for super-resolution photothermal optical coherence tomography guided momentary multimodal therapy
He et al. Polymyxin E biomineralized and doxorubicin-loaded gold nanoflowers nanodrug for chemo-photothermal therapy
Wang et al. Dual-targeted nanoformulation with Janus structure for synergistic enhancement of sonodynamic therapy and chemotherapy
Jia et al. Boosting the tumor photothermal therapy with hollow CoSnSx-based injectable hydrogel via the sonodynamic and dual-gas therapy
Li et al. NIR responsive nanoenzymes via photothermal ablation and hypoxia reversal to potentiate the STING-dependent innate antitumor immunity
Li et al. Metal Ion Coordination Improves Graphite Nitride Carbon Microwave Therapy in Antibacterial and Osteomyelitis Treatment
Xiao et al. High Immunogenic Cuproptosis Evoked by In Situ Sulfidation‐Activated Pyroptosis for Tumor‐Targeted Immunotherapy of Colorectal Cancer
Khalilov et al. DETECTION OF MANGANESE-CONTAINING ENZYMES AND MAGNETIC NANOPARTICLES IN JUNIPERUS COMMUNIS AND RELATED BIOMATERIALS BY ESR SPECTROSCOPY.

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20170531

RJ01 Rejection of invention patent application after publication