CN106685209A - 一种交错并联无桥pfc电路的控制器及其控制方法 - Google Patents

一种交错并联无桥pfc电路的控制器及其控制方法 Download PDF

Info

Publication number
CN106685209A
CN106685209A CN201710105699.1A CN201710105699A CN106685209A CN 106685209 A CN106685209 A CN 106685209A CN 201710105699 A CN201710105699 A CN 201710105699A CN 106685209 A CN106685209 A CN 106685209A
Authority
CN
China
Prior art keywords
input
current
output end
bridge pfc
pfc circuits
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710105699.1A
Other languages
English (en)
Inventor
唐德平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Weir Power-Supply System Co Ltd Of Hefei Section
Original Assignee
Weir Power-Supply System Co Ltd Of Hefei Section
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Weir Power-Supply System Co Ltd Of Hefei Section filed Critical Weir Power-Supply System Co Ltd Of Hefei Section
Priority to CN201710105699.1A priority Critical patent/CN106685209A/zh
Publication of CN106685209A publication Critical patent/CN106685209A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/12Arrangements for reducing harmonics from ac input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0012Control circuits using digital or numerical techniques
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Rectifiers (AREA)

Abstract

本发明涉及一种交错并联无桥PFC电路的控制器,包括DSP处理器,其信号输入端分别接A相电网电压esa、直流参考电压Vdcr和直流反馈电压Vdc,其信号输出端与D/A变换器的信号输入端相连,D/A变换器的信号输出端与电流跟踪控制电路的信号输入端相连,电流跟踪控制电路的信号输出端输出两路PWM脉冲信号至交错并联PFC变换器,所述交错并联PFC变换器由第一无桥PFC电路和第二无桥PFC电路交错并联组成。本发明还公开了一种交错并联无桥PFC电路的控制器的控制方法。本发明无需进行复杂的数学建模和算法设计,PFC的数字控制方法得到大幅度简化;可以有效提高电流计算处理频率,这样有助于进一步提高输入功率因数和减小输入电流THD。

Description

一种交错并联无桥PFC电路的控制器及其控制方法
技术领域
本发明涉及功率因素校正电路技术领域,尤其是一种交错并联无桥PFC电路的控制器及其控制方法。
背景技术
为了提高功率因数、降低输入电流谐波含量,在电力电子设备中大多采用PFC电路即功率因数校正电路进行调节。和传统的PFC电路相比,无桥PFC电路结构简单且效率高,因为不存在输入整流桥,可以减小导通损耗,提高功率密度。PFC的交错并联技术,是指将两路结构相同的PFC电路的输入及输出并联,各PFC单元的工作信号频率一致,其开关管控制相角互相错开一定角度如180度,使输入电流纹波可以部分或者完全抵消,从而大大减小了输入电流的纹波。传统的有源PFC电路都是采用集成模拟控制芯片来实现的,如UC3854、L4981A/B等,但是模拟控制芯片本身存在一些缺陷,如元器件容易老化及热漂移、控制方法不灵活,功率难以做大等。
随着数字控制技术的不断发展,采用DSP来实现中大功率PFC控制的方法,已经广泛地应用于电力电子技术领域。这种数字化控制方法不仅弥补了模拟电路的缺陷,而且它还具有一些模拟电路无法比拟的优点,如可以采用软件的办法取代某些硬件电路,如滤波电路、PI调节器电路等,这就大大简化了硬件电路,简化了电路的复杂性并降低了电路的成本,而且可以实现更加先进的PFC控制方法,系统维护升级方便等。但是纯粹的通过DSP软件控制也存在一些缺点,如软件控制频率和开关频率之间的矛盾、始终滞后一个开关节拍的控制延时、复杂的数学建模和算法设计、对DSP的运算速度有较高要求、PI参数整定难、对电路参数敏感等问题。
发明内容
本发明的首要目的在于提供一种对外部CPU的要求低,使DSP可以实行较长的控制周期,同时又可以实现很高的开关频率,保证输入电流的谐波失真度小,控制的鲁棒性好的交错并联无桥PFC电路的控制器。
为实现上述目的,本发明采用了以下技术方案:一种交错并联无桥PFC电路的控制器,包括DSP处理器、D/A变换器和电流跟踪控制电路,所述DSP处理器的信号输入端分别接A相电网电压esa、直流参考电压Vdcr和直流反馈电压Vdc,所述DSP处理器的信号输出端与D/A变换器的信号输入端相连,D/A变换器的信号输出端与电流跟踪控制电路的信号输入端相连,电流跟踪控制电路的信号输出端输出两路PWM脉冲信号至交错并联PFC变换器,所述交错并联PFC变换器由第一无桥PFC电路和第二无桥PFC电路交错并联组成。
所述DSP处理器包括PLL锁相环、第一减法器、PI调节环和乘法器,所述PLL锁相环的输入端接A相电网电压esa,所述PLL锁相环的输出端接乘法器的第一输入端,所述第一减法器的输入端分别接直流参考电压Vdcr和直流反馈电压Vdc,所述第一减法器的输出端与PI调节环的输入端相连,PI调节环的输出端接乘法器的第二输入端,乘法器的输出端输出参考电流数字量iaf至D/A变换器的信号输入端。
所述DSP处理器采用TMS320F8035芯片。
所述电流跟踪控制电路包括第二减法器,其输入端分别接参考电流模拟量和采样电网电流isa,其输出端与放大器的输入端相连;所述放大器的第一输出端与第三减法器的第一输入端相连,第三减法器的第二输入端接第一三角波发生移相电路的输出端,第三减法器的输出端与第一比较器的输入端相连,第一比较器的输出端与第一判断逻辑电路的输入端相连,第一判断逻辑电路的输出端输出PWM1脉冲信号至第一无桥PFC电路的驱动电路;所述放大器的第二输出端与第四减法器的第一输入端相连,第四减法器的第二输入端接第二三角波发生移相电路的输出端,第四减法器的输出端与第二比较器的输入端相连,第二比较器的输出端与第二判断逻辑电路的输入端相连,第二判断逻辑电路的输出端输出PWM2脉冲信号至第二无桥PFC电路的驱动电路。
所述第一无桥PFC电路包括输入滤波电感L1、续流二极管D1、续流二极管D2以及由MOS管Q1和MOS管Q2组成的双向开关管;所述第二无桥PFC电路包括输入滤波电感L2、续流二极管D3、续流二极管D4以及由MOS管Q3和MOS管Q4组成的双向开关管;第一无桥PFC电路和第二无桥PFC电路共用直流母线和中线,第一无桥PFC电路和第二无桥PFC电路的输出直流侧采用电容CD1、电容CD2串联。
所述第一判断逻辑电路和第二判断逻辑电路的输入端还接过零比较电路的输出端,所述过零比较电路的输入端接A相电网电压信号esa
本发明的另一目的在于提供一种交错并联无桥PFC电路的控制器的控制方法,该方法包括下列顺序的步骤:
(1)将交错并联PFC变换器输入的电网电流采样,即采样电网电流isa
(2)将交错并联PFC变换器输出的直流反馈电压Vdc输入DSP处理器;
(3)将A相电网电压esa输入DSP处理器,求取电网电压相位信号;
(4)将步骤二所述的直流反馈电压Vdc与给定的直流参考电压Vdcr之间的差值经过PI调节环得到调节量id
(5)将步骤四所述的调节量id与步骤三所述的电网电压相位信号相乘,得到参考电流数字量iaf
(6)将步骤五所述的参考电流数字量iaf经D/A变换器变换输出,得到参考电流模拟量
(7)将步骤一所述的采样电网电流isa与步骤六所述的参考电流模拟量进行比较,求取电流跟踪误差;
(8)将步骤七所述的电流跟踪误差经放大后与两路相位相差180°的三角载波进行比较,得两路与三角载波同频率的脉冲信号,其相位相差180°;
(9)将步骤八所述的两路相位相差180°的脉冲信号分别与步骤三所述的电网电压相位信号进行异或逻辑处理,得到两路PWM脉冲,用于控制第一无桥PFC电路和第二无桥PFC电路的开关管。
由上述技术方案可知,本发明与现有技术相比,本发明无需进行复杂的数学建模和算法设计,PFC的数字控制方法得到大幅度简化,常规的PFC控制通常包括电压环、电流给定计算和电流跟踪控制环三个控制环节,其中电流跟踪环通常采用PI控制环的数字实现较为复杂,且实时性要求高;采用数模结合控制方法,将实时性要求较高的电流跟踪控制环用模拟电路实现,使PFC控制电路的控制效果得到提高,在同样的数字控制资源前提条件下,可以有效提高电流计算处理频率,这样有助于进一步提高输入功率因数和减小输入电流THD。同时,控制器不再有电流内环的参数整定问题,这也导致了本发明对电路参数的变动不再敏感,鲁棒性好。
附图说明
图1为交错并联PFC变换器的电路原理图;
图2为第一无桥PFC电路的电路原理图;
图3为第二无桥PFC电路的电路原理图;
图4为DSP处理器、D/A变换器和电流跟踪控制电路的原理框图;
图5为电流跟踪控制电路的原理框图。
具体实施方式
如图1所示,一种交错并联无桥PFC电路的控制器,包括DSP处理器1、D/A变换器2和电流跟踪控制电路3,所述DSP处理器1的信号输入端分别接A相电网电压esa、直流参考电压Vdcr和直流反馈电压Vdc,所述DSP处理器1的信号输出端与D/A变换器2的信号输入端相连,D/A变换器2的信号输出端与电流跟踪控制电路3的信号输入端相连,电流跟踪控制电路3的信号输出端输出两路PWM脉冲信号至交错并联PFC变换器4,所述交错并联PFC变换器4由第一无桥PFC电路5和第二无桥PFC电路6交错并联组成。本控制器采用以DSP处理器1为核心的数摸控制方式,其中指令电流运算由数字电路实现,电流跟踪控制则由模拟电路实现。选用TMS320F8035芯片完成输出直流电压稳压、电流指令计算,计算结果经D/A变换器2输出,用于实现电流跟踪。控制信号PWM1和PWM2经驱动电路产生驱动信号G1和G2,用于实现对交错并联PFC变换器4的控制。
如图2、3所示,所述第一无桥PFC电路5包括输入滤波电感L1、续流二极管D1、续流二极管D2以及由MOS管Q1和MOS管Q2组成的双向开关管;所述第二无桥PFC电路6包括输入滤波电感L2、续流二极管D3、续流二极管D4以及由MOS管Q3和MOS管Q4组成的双向开关管;第一无桥PFC电路5和第二无桥PFC电路6共用直流母线和中线,第一无桥PFC电路5和第二无桥PFC电路6的输出直流侧采用电容CD1、电容CD2串联。
如图4所示,所述DSP处理器1包括PLL锁相环、第一减法器7、PI调节环和乘法器,所述PLL锁相环的输入端接A相电网电压esa,所述PLL锁相环的输出端接乘法器的第一输入端,所述第一减法器7的输入端分别接直流参考电压Vdcr和直流反馈电压Vdc,所述第一减法器7的输出端与PI调节环的输入端相连,PI调节环的输出端接乘法器的第二输入端,乘法器的输出端输出参考电流数字量iaf至D/A变换器2的信号输入端。所述DSP处理器1采用TMS320F8035芯片。
如图5所示,所述电流跟踪控制电路3包括第二减法器8,其输入端分别接参考电流模拟量和采样电网电流isa,其输出端与放大器的输入端相连;所述放大器的第一输出端与第三减法器9的第一输入端相连,第三减法器9的第二输入端接第一三角波发生移相电路的输出端,第三减法器9的输出端与第一比较器11的输入端相连,第一比较器11的输出端与第一判断逻辑电路的输入端相连,第一判断逻辑电路的输出端输出PWM1脉冲信号至第一无桥PFC电路5的驱动电路;所述放大器的第二输出端与第四减法器10的第一输入端相连,第四减法器10的第二输入端接第二三角波发生移相电路的输出端,第四减法器10的输出端与第二比较器12的输入端相连,第二比较器12的输出端与第二判断逻辑电路的输入端相连,第二判断逻辑电路的输出端输出PWM2脉冲信号至第二无桥PFC电路6的驱动电路。所述第一判断逻辑电路和第二判断逻辑电路的输入端还接过零比较电路的输出端,所述过零比较电路的输入端接A相电网电压信号esa
本方法包括:
(1)将交错并联PFC变换器输入的电网电流采样,即采样电网电流isa
(2)将交错并联PFC变换器4输出的直流反馈电压Vdc输入DSP处理器1;
(3)将A相电网电压esa输入DSP处理器1,求取电网电压相位信号;
(4)将步骤二所述的直流反馈电压Vdc与给定的直流参考电压Vdcr之间的差值经过PI调节环得到调节量id
(5)将步骤四所述的调节量id与步骤三所述的电网电压相位信号相乘,得到参考电流数字量iaf
(6)将步骤五所述的参考电流数字量iaf经D/A变换器2变换输出,得到参考电流模拟量
(7)将步骤一所述的采样电网电流isa与步骤六所述的参考电流模拟量进行比较,求取电流跟踪误差;
(8)将步骤七所述的电流跟踪误差经放大后与两路相位相差180°的三角载波进行比较,得两路与三角载波同频率的脉冲信号,其相位相差180°;
(9)将步骤八所述的两路相位相差180°的脉冲信号分别与步骤三所述的电网电压相位信号进行异或逻辑处理,得到两路PWM脉冲,用于控制第一无桥PFC电路5和第二无桥PFC电路6的开关管。
如图4所示,DSP处理器1采样输出直流反馈电压Vdc和A相电网电压esa送入DSP处理器1的两路AD通道;对直流反馈电压Vdc进行采样后,经过数字电压PI调节环,得到电网输入参考电流的峰值id,以此控制输出电压恒定。采样A相电网电压esa,求取过零点,在A网电源电压过零时,DSP处理器1输出电网电压过零信号a,同时使电网电压相位角θ复位为零,然后每个PWM周期增加2π/256电角度(一个电网周期包含256个直流电压调节周期)。在每个直流电压调节周期根据θ角查询正弦表,将峰值id乘以相应正弦表值,可得参考电流数字量iaf。将此参考电流数字量iaf经D/A转换器2转换,输出参考电流模拟量用作电流跟踪控制的参考量。
如图5所示,采用模拟控制方式进行两并联支路电流跟踪控制,即可得到两路交错移相的PWM的占空比,以此控制功率管即可完成交错并联无桥PFC的控制。
电流跟踪控制采用跟踪型PWM,使用的是三角波比较方式,这种方式是先将参考电流模拟量与采样电网电流isa的偏差△i经放大器A放大,结果与第一路三角波信号SJB1比较,得到脉冲信号b1;与第二路三角波信号SJB2(相位与SJB1相差180°)比较,得到脉冲信号b2;
当偏差△i大于三角波信号时,脉冲信号b1(b2)为高电平;当偏差△i小于三角波信号时,脉冲信号b1(b2)为低电平。同时,对A相电网电压esa进行过零判断,设定当A相电网电压esa小于0时,DSP处理器1输出信号a为高电平;当A相电网电压esa大于0时,DSP处理器1输出信号a为低电平。最后,信号a与信号b1进行异或逻辑处理,输出PWM1信号;信号a与信号b2进行异或逻辑处理,输出PWM2信号,分别经过驱动电路用于控制第一无桥PFC电路5和第二无桥PFC电路6。这样组成的一个控制器是基于把△i控制为最小来设计的。器件的开关频率固定且等于三角载波的频率,两支路三角载波之间相位相差180°,通过载波移相,可以减小注入电网的开关谐波的含量。这样有利于无源滤波器的设计,可以很好的滤除开关谐波。
综上所述,本发明无需进行复杂的数学建模和算法设计,PFC的数字控制方法得到大幅度简化;采用数模结合控制方法,将实时性要求较高的电流跟踪控制环用模拟电路实现,使PFC控制电路的控制效果得到提高,在同样的数字控制资源前提条件下,可以有效提高电流计算处理频率,这样有助于进一步提高输入功率因数和减小输入电流THD。同时,控制器不再有电流内环的参数整定问题,这也导致了本发明对电路参数的变动不再敏感,鲁棒性好。

Claims (7)

1.一种交错并联无桥PFC电路的控制器,其特征在于:包括DSP处理器、D/A变换器和电流跟踪控制电路,所述DSP处理器的信号输入端分别接A相电网电压esa、直流参考电压Vdcr和直流反馈电压Vdc,所述DSP处理器的信号输出端与D/A变换器的信号输入端相连,D/A变换器的信号输出端与电流跟踪控制电路的信号输入端相连,电流跟踪控制电路的信号输出端输出两路PWM脉冲信号至交错并联PFC变换器,所述交错并联PFC变换器由第一无桥PFC电路和第二无桥PFC电路交错并联组成。
2.根据权利要求1所述的交错并联无桥PFC电路的控制器,其特征在于:所述DSP处理器包括PLL锁相环、第一减法器、PI调节环和乘法器,所述PLL锁相环的输入端接A相电网电压esa,所述PLL锁相环的输出端接乘法器的第一输入端,所述第一减法器的输入端分别接直流参考电压Vdcr和直流反馈电压Vdc,所述第一减法器的输出端与PI调节环的输入端相连,PI调节环的输出端接乘法器的第二输入端,乘法器的输出端输出参考电流数字量iaf至D/A变换器的信号输入端。
3.根据权利要求1所述的交错并联无桥PFC电路的控制器,其特征在于:所述DSP处理器采用TMS320F8035芯片。
4.根据权利要求1所述的交错并联无桥PFC电路的控制器,其特征在于:所述电流跟踪控制电路包括第二减法器,其输入端分别接参考电流模拟量和采样电网电流isa,其输出端与放大器的输入端相连;所述放大器的第一输出端与第三减法器的第一输入端相连,第三减法器的第二输入端接第一三角波发生移相电路的输出端,第三减法器的输出端与第一比较器的输入端相连,第一比较器的输出端与第一判断逻辑电路的输入端相连,第一判断逻辑电路的输出端输出PWM1脉冲信号至第一无桥PFC电路的驱动电路;所述放大器的第二输出端与第四减法器的第一输入端相连,第四减法器的第二输入端接第二三角波发生移相电路的输出端,第四减法器的输出端与第二比较器的输入端相连,第二比较器的输出端与第二判断逻辑电路的输入端相连,第二判断逻辑电路的输出端输出PWM2脉冲信号至第二无桥PFC电路的驱动电路。
5.根据权利要求1所述的交错并联无桥PFC电路的控制器,其特征在于:所述第一无桥PFC电路包括输入滤波电感L1、续流二极管D1、续流二极管D2以及由MOS管Q1和MOS管Q2组成的双向开关管;所述第二无桥PFC电路包括输入滤波电感L2、续流二极管D3、续流二极管D4以及由MOS管Q3和MOS管Q4组成的双向开关管;第一无桥PFC电路和第二无桥PFC电路共用直流母线和中线,第一无桥PFC电路和第二无桥PFC电路的输出直流侧采用电容CD1、电容CD2串联。
6.根据权利要求4所述的交错并联无桥PFC电路的控制器,其特征在于:所述第一判断逻辑电路和第二判断逻辑电路的输入端还接过零比较电路的输出端,所述过零比较电路的输入端接A相电网电压信号esa
7.一种如权利要求1所述的交错并联无桥PFC电路的控制器的控制方法,该方法包括下列顺序的步骤:
(1)将交错并联PFC变换器输入的电网电流采样,即采样电网电流isa
(2)将交错并联PFC变换器输出的直流反馈电压Vdc输入DSP处理器;
(3)将A相电网电压esa输入DSP处理器,求取电网电压相位信号;
(4)将步骤二所述的直流反馈电压Vdc与给定的直流参考电压Vdcr之间的差值经过PI调节环得到调节量id
(5)将步骤四所述的调节量id与步骤三所述的电网电压相位信号相乘,得到参考电流数字量iaf
(6)将步骤五所述的参考电流数字量iaf经D/A变换器变换输出,得到参考电流模拟量
(7)将步骤一所述的采样电网电流isa与步骤六所述的参考电流模拟量进行比较,求取电流跟踪误差;
(8)将步骤七所述的电流跟踪误差经放大后与两路相位相差180°的三角载波进行比较,得两路与三角载波同频率的脉冲信号,其相位相差180°;
(9)将步骤八所述的两路相位相差180°的脉冲信号分别与步骤三所述的电网电压相位信号进行异或逻辑处理,得到两路PWM脉冲,用于控制第一无桥PFC电路和第二无桥PFC电路的开关管。
CN201710105699.1A 2017-02-26 2017-02-26 一种交错并联无桥pfc电路的控制器及其控制方法 Pending CN106685209A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710105699.1A CN106685209A (zh) 2017-02-26 2017-02-26 一种交错并联无桥pfc电路的控制器及其控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710105699.1A CN106685209A (zh) 2017-02-26 2017-02-26 一种交错并联无桥pfc电路的控制器及其控制方法

Publications (1)

Publication Number Publication Date
CN106685209A true CN106685209A (zh) 2017-05-17

Family

ID=58861350

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710105699.1A Pending CN106685209A (zh) 2017-02-26 2017-02-26 一种交错并联无桥pfc电路的控制器及其控制方法

Country Status (1)

Country Link
CN (1) CN106685209A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107196302A (zh) * 2017-07-19 2017-09-22 南方电网科学研究院有限责任公司 一种mmc的谐波电流抑制控制方法、系统及控制器
CN110943605A (zh) * 2018-09-21 2020-03-31 乐金电子研发中心(上海)有限公司 图腾柱功率因数校正电路的控制方法及装置
CN111431394A (zh) * 2020-04-17 2020-07-17 广东工业大学 一种新型降压式单相三电平无桥pfc变换器系统
CN114915159A (zh) * 2022-07-18 2022-08-16 浙江大学杭州国际科创中心 一种功率因数校正整流器
CN115144738A (zh) * 2022-06-30 2022-10-04 兰州理工大学 模拟电路故障诊断电路

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201260080Y (zh) * 2008-08-29 2009-06-17 东莞市友美电源设备有限公司 智能化电力系统无功补偿与谐波治理的装置
CN101860189A (zh) * 2009-04-13 2010-10-13 台达电子工业股份有限公司 用于临界连续电流模式的无桥功率因数校正电路及其方法
CN202309075U (zh) * 2011-10-31 2012-07-04 成都市安迪工程技术有限公司 新型有源电力滤波器
CN103117653A (zh) * 2011-11-16 2013-05-22 艾默生网络能源系统北美公司 无桥pfc系统的采样装置和方法
CN104124884A (zh) * 2014-07-17 2014-10-29 珠海格力电器股份有限公司 光伏逆变器和光伏空调系统
CN104253549A (zh) * 2014-10-11 2014-12-31 东南大学 一种基于lcl滤波的大功率pwm整流器电路拓扑结构
CN204681264U (zh) * 2015-06-02 2015-09-30 深圳市高斯宝电气技术有限公司 一种无桥pfc开关电源电路
CN105846666A (zh) * 2015-01-15 2016-08-10 珠海格力节能环保制冷技术研究中心有限公司 交互式pfc控制系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201260080Y (zh) * 2008-08-29 2009-06-17 东莞市友美电源设备有限公司 智能化电力系统无功补偿与谐波治理的装置
CN101860189A (zh) * 2009-04-13 2010-10-13 台达电子工业股份有限公司 用于临界连续电流模式的无桥功率因数校正电路及其方法
CN202309075U (zh) * 2011-10-31 2012-07-04 成都市安迪工程技术有限公司 新型有源电力滤波器
CN103117653A (zh) * 2011-11-16 2013-05-22 艾默生网络能源系统北美公司 无桥pfc系统的采样装置和方法
CN104124884A (zh) * 2014-07-17 2014-10-29 珠海格力电器股份有限公司 光伏逆变器和光伏空调系统
CN104253549A (zh) * 2014-10-11 2014-12-31 东南大学 一种基于lcl滤波的大功率pwm整流器电路拓扑结构
CN105846666A (zh) * 2015-01-15 2016-08-10 珠海格力节能环保制冷技术研究中心有限公司 交互式pfc控制系统
CN204681264U (zh) * 2015-06-02 2015-09-30 深圳市高斯宝电气技术有限公司 一种无桥pfc开关电源电路

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107196302A (zh) * 2017-07-19 2017-09-22 南方电网科学研究院有限责任公司 一种mmc的谐波电流抑制控制方法、系统及控制器
CN110943605A (zh) * 2018-09-21 2020-03-31 乐金电子研发中心(上海)有限公司 图腾柱功率因数校正电路的控制方法及装置
CN111431394A (zh) * 2020-04-17 2020-07-17 广东工业大学 一种新型降压式单相三电平无桥pfc变换器系统
CN115144738A (zh) * 2022-06-30 2022-10-04 兰州理工大学 模拟电路故障诊断电路
CN114915159A (zh) * 2022-07-18 2022-08-16 浙江大学杭州国际科创中心 一种功率因数校正整流器
CN114915159B (zh) * 2022-07-18 2022-10-25 浙江大学杭州国际科创中心 一种功率因数校正整流器

Similar Documents

Publication Publication Date Title
CN106685209A (zh) 一种交错并联无桥pfc电路的控制器及其控制方法
De Gusseme et al. Digitally controlled boost power-factor-correction converters operating in both continuous and discontinuous conduction mode
TWI492499B (zh) 多相開關變換器的數位控制器及數位控制方法
Genc et al. DSP-based current sharing of average current controlled two-cell interleaved boost power factor correction converter
US8279647B2 (en) Universal three phase controllers for power converters
US9735670B2 (en) Power factor correction conversion device and control method thereof
Mahanty Indirect current controlled shunt active power filter for power quality improvement
CN107196491B (zh) 一种双buck并网逆变器半周期电流畸变抑制系统及其方法
CN109831094A (zh) 一种Boost PFC变换器的无模型预测电流控制系统及其控制方法
CN208939818U (zh) 一种用于功率因数校正的前馈反馈模式切换控制器
CN100364199C (zh) 使用模拟级联控制器的单相有源电力滤波器
CN104617797B (zh) 三相电压型pwm变换器三矢量直接功率控制方法
Genc et al. Application of interleaved bridgeless boost PFC converter without current sensing
Wu et al. Three-phase to single-phase power-conversion system
CN114448251B (zh) 一种数字控制谐波补偿电路
CN111049156B (zh) 一种无功及不平衡补偿控制方法
CN109617443A (zh) 一种并网逆变器输出电流采样控制方法
CN111316558A (zh) 电力变换装置
CN109586606B (zh) 一种应用于lcl型整流回馈单元的并网电流控制方法
CN108134512B (zh) 一种针对h3imc的注入谐波电流控制方法
CN107612389B (zh) 一种基于平均电流前馈的高频开关电源并联均流控制方法
Wang et al. Dynamic performance optimization for high-power density three-phase Vienna PFC rectifier
Chai et al. Fast response control of a boost PFC converter
Xue et al. Modeling and stability analysis of parallel-connected PFC Boost converter
Park et al. An improved current compensation method for high PF and low THD in digital boost power factor corrector

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20170517