CN106656100B - 一种单端转双端差分的模拟电路 - Google Patents

一种单端转双端差分的模拟电路 Download PDF

Info

Publication number
CN106656100B
CN106656100B CN201611245806.2A CN201611245806A CN106656100B CN 106656100 B CN106656100 B CN 106656100B CN 201611245806 A CN201611245806 A CN 201611245806A CN 106656100 B CN106656100 B CN 106656100B
Authority
CN
China
Prior art keywords
transistor
resistance
emitter
connection
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201611245806.2A
Other languages
English (en)
Other versions
CN106656100A (zh
Inventor
华山
陈伟强
黄彬周
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujian Liliput Optoelectronics Technology Co Ltd
Original Assignee
Fujian Liliput Optoelectronics Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujian Liliput Optoelectronics Technology Co Ltd filed Critical Fujian Liliput Optoelectronics Technology Co Ltd
Priority to CN201611245806.2A priority Critical patent/CN106656100B/zh
Publication of CN106656100A publication Critical patent/CN106656100A/zh
Application granted granted Critical
Publication of CN106656100B publication Critical patent/CN106656100B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H11/00Networks using active elements
    • H03H11/02Multiple-port networks
    • H03H11/32Networks for transforming balanced signals into unbalanced signals and vice versa, e.g. baluns

Landscapes

  • Amplifiers (AREA)

Abstract

本发明公开一种单端转双端差分的模拟电路,其包括晶体管差分级联放大/衰减电路、交流补偿电路、高频补偿电路、射随反馈电路、恒流源电路;晶体管差分级联放大/衰减电路将单端输入信号分别经不同晶体管反向、生成双端差分的正端和负端信号,双端差分信号幅度相同、相位相差180度;直流偏置由晶体管差分级联放大/衰减电路的另一端输入端叠加;交流补偿电路和高频补偿电路分别为晶体管差分级联放大/衰减电路提供对应的交流补偿和高频补偿,共模电压经射随反馈电路叠加于晶体管差分级联放大/衰减电路的输出端,恒流源电路提供恒流源,模拟电路可对输出差分信号的电压限幅进行控制。本发明具有成本低、性价比高、器件通用性高等优点。

Description

一种单端转双端差分的模拟电路
技术领域
本发明涉及测量仪器仪表领域,尤其涉及一种单端转双端差分的模拟电路。
背景技术
测量仪器仪表通常需要具有高速、高带宽的输入信号处理能力,才能满足产品的实际应用需求。而高速、高带宽的信号处理,对电路设计也提出了更高的要求。测量仪器仪表内部通常采用ADC芯片对输入的模拟信号进行数字转换处理,而当前的高速ADC芯片均采用双端差分模拟输入。但仪器输入的模拟信号属于单端输入,这就需要有一电路来实现单端到双端差分的转换,且保证信号无失真。
当前,单端转双端差分的电路功能,通常采用国外进口的高速、高带宽的集成运放芯片来实现。而运放芯片本身价格不菲,且采购渠道也常受限,一定限度地制约着产品的应用设计和性价比的提高。因此,自主设计一种高速、高带宽、满足性能要求的单端转双端差分的模拟电路,成了当务之急,并孕育而生。
发明内容
本发明的目的在于克服对高速、高带宽集成运放芯片的依赖,在保证电路性能的前提下,提供一种单端转双端差分的模拟电路,能将输入仪器仪表的模拟信号进行有效的转换、放大处理,以满足后级电路的输入信号方式。
本发明采用的技术方案是:
一种单端转双端差分的模拟电路,其包括晶体管差分级联放大/衰减电路、交流补偿电路、高频补偿电路、射随反馈电路、恒流源电路;晶体管差分级联放大/衰减电路将单端输入信号分别经不同晶体管反向、生成双端差分的正端和负端信号,双端差分信号幅度相同、相位相差180度;单端输入信号的直流偏置通过晶体管差分级联放大/衰减电路的另一端输入端叠加;晶体管差分级联放大/衰减电路通过交流补偿电路进行交流补偿,晶体管差分级联放大/衰减电路通过高频补偿电路进行高频补偿,共模电压通过射随反馈电路叠加于晶体管差分级联放大/衰减电路的输出端,恒流源电路为晶体管差分级联放大/衰减电路提供恒流源,模拟电路具有对其输出差分信号的电压限幅进行控制的功能。
其还包括输入级并联差分回路,输入级并联差分回路并联于晶体管差分级联放大/衰减电路的两端。
所述晶体管差分级联放大/衰减电路包括晶体管Q1/Q2/Q3/Q4,交流补偿电路包括电容C1/C6/C7、电阻R7/R10/R12,高频补偿电路包括晶体管Q5/Q6,所述射随反馈电路包括运放U1、晶体管Q9、电容C5、电阻R3/R4/R18/R19/R22/R23,恒流源电路包括晶体管Q7/Q8、电阻R14/R16,
输入信号连接晶体管Q1的基极,晶体管Q1的集电极分别连接电阻R1的一端和晶体管Q5的发射极,电阻R1的另一端连接晶体管Q3的基极,晶体管Q1的发射极通过可调电阻R5连接晶体管Q8的集电极,晶体管Q3的发射极通过电阻R8连接晶体管Q7的集电极,
直流偏置Vbias通过电阻R30连接晶体管Q2的基极,晶体管Q2的基极通过电容C11接地,晶体管Q2的集电极分别连接电阻R2的一端和晶体管Q6的发射极,电阻R2的另一端连接晶体管Q4的基极,Q2的发射极通过可调电阻R6连接晶体管Q8的集电极,晶体管Q4的发射极通过电阻R9连接晶体管Q7的集电极,
晶体管Q1的发射极分别连接电阻R10和电阻R12的一端,电阻R10的另一端通过电容C6连接晶体管Q2的发射极,电阻R12的另一端通过电容C7连接晶体管Q2的发射极,
晶体管Q3的发射极依次通过电阻R7和电容C1连接晶体管Q4的发射极,
晶体管Q7的集电极通过电容C2接地,晶体管Q7的发射极通过电阻R14连接负极电源,晶体管Q7的基极通过电阻R15连接控制信号CT1,
晶体管Q8的集电极通过电容C3接地,晶体管Q8的发射极通过电阻R16连接负极电源,晶体管Q8的基极通过电阻R17连接控制信号CT2,
Q3的集电极为晶体管差分级联放大/衰减电路的正输出端,晶体管Q3的集电极连接晶体管Q6的集电极,晶体管Q6的基极接地,
Q4的集电极为晶体管差分级联放大/衰减电路的负输出端,晶体管Q4的集电极连接晶体管Q5的集电极,晶体管Q5的基极接地,
共模电压VCM通过R19连接运放U1的正输入端,运放U1的正输入端通过电容C4接地,运放U1的输出端通过电阻R18连接晶体管Q9的基极,运放U1的负输入端分别连接电阻R22、电阻R23和电容C5的一端,电阻R22的另一端连接Q3的集电极,电阻R23的另一端连接Q4的集电极,电容C5的另一端连接晶体管Q9的基极,晶体管Q9的基极通过电阻R21连接正极电源,晶体管Q9的集电极通过电阻R20连接正极电源,晶体管Q9的发射极通过电阻R3连接Q4的集电极,晶体管Q9的发射极通过电阻R4连接Q3的集电极。
输入级并联差分回路包括晶体管Q10/Q11/Q12、电容C8/C9、电阻R24/R25/R26/R27/R28;晶体管Q10的基极连接晶体管Q1的基极,晶体管Q10的集电极连接晶体管Q1的集电极,晶体管Q11的基极连接晶体管Q2的基极,晶体管Q11的集电极连接晶体管Q2的集电极,晶体管Q10的发射极通过电阻R24连接晶体管Q12的集电极,晶体管Q11的发射极通过电阻R25连接晶体管Q12的集电极,晶体管Q10的发射极依次通过电阻R26和电容C8连接晶体管Q11的发射极,晶体管Q10的发射极依次通过电阻R27和电容C9连接晶体管Q11的发射极,晶体管Q12的集电极通过电容C10接地,晶体管Q12的发射极通过电阻R28连接负极电源,晶体管Q12的基极通过电阻R29连接控制信号CT3。
所述正极电源和负极电源根据后级电路的不同选取不同的电压值。
所述共模电压与后级差分电路输入端匹配。
模拟电路通过调整晶体管Q5/Q6的基极直流电位、电阻R20、正极电源和直流偏置Vbias的取值改变相应的双端差分信号的电压幅度,以匹配后级电路(ADC芯片)所需的差分输入电压幅度,提高输出兼容性。
所述晶体管包括NPN三极管、PNP三极管、PMOS、NMOS和JFET。
本发明采用以上技术方案,与现有集成运放电路相比,本发明提出的分立、单端转双端差分电路的成本大大降低,电路性能也能得以同等保证,器件通用性高,采购渠道也较灵活、可控,使得电路在中、低端的仪器仪表产品应用设计上具有较高的性价比和应用价值。
附图说明
以下结合附图和具体实施方式对本发明做进一步详细说明;
图1为本发明一种单端转双端差分的模拟电路的基础示意图;
图2为本发明一种单端转双端差分的模拟电路的拓展示意图。
具体实施方式
如图1或图2所示,本发明公开一种单端转双端差分的模拟电路,其包括晶体管差分级联放大/衰减电路、交流补偿电路、高频补偿电路、射随反馈电路、恒流源电路;晶体管差分级联放大/衰减电路将单端输入信号SIG_IN分别经不同晶体管反向、生成双端差分的正端和负端信号,双端差分信号幅度相同、相位相差180度;单端输入信号SIG_IN的直流偏置通过晶体管差分级联放大/衰减电路的另一端输入端叠加;晶体管差分级联放大/衰减电路通过交流补偿电路进行交流补偿,晶体管差分级联放大/衰减电路通过高频补偿电路进行高频补偿,共模电压通过射随反馈电路叠加于晶体管差分级联放大/衰减电路的输出端,恒流源电路为晶体管差分级联放大/衰减电路提供恒流源,模拟电路对输出差分信号的电压限幅进行控制。
如图2所示,其还包括输入级并联差分回路,输入级并联差分回路并联于晶体管差分级联放大/衰减电路的两端。
所述晶体管差分级联放大/衰减电路包括晶体管Q1/Q2/Q3/Q4,交流补偿电路包括电容C1/C6/C7、电阻R7/R10/R12,高频补偿电路包括晶体管Q5/Q6,所述射随反馈电路包括运放U1、晶体管Q9、电容C5、电阻R3/R4/R18/R19/R22/R23,恒流源电路包括晶体管Q7/Q8、电阻R14/R16,
输入信号SIG_IN连接晶体管Q1的基极,晶体管Q1的集电极分别连接电阻R1的一端和晶体管Q5的发射极,电阻R1的另一端连接晶体管Q3的基极,晶体管Q1的发射极通过可调电阻R5连接晶体管Q8的集电极,晶体管Q3的发射极通过电阻R8连接晶体管Q7的集电极,
直流偏置Vbias通过电阻R30连接晶体管Q2的基极,晶体管Q2的基极通过电容C11接地,晶体管Q2的集电极分别连接电阻R2的一端和晶体管Q6的发射极,电阻R2的另一端连接晶体管Q4的基极,Q2的发射极通过可调电阻R6连接晶体管Q8的集电极,晶体管Q4的发射极通过电阻R9连接晶体管Q7的集电极,
晶体管Q1的发射极分别连接电阻R10和电阻R12的一端,电阻R10的另一端通过电容C6连接晶体管Q2的发射极,电阻R12的另一端通过电容C7连接晶体管Q2的发射极,
晶体管Q3的发射极依次通过电阻R7和电容C1连接晶体管Q4的发射极,
晶体管Q7的集电极通过电容C2接地,晶体管Q7的发射极通过电阻R14连接负极电源-VCC,晶体管Q7的基极通过电阻R15连接控制信号CT1,
晶体管Q8的集电极通过电容C3接地,晶体管Q8的发射极通过电阻R16连接负极电源-VCC,晶体管Q8的基极通过电阻R17连接控制信号CT2,
Q3的集电极为晶体管差分级联放大/衰减电路的正输出端SIG_OUT_P,晶体管Q3的集电极连接晶体管Q6的集电极,晶体管Q6的基极接地,
Q4的集电极为晶体管差分级联放大/衰减电路的负输出端SIG_OUT_N,晶体管Q4的集电极连接晶体管Q5的集电极,晶体管Q5的基极接地,
共模电压VCM通过R19连接运放U1的正输入端,运放U1的正输入端通过电容C4接地,运放U1的输出端通过电阻R18连接晶体管Q9的基极,运放U1的负输入端分别连接电阻R22、电阻R23和电容C5的一端,电阻R22的另一端连接Q3的集电极,电阻R23的另一端连接Q4的集电极,电容C5的另一端连接晶体管Q9的基极,晶体管Q9的基极通过电阻R21连接正极电源+VCC,晶体管Q9的集电极通过电阻R20连接正极电源+VCC,晶体管Q9的发射极通过电阻R3连接Q4的集电极,晶体管Q9的发射极通过电阻R4连接Q3的集电极。
如图2所示,输入级并联差分回路包括晶体管Q10/Q11/Q12、电容C8/C9、电阻R24/R25/R26/R27/R28;晶体管Q10的基极连接晶体管Q1的基极,晶体管Q10的集电极连接晶体管Q1的集电极,晶体管Q11的基极连接晶体管Q2的基极,晶体管Q11的集电极连接晶体管Q2的集电极,晶体管Q10的发射极通过电阻R24连接晶体管Q12的集电极,晶体管Q11的发射极通过电阻R25连接晶体管Q12的集电极,晶体管Q10的发射极依次通过电阻R26和电容C8连接晶体管Q11的发射极,晶体管Q10的发射极依次通过电阻R27和电容C9连接晶体管Q11的发射极,晶体管Q12的集电极通过电容C10接地,晶体管Q12的发射极通过电阻R28连接负极电源-VCC,晶体管Q12的基极通过电阻R29连接控制信号CT3。
所述正极电源+VCC和负极电源-VCC根据后级电路的不同选取不同的电压值。
所述共模电压与后级差分电路输入端匹配。
模拟电路通过调整晶体管Q5/Q6的基极直流电位、电阻R20、正极电源和直流偏置Vbias的取值改变相应的双端差分信号的电压幅度,以匹配后级电路(ADC芯片)所需的差分输入电压幅度,提高输出兼容性。
所述晶体管包括NPN三极管、PNP三极管、PMOS、NMOS和JFET。
下面就本发明的工作原理做详细说明:
本发明利用常见的晶体管、阻容等分立器件组成一种适用于高速、高带宽、单端转双端差分的模拟电路,如图1所示,晶体管Q1/Q3、Q2/Q4组成差分级联放大/衰减电路,将单端输入信号SIG_IN经晶体管Q1/Q3的二次反向后、生成双端差分的正端信号,将单端输入信号SIG_IN经晶体管Q2/Q4的一次反向后、生成双端差分的负端信号,输出的双端差分信号幅度相同、相位相差180度;其中晶体管Q1/Q3、Q2/Q4的频响特性,影响着整体电路的带宽、频响;电路可调整电阻R3/R5/R8、R4/R6/R9组合,实现电路对输入信号SIG_IN的放大或衰减。
单端输入信号SIG_IN的直流偏置Vbias通过晶体管Q2的基极输入叠加。
通过调整R7/C1、R10/C6、R12/C7(具体到图2的电路,还包括R26/C8、R27/C9)组成的交流补偿网络和Q5/Q6晶体管组成的高频补偿电路,改善整体电路的带宽、频响。
本发明通过R19、U1、R18、Q9、C5、R3/R4、R22/R23等组合射随反馈电路,在差分输出端叠加与后级差分电路输入端所匹配的共模电压(VCM);使得输出双端差分信号无需再次处理,可直接输入给后级ADC芯片进行处理,提高了输出兼容性。
在控制信号CT1、CT2控制下的Q7、Q8、R14、R16的恒流源电路,通过改变R14、R16的阻值、即改变晶体管Q1~Q6的工作电流(同理,图2中的R28阻值决定Q10、Q11的工作电流),改变影响晶体管的工作频响,从而影响整体电路的带宽、频响。
为改变整体电路放大/衰减系数调整能力,在晶体管差分级联放大/衰减电路的两端一组由Q10、Q11、R24、R25、Q12、R28、R26/C8、R27/C9等组成的输入级并联差分回路,再通过CT1、CT2、CT3的组合控制、改变差分级联电路的放大/衰减系数,使得整体电路的可以灵活地对输入信号SIG_IN进行放大或衰减。
通过调整Q5/Q6基极直流电位、R20、+VCC、 Vbias,可相应的改变输出端的差分电压幅度,实现电路对输出端差分(差模)电压的限幅控制,以匹配后级电路(ADC芯片)所需的差分输入电压幅度,提高了输出兼容性。
综上所述,通过本发明提出的分立器件组成的单端转双端差分模拟电路,具有成本低、电路性能同等保证(性价比高)、器件通用性高(采购渠道灵活、可控)等优点。在实际应用中,电路总体性能指标满足中、低端仪器仪表产品的应用设计要求,符合设计预期,具有较高的性价比和应用价值。当然本发明并不局限于该具体实施例,本领域内的技术人员所熟知的一般替换也涵盖在本发明的保护范围内。

Claims (7)

1.一种单端转双端差分的模拟电路,其特征在于:其包括晶体管差分级联放大/衰减电路、交流补偿电路、高频补偿电路、射随反馈电路、恒流源电路;晶体管差分级联放大/衰减电路将单端输入信号分别经不同晶体管反向、生成双端差分的正端和负端信号,双端差分信号幅度相同、相位相差180度;单端输入信号的直流偏置通过晶体管差分级联放大/衰减电路的另一端输入端叠加;晶体管差分级联放大/衰减电路通过交流补偿电路进行交流补偿,晶体管差分级联放大/衰减电路通过高频补偿电路进行高频补偿,共模电压通过射随反馈电路叠加于晶体管差分级联放大/衰减电路的输出端,恒流源电路为晶体管差分级联放大/衰减电路提供恒流源,模拟电路具有对其输出差分信号的电压限幅进行控制的功能;
所述晶体管差分级联放大/衰减电路包括晶体管Q1/Q2/Q3/Q4,交流补偿电路包括电容C1/C6/C7、电阻R7/R10/R12,高频补偿电路包括晶体管Q5/Q6,所述射随反馈电路包括运放U1、晶体管Q9、电容C5、电阻R3/R4/R18/R19/R22/R23,恒流源电路包括晶体管Q7/Q8、电阻R14/R16,
输入信号连接晶体管Q1的基极,晶体管Q1的集电极分别连接电阻R1的一端和晶体管Q5的发射极,电阻R1的另一端连接晶体管Q3的基极,晶体管Q1的发射极通过可调电阻R5连接晶体管Q8的集电极,晶体管Q3的发射极通过电阻R8连接晶体管Q7的集电极,
直流偏置Vbias通过电阻R30连接晶体管Q2的基极,晶体管Q2的基极通过电容C11接地,晶体管Q2的集电极分别连接电阻R2的一端和晶体管Q6的发射极,电阻R2的另一端连接晶体管Q4的基极,Q2的发射极通过可调电阻R6连接晶体管Q8的集电极,晶体管Q4的发射极通过电阻R9连接晶体管Q7的集电极,
晶体管Q1的发射极分别连接电阻R10和电阻R12的一端,电阻R10的另一端通过电容C6连接晶体管Q2的发射极,电阻R12的另一端通过电容C7连接晶体管Q2的发射极,
晶体管Q3的发射极依次通过电阻R7和电容C1连接晶体管Q4的发射极,
晶体管Q7的集电极通过电容C2接地,晶体管Q7的发射极通过电阻R14连接负极电源,晶体管Q7的基极通过电阻R15连接控制信号CT1,
晶体管Q8的集电极通过电容C3接地,晶体管Q8的发射极通过电阻R16连接负极电源,晶体管Q8的基极通过电阻R17连接控制信号CT2,
Q3的集电极为晶体管差分级联放大/衰减电路的正输出端,晶体管Q3的集电极连接晶体管Q6的集电极,晶体管Q6的基极接地,
Q4的集电极为晶体管差分级联放大/衰减电路的负输出端,晶体管Q4的集电极连接晶体管Q5的集电极,晶体管Q5的基极接地,
共模电压VCM通过R19连接运放U1的正输入端,运放U1的正输入端通过电容C4接地,运放U1的输出端通过电阻R18连接晶体管Q9的基极,运放U1的负输入端分别连接电阻R22、电阻R23和电容C5的一端,电阻R22的另一端连接Q3的集电极,电阻R23的另一端连接Q4的集电极,电容C5的另一端连接晶体管Q9的基极,晶体管Q9的基极通过电阻R21连接正极电源,晶体管Q9的集电极通过电阻R20连接正极电源,晶体管Q9的发射极通过电阻R3连接Q4的集电极,晶体管Q9的发射极通过电阻R4连接Q3的集电极。
2.根据权利要求1所述一种单端转双端差分的模拟电路,其特征在于:其还包括输入级并联差分回路,输入级并联差分回路并联于晶体管差分级联放大/衰减电路的两端。
3.根据权利要求2所述一种单端转双端差分的模拟电路,其特征在于:所述输入级并联差分回路包括晶体管Q10/Q11/Q12、电容C8/C9、电阻R24/R25/R26/R27/R28;晶体管Q10的基极连接晶体管Q1的基极,晶体管Q10的集电极连接晶体管Q1的集电极,晶体管Q11的基极连接晶体管Q2的基极,晶体管Q11的集电极连接晶体管Q2的集电极,晶体管Q10的发射极通过电阻R24连接晶体管Q12的集电极,晶体管Q11的发射极通过电阻R25连接晶体管Q12的集电极,晶体管Q10的发射极依次通过电阻R26和电容C8连接晶体管Q11的发射极,晶体管Q10的发射极依次通过电阻R27和电容C9连接晶体管Q11的发射极,晶体管Q12的集电极通过电容C10接地,晶体管Q12的发射极通过电阻R28连接负极电源,晶体管Q12的基极通过电阻R29连接控制信号CT3。
4.根据权利要求3所述一种单端转双端差分的模拟电路,其特征在于:所述正极电源和负极电源根据后级电路的不同选取不同的电压值。
5.根据权利要求1所述一种单端转双端差分的模拟电路,其特征在于:所述共模电压与后级差分电路输入端匹配。
6.根据权利要求1所述一种单端转双端差分的模拟电路,其特征在于:模拟电路通过调整晶体管Q5/Q6的基极直流电位、电阻R20、正极电源和直流偏置Vbias的取值改变相应的双端差分信号的电压幅度。
7.根据权利要求1所述一种单端转双端差分的模拟电路,其特征在于:所述晶体管包括NPN三极管、PNP三极管、PMOS、NMOS和JFET。
CN201611245806.2A 2016-12-29 2016-12-29 一种单端转双端差分的模拟电路 Active CN106656100B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611245806.2A CN106656100B (zh) 2016-12-29 2016-12-29 一种单端转双端差分的模拟电路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611245806.2A CN106656100B (zh) 2016-12-29 2016-12-29 一种单端转双端差分的模拟电路

Publications (2)

Publication Number Publication Date
CN106656100A CN106656100A (zh) 2017-05-10
CN106656100B true CN106656100B (zh) 2019-03-15

Family

ID=58836042

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611245806.2A Active CN106656100B (zh) 2016-12-29 2016-12-29 一种单端转双端差分的模拟电路

Country Status (1)

Country Link
CN (1) CN106656100B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110225425B (zh) * 2019-07-09 2024-07-02 深圳市中科蓝讯科技股份有限公司 一种麦克风输入电路
CN110806522B (zh) * 2019-11-12 2022-02-22 天津津航计算技术研究所 一种电弧信号检测调理电路
CN112737545B (zh) * 2020-12-24 2022-10-21 南京邮电大学 一种由adc控制的数控衰减器
CN113098484A (zh) * 2021-04-02 2021-07-09 南方科技大学 单端转差分电路

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1086357A (zh) * 1992-08-26 1994-05-04 菲利浦电子有限公司 变压器电路,双平衡混合器
CN1592085A (zh) * 2003-08-20 2005-03-09 三洋电机株式会社 通信设备、电子仪器、通信功能电路、放大器电路以及平衡不平衡转换电路
CN101091306A (zh) * 2004-11-26 2007-12-19 皇家飞利浦电子股份有限公司 单端到差分变换器电路
CN102340295A (zh) * 2011-05-30 2012-02-01 东南大学 一种宽带有源巴伦电路
CN102412790A (zh) * 2011-12-16 2012-04-11 电子科技大学 一种对pvt补偿的宽带低噪声放大器

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7035616B2 (en) * 2002-01-04 2006-04-25 International Business Machines Corporation Two-stage variable-gain mixer employing shunt feedback
US20070030095A1 (en) * 2005-08-05 2007-02-08 Mitsutaka Hikita Antenna duplexer and wireless terminal using the same
US9503053B1 (en) * 2015-05-13 2016-11-22 Qualcomm Incorporated Active balun for wideband applications

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1086357A (zh) * 1992-08-26 1994-05-04 菲利浦电子有限公司 变压器电路,双平衡混合器
CN1592085A (zh) * 2003-08-20 2005-03-09 三洋电机株式会社 通信设备、电子仪器、通信功能电路、放大器电路以及平衡不平衡转换电路
CN101091306A (zh) * 2004-11-26 2007-12-19 皇家飞利浦电子股份有限公司 单端到差分变换器电路
CN102340295A (zh) * 2011-05-30 2012-02-01 东南大学 一种宽带有源巴伦电路
CN102412790A (zh) * 2011-12-16 2012-04-11 电子科技大学 一种对pvt补偿的宽带低噪声放大器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
高速差分探头在应用中的设计与研究;杨晓杰等;《现代电子技术》;20150815;第1-3页

Also Published As

Publication number Publication date
CN106656100A (zh) 2017-05-10

Similar Documents

Publication Publication Date Title
CN106656100B (zh) 一种单端转双端差分的模拟电路
CN105393453B (zh) 具有宽输入电流范围的跨阻抗放大器的装置和方法
CN110120788A (zh) 一种用于功率放大器的偏置电路及功率放大器
CN105974958A (zh) 一种数字式温控器用高精度信号采集处理系统
CN107819445A (zh) 一种高速大输出摆幅驱动电路
CN103888093B (zh) 差分信号的共模电平重置电路
CN103199799B (zh) 一种带工艺补偿偏置的功率放大器
CN106301068B (zh) 一种数字驱动电源
CN204578473U (zh) 提高放大器线性度的失真抵消偏置电路
CN105468077B (zh) 一种低功耗带隙基准源
CN204597904U (zh) 一种在高电压环境下工作的低电压运放电路
CN105553428A (zh) 一种运算放大器动态供电电路及供电方法
CN103944521B (zh) 一种电流喷射式音频功率放大器
CN106647922B (zh) 一种电压跟踪和嵌位电路
CN103346742A (zh) 声光q开关驱动器
CN102457235A (zh) 声音伪三极管特性放大设备和声音伪三极管特性推挽式放大设备
CN202331248U (zh) 一种单电源零伏起调稳定电源
CN102624339B (zh) 一种串联结构包络线跟踪电源及其控制系统
CN103956980B (zh) 一种跟随功率缓冲放大器
CN107896096A (zh) 采样保持电路前端宽带放大器
CN207638622U (zh) 一种宽频单片集成式功率放大电路
CN207410305U (zh) 无人机遥控信号放大器
CN205178994U (zh) 一种运算放大器动态供电电路
CN203119844U (zh) 一种功率放大器
CN205212812U (zh) 一种多路抗干扰变送器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant