CN106655946A - 无电解电容电机驱动系统及其电流控制方法和控制装置 - Google Patents

无电解电容电机驱动系统及其电流控制方法和控制装置 Download PDF

Info

Publication number
CN106655946A
CN106655946A CN201610900131.4A CN201610900131A CN106655946A CN 106655946 A CN106655946 A CN 106655946A CN 201610900131 A CN201610900131 A CN 201610900131A CN 106655946 A CN106655946 A CN 106655946A
Authority
CN
China
Prior art keywords
current
currently practical
output power
voltage
rotating speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610900131.4A
Other languages
English (en)
Other versions
CN106655946B (zh
Inventor
许国景
刘聚科
程永甫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao Haier Air Conditioner Gen Corp Ltd
Original Assignee
Qingdao Haier Air Conditioner Gen Corp Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao Haier Air Conditioner Gen Corp Ltd filed Critical Qingdao Haier Air Conditioner Gen Corp Ltd
Priority to CN201610900131.4A priority Critical patent/CN106655946B/zh
Priority to PCT/CN2016/110910 priority patent/WO2018068395A1/zh
Publication of CN106655946A publication Critical patent/CN106655946A/zh
Application granted granted Critical
Publication of CN106655946B publication Critical patent/CN106655946B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/0003Control strategies in general, e.g. linear type, e.g. P, PI, PID, using robust control

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)
  • Inverter Devices (AREA)
  • Control Of Multiple Motors (AREA)

Abstract

本发明公开了一种无电解电容电机驱动系统及其电流控制方法和控制装置。所述方法包括:获取系统中的当前实际电源电压、当前转速指令和当前实际转速,对所述当前实际电源电压、所述当前转速指令和所述当前实际转速进行处理,获得目标总功率;获取系统中的当前实际电容器功率,计算所述目标总功率与所述当前实际电容器功率的差值,作为目标逆变输出功率;获取系统中的当前实际逆变输出功率,基于所述目标逆变输出功率与所述当前实际逆变输出功率的差值进行调节,获得当前q轴电流指令;根据所述当前q轴电流指令生成控制信号,执行系统的电流控制。应用本发明,能实现提高无电解电容电机驱动系统的功率因数和对高次谐波的抑制的目的。

Description

无电解电容电机驱动系统及其电流控制方法和控制装置
技术领域
本发明属于电机技术领域,具体地说,是涉及无电解电容电机驱动系统及其电流控制方法和控制装置。
背景技术
随着用户对机电产品性能要求的不断提升,寿命和效率更高、成本更低的无电解电容电机驱动系统得到了越来越广泛的应用。无电解电容电机驱动系统是去掉了大容量、高成本、寿命短的电解电容及升压器件,取而代之的是容量小、成本低、寿命长的薄膜电容或陶瓷电容。
由于无电解电容电机驱动系统没有传统电机驱动系统中作为储能装置的电解电容及升压器件,因此,如果仍采用传统电机驱动系统的电流控制方法,很难达到较高的功率因数,也难以解决电源高次谐波的问题。
发明内容
本发明的目的一方面是提供一种无电解电容电机驱动系统的电流控制方法和控制装置,实现提高系统的功率因数和对高次谐波的抑制的目的。
为实现上述发明目的,本发明提供的电流控制方法采用下述技术方案予以实现:
一种无电解电容电机驱动系统的电流控制方法,所述方法包括:
获取系统中的当前实际电源电压、当前转速指令和当前实际转速,对所述当前实际电源电压、所述当前转速指令和所述当前实际转速进行处理,获得目标总功率;
获取系统中的当前实际电容器功率,计算所述目标总功率与所述当前实际电容器功率的差值,作为目标逆变输出功率;
获取系统中的当前实际逆变输出功率,基于所述目标逆变输出功率与所述当前实际逆变输出功率的差值进行调节,获得当前q轴电流指令;
根据所述当前q轴电流指令生成控制信号,执行系统的电流控制。
如上所述的方法,所述对所述当前实际电源电压、所述当前转速指令和所述当前实际转速进行处理,获得目标总功率,具体包括:
对所述当前转速指令和所述当前实际转速进行处理,获得第一电流;
对所述当前实际电源电压和所述第一电流进行处理,获得目标总功率;
如上所述的方法,所述对所述当前转速指令和所述当前实际转速进行处理,获得第一电流,具体包括:
计算所述当前转速指令与所述当前实际转速的差值作为转速差值;
对所述转速差值作PI调节,获得所述第一电流。
如上所述的方法,所述对所述当前实际电源电压和所述第一电流进行处理,获得目标总功率,具体包括:
对所述当前实际电源电压的幅值作限幅处理,获得第一电压;
将所述第一电压进行自乘处理,获得所述第一电压的平方,作为第二电压;
将所述第二电压与所述第一电流相乘,获得所述目标总功率。
如上所述的方法,所述获取系统中当前实际逆变输出功率,基于所述目标逆变输出功率与所述当前实际逆变输出功率的差值进行调节,获得当前q轴电流指令,具体包括:
获取系统中所述当前实际逆变输出功率,基于所述目标逆变输出功率与所述当前实际逆变输出功率的差值进行PR调节,获得所述当前q轴电流指令。
如上所述的方法,采用下述公式获取系统中所述当前实际逆变输出功率:
其中,Pinv为所述当前实际逆变输出功率,分别为系统的当前d轴电压指令和当前q轴电压指令,id和iq分别为系统的当前实际d轴电流和当前实际q轴电流。
为实现前述发明目的,本发明提供的电流控制装置采用下述技术方案来实现:
一种无电解电容驱动系统的电流控制装置,所述装置包括:
实际电源电压获取单元,用于获取系统中的当前实际电源电压;
转速指令获取单元,用于获取当前转速指令;
实际转速获取单元,用于获取当前实际转速;
目标总功率获取单元,用于对所述当前实际电源电压、所述当前转速指令和所述当前实际转速进行处理,获得目标总功率;
实际电容器功率获取单元,用于获取系统中的当前实际电容器功率;
目标逆变输出功率获取单元,用于计算所述目标总功率与所述当前实际电容器功率的差值,作为目标逆变输出功率;
实际逆变输出功率获取单元,用于获取系统中的当前实际逆变输出功率;
q轴电流指令获取单元,用于基于所述目标逆变输出功率与所述当前实际逆变输出功率的差值进行调节,获得当前q轴电流指令;
电流控制单元,用于根据所述当前q轴电流指令生成控制信号,执行系统的电流控制。
如上所述的装置,所述目标总功率获取单元具体包括:
第一电流获取单元,用于对所述当前转速指令和所述当前实际转速进行处理,获得第一电流;
目标总功率获取子单元,用于对所述当前实际电源电压和所述第一电流进行处理,获得所述目标总功率。
如上所述的装置,所述第一电流获取单元具体包括:
转速差值计算单元,用于计算所述当前转速指令与所述当前实际转速的差值作为转速差值;
PI调节单元,用于对所述转速差值作PI调节,获得所述第一电流。
如上所述的装置,所述目标总功率获取子单元具体包括:
第一电压获取单元,用于对所述当前实际电源电压的幅值作限幅处理,获得第一电压;
第二电压获取单元,用于将所述第一电压进行自乘处理,获得所述第一电压的平方,作为第二电压;
乘法处理单元,用于将所述第二电压与所述第一电流相乘,获得所述目标总功率。
如上所述的装置,所述q轴电流指令获取单元基于所述目标逆变输出功率与所述当前实际逆变输出功率的差值进行PR调节,获得当前q轴电流指令。
本发明的目的另一方面是提供了一种具有上述电流控制装置的无电解电容电机驱动系统及采用该无电解电容电机驱动系统作为压缩机驱动系统的空调器。
与现有技术相比,本发明的优点和积极效果是:采用本发明的方法及装置实现无电解电容电机驱动系统的电流控制时,通过对实际逆变输出功率和基于实际电源电压与转速所确定出的目标逆变输出功率进行调节获得电流控制所需的q轴电流指令,能够保证系统的实际输入电流与实际电源电压保持相位基本同步,不仅能提高电机驱动系统的功率因数,同时,还能够充分抑制电源的高次谐波,满足相关标准对谐波的要求。
结合附图阅读本发明的具体实施方式后,本发明的其他特点和优点将变得更加清楚。
附图说明
图1是基于本发明无电解电容电机驱动系统电流控制方法一个实施例的流程图;
图2是基于图1实施例获得的电流控制信号执行电流控制后实际电源电压与实际输入电流的波形图;
图3是基于本发明无电解电容电机驱动系统电流控制方法另一个实施例生成当前q轴电流指令信号的过程图;
图4是基于本发明无电解电容电机驱动系统电流控制装置一个实施例的结构框图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下将结合附图和实施例,对本发明作进一步详细说明。
请参见图1,该图所示为基于本发明无电解电容电机驱动系统电流控制方法一个实施例的流程图。
如图1所示意,该实施例实现无电解电容电机驱动系统电流控制的方法包括下述步骤构成的过程:
步骤11:获取系统中的当前实际电源电压、当前转速指令和当前实际转速,对当前实际电源电压、当前转速指令和当前实际转速进行处理,获得目标总功率。
当前实际电源电压可以通过对电源电压进行采样获取到,具体采样方法可以参考现有技术来实现。当前转速指令为电机的当前目标转速指令,为给定的已知值。当前实际转速是指实际检测的电机运行时的转速,可以采用现有技术来获取,譬如,通过对采样的电机的相电流进行位置估算获取到当前实际转速。在获取到当前实际电源电压、当前转速指令及当前实际转速之后,对这三个值进行处理,获得目标总功率。且该目标总功率是与当前实际电源电压相关的一个目标功率。
步骤12:获取系统中的当前实际电容器功率,计算目标总功率与当前实际电容器功率的差值,作为目标逆变输出功率。
当前实际电容器功率是指电机驱动系统中电容器(如薄膜电容或陶瓷电容)上的消耗实际功率,该功率可以采用现有技术中的方法计算而求得。目标逆变输出功率是指电机驱动系统中逆变电路的输出功率,也即输入到电机上的功率。在无电解电容电机驱动系统中,整流电路和逆变电路自身的功率损耗可以忽略不计,那么,系统中的总功率包括电容器上消耗的功率和电机上输入的功率。因此,计算目标总功率与当前实际电容器功率的差值,该差值即为目标逆变输出功率。
步骤13:获取系统中的当前实际逆变输出功率,基于目标逆变输出功率与当前实际逆变输出功率的差值进行调节,获得当前q轴电流指令。
当前实际逆变输出功率可以采用现有技术来进行估算。优选的,当前实际逆变输出功率采用下述公式进行估算:
其中,Pinv为当前实际逆变输出功率,分别为系统的当前d轴电压指令和当前q轴电压指令,id和iq分别为系统的当前实际d轴电流和当前实际q轴电流。当前实际d轴电流id和当前实际q轴电流可以通过采集电机三相电流,经坐标变换后计算获得。而当前d电压指令和当前q轴电压指令可以根据前一时刻的d轴电流指令和q轴电流指令来确定。
在确定出当前实际逆变输出功率之后,计算步骤12确定的目标逆变输出功率与当前实际逆变输出功率的差值,并对差值进行调节,具体来说是使得当前实际逆变输出功率能够跟随目标逆变输出功率,从而,获得当前q轴电流指令。
步骤14:根据当前q轴电流指令生成控制信号,执行系统的电流控制。
根据当前q轴电流指令生成控制信号、执行系统电流控制,具体来说是基于q轴电流指令生成占空比,对逆变电路进行控制,更具体的方法可参考现有技术。
采用上述方法获得的q轴电流指令对无电解电容电机驱动系统执行电流控制后,实际电源电压与实际输入电流的波形图如图2所示。从图2可以看出,通过对实际逆变输出功率和基于实际电源电压与转速所确定出的目标逆变输出功率进行调节获得电流控制所需的q轴电流指令,能够保证系统的实际输入电流与实际电源电压保持相位基本同步,不仅能提高电机驱动系统的功率因数,同时,还能够充分抑制电源的高次谐波,满足相关标准对谐波的要求。
作为优选的实施方式,在执行电流控制时,对当前实际电源电压、当前转速指令和当前实际转速进行处理,获得目标总功率,具体包括:
对当前转速指令和当前实际转速进行处理,获得第一电流;
对当前实际电源电压和第一电流进行处理,获得目标总功率。
对当前转速指令和当前实际转速进行处理,获得第一电流,更优选的实施方式具体包括:
计算当前转速指令与当前实际转速的差值作为转速差值;
对转速差值作PI调节,获得所述第一电流。
而对当前实际电源电压和第一电流进行处理,获得目标总功率,更优选的实施方式具体包括:
对当前实际电源电压的幅值作限幅处理,获得第一电压;
将第一电压进行自乘处理,获得第一电压的平方,作为第二电压;
将第二电压与第一电流相乘,获得目标总功率。
采用更优选的实施方式获得的目标总功率,既具有直流分量也具有交流分量。那么,基于该目标总功率获得的目标逆变输出功率与当前实际逆变输出功率的差值也是一个由直流分量和交流分量叠加而成的信号量。为实现无静差的功率跟踪而提高q轴电流指令的准确性,作为优选的实施方式,在获取系统中的当前实际逆变输出功率之后,基于目标逆变输出功率与当前实际逆变输出功率的差值进行PR调节(比例谐振调节),获得当前q轴电流指令。根据差值进行PR调节的具体实现方法可以参考现有技术。
图3示出了基于本发明无电解电容电机驱动系统电流控制方法另一个实施例生成当前q轴电流指令信号的过程图,具体来说,是基于上述的优选实施方式生成当前q轴电流指令信号的过程图。
如图3所示意,通过电压采样获取当前实际电源电压Vin,设U1为实际电源电压的幅值有效值,ωt为实际电源电压的相位角,则当前实际电源电压Vin可表示为:
利用比例系数为1/VP的比例器31对当前实际电源电压作幅值限幅处理,获得第一电压Vin1
然后,利用乘法器32对第一电压进行自乘处理,获得第一电压的平方,作为第二电压Vin2
获取电机当前转速指令n*和当前实际转速n,计算两者的差值,获得转速差值△n:△n=n*-n。
然后,利用PI调节器33对转速差值△n作PI调节,获得第一电流I1其中,KP1为PI调节器33的比例系数。
然后,利用乘法器34将第一电流I1与第二电压Vin2相乘,获得目标总功率通过选择合适的比例器31的比例系数,譬如,选择则目标总功率可表示为:
当前实际电容器功率Pc_comp通过下述公式获得:
其中,Vc为电容器C两端的电压,Ic为流过电容器C的电流,C为电容器C的容值。
然后,计算目标总功率与当前实际电容器功率Pc_comp的差值,作为目标逆变输出功率
从该公式可以看出,该目标逆变输出功率为在一个直流分量的基础上叠加了一个两倍于电源电压频率的交流量。
然后,再计算目标逆变输出功率与当前实际逆变输出功率Pinv的差值。其中,
最后,利用PR调节器34对目标逆变输出功率与当前实际逆变输出功率Pinv的差值作PR调节,得到当前q轴电流指令优选的,PR调节器34的传递函数为其中,KP2为PR调节器34的比例系数,KI为PR调节器34的积分系数。
请参见图4,该图所示为基于本发明无电解电容电机驱动系统电流控制装置一个实施例的结构框图。
如图4所示意,该实施例实现无电解电容电机驱动系统电流控制的装置包括的结构单元、每个结构单元的功能及相互之间的连接关系如下:
实际电源电压获取单元41,用于获取系统中的当前实际电源电压;
转速指令获取单元42,用于获取当前转速指令;
实际转速获取单元43,用于获取当前实际转速;
目标总功率获取单元44,用于对实际电源电压获取单元41获取的当前实际电源电压、转速指令获取单元42获取的当前转速指令和实际转速获取单元43获取的当前实际转速进行处理,获得目标总功率;
实际电容器功率获取单元45,用于获取系统中的当前实际电容器功率;
目标逆变输出功率获取单元46,用于计算目标总功率获取单元44获取的目标总功率与实际电容器功率获取单元45获取的当前实际电容器功率的差值,作为目标逆变输出功率;
实际逆变输出功率获取单元47,用于获取系统中的当前实际逆变输出功率;
q轴电流指令获取单元48,用于基于目标逆变输出功率获取单元46获取的目标逆变输出功率与实际逆变输出功率获取单元47获取的当前实际逆变输出功率的差值进行调节,获得当前q轴电流指令;
电流控制单元49,用于根据q轴电流指令获取单元48获取的当前q轴电流指令生成控制信号,执行系统的电流控制。
该实施例控制装置中的各单元运行相应软件程序,按照图1实施例的方法实现对无电解电容电机驱动系统的电流控制。
作为优选的实施方式,目标总功率获取单元44具体包括:
第一电流获取单元,用于对当前转速指令和当前实际转速进行处理,获得第一电流;
目标总功率获取子单元,用于对当前实际电源电压和第一电流进行处理,获得所述目标总功率。
而第一电流获取单元具体又可以包括:
转速差值计算单元,用于计算当前转速指令与当前实际转速的差值作为转速差值;
PI调节单元,用于对转速差值作PI调节,获得所述第一电流。
作为更优选的实施方式,目标总功率获取子单元具体包括:
第一电压获取单元,用于对当前实际电源电压的幅值作限幅处理,获得第一电压;
第二电压获取单元,用于将第一电压进行自乘处理,获得第一电压的平方,作为第二电压;
乘法处理单元,用于将第二电压与所述第一电流相乘,获得目标总功率。
上述控制装置的优选实施方式中的各单元运行相应软件程序,按照前述的控制方法实现对无电解电容电机驱动系统的电流控制。
上述实施例的电流控制装置可以应用到无电解电容电机驱动系统中,实现提高系统的功率因数和对高次谐波的抑制的目的。而具有上述实施例的电流控制装置的无电解电容电机驱动系统可以作为空调器压缩机驱动系统,以低成本、小体积的压缩机驱动系统实现空调器的变频运行控制。
以上实施例仅用以说明本发明的技术方案,而非对其进行限制;尽管参照前述实施例对本发明进行了详细的说明,对于本领域的普通技术人员来说,依然可以对前述实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或替换,并不使相应技术方案的本质脱离本发明所要求保护的技术方案的精神和范围。

Claims (13)

1.一种无电解电容电机驱动系统的电流控制方法,其特征在于,所述方法包括:
获取系统中的当前实际电源电压、当前转速指令和当前实际转速,对所述当前实际电源电压、所述当前转速指令和所述当前实际转速进行处理,获得目标总功率;
获取系统中的当前实际电容器功率,计算所述目标总功率与所述当前实际电容器功率的差值,作为目标逆变输出功率;
获取系统中的当前实际逆变输出功率,基于所述目标逆变输出功率与所述当前实际逆变输出功率的差值进行调节,获得当前q轴电流指令;
根据所述当前q轴电流指令生成控制信号,执行系统的电流控制。
2.根据权利要求1所述的方法,其特征在于,所述对所述当前实际电源电压、所述当前转速指令和所述当前实际转速进行处理,获得目标总功率,具体包括:
对所述当前转速指令和所述当前实际转速进行处理,获得第一电流;
对所述当前实际电源电压和所述第一电流进行处理,获得目标总功率。
3.根据权利要求2所述的方法,其特征在于,所述对所述当前转速指令和所述当前实际转速进行处理,获得第一电流,具体包括:
计算所述当前转速指令与所述当前实际转速的差值作为转速差值;
对所述转速差值作PI调节,获得所述第一电流。
4.根据权利要求2或3所述的方法,其特征在于,所述对所述当前实际电源电压和所述第一电流进行处理,获得目标总功率,具体包括:
对所述当前实际电源电压的幅值作限幅处理,获得第一电压;
将所述第一电压进行自乘处理,获得所述第一电压的平方,作为第二电压;
将所述第二电压与所述第一电流相乘,获得所述目标总功率。
5.根据权利要求4所述的方法,其特征在于,所述获取系统中当前实际逆变输出功率,基于所述目标逆变输出功率与所述当前实际逆变输出功率的差值进行调节,获得当前q轴电流指令,具体包括:
获取系统中所述当前实际逆变输出功率,基于所述目标逆变输出功率与所述当前实际逆变输出功率的差值进行PR调节,获得所述当前q轴电流指令。
6.根据权利要求5所述的方法,其特征在于,采用下述公式获取系统中所述当前实际逆变输出功率:
其中,Pinv为所述当前实际逆变输出功率,分别为系统的当前d轴电压指令和当前q轴电压指令,id和iq分别为系统的当前实际d轴电流和当前实际q轴电流。
7.一种无电解电容驱动系统的电流控制装置,其特征在于,所述装置包括:
实际电源电压获取单元,用于获取系统中的当前实际电源电压;
转速指令获取单元,用于获取当前转速指令;
实际转速获取单元,用于获取当前实际转速;
目标总功率获取单元,用于对所述当前实际电源电压、所述当前转速指令和所述当前实际转速进行处理,获得目标总功率;
实际电容器功率获取单元,用于获取系统中的当前实际电容器功率;
目标逆变输出功率获取单元,用于计算所述目标总功率与所述当前实际电容器功率的差值,作为目标逆变输出功率;
实际逆变输出功率获取单元,用于获取系统中的当前实际逆变输出功率;
q轴电流指令获取单元,用于基于所述目标逆变输出功率与所述当前实际逆变输出功率的差值进行调节,获得当前q轴电流指令;
电流控制单元,用于根据所述当前q轴电流指令生成控制信号,执行系统的电流控制。
8.根据权利要求7所述的装置,其特征在于,所述目标总功率获取单元具体包括:
第一电流获取单元,用于对所述当前转速指令和所述当前实际转速进行处理,获得第一电流;
目标总功率获取子单元,用于对所述当前实际电源电压和所述第一电流进行处理,获得所述目标总功率。
9.根据权利要求8所述的装置,其特征在于,所述第一电流获取单元具体包括:
转速差值计算单元,用于计算所述当前转速指令与所述当前实际转速的差值作为转速差值;
PI调节单元,用于对所述转速差值作PI调节,获得所述第一电流。
10.根据权利要求8或9所述的装置,其特征在于,所述目标总功率获取子单元具体包括:
第一电压获取单元,用于对所述当前实际电源电压的幅值作限幅处理,获得第一电压;
第二电压获取单元,用于将所述第一电压进行自乘处理,获得所述第一电压的平方,作为第二电压;
乘法处理单元,用于将所述第二电压与所述第一电流相乘,获得所述目标总功率。
11.根据权利要求10所述的装置,其特征在于,所述q轴电流指令获取单元基于所述目标逆变输出功率与所述当前实际逆变输出功率的差值进行PR调节,获得当前q轴电流指令。
12.一种无电解电容电机驱动系统,其特征在于,包括有上述权利要求7至11中任一项所述的无电解电容电机驱动系统的电流控制装置。
13.一种空调器,包括有压缩机驱动系统,其特征在于,所述压缩机驱动系统采用上述权利要求12所述的无电解电容电机驱动系统。
CN201610900131.4A 2016-10-15 2016-10-15 无电解电容电机驱动系统及其电流控制方法和控制装置 Active CN106655946B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201610900131.4A CN106655946B (zh) 2016-10-15 2016-10-15 无电解电容电机驱动系统及其电流控制方法和控制装置
PCT/CN2016/110910 WO2018068395A1 (zh) 2016-10-15 2016-12-20 无电解电容电机驱动系统及其电流控制方法和控制装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610900131.4A CN106655946B (zh) 2016-10-15 2016-10-15 无电解电容电机驱动系统及其电流控制方法和控制装置

Publications (2)

Publication Number Publication Date
CN106655946A true CN106655946A (zh) 2017-05-10
CN106655946B CN106655946B (zh) 2019-07-26

Family

ID=58856916

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610900131.4A Active CN106655946B (zh) 2016-10-15 2016-10-15 无电解电容电机驱动系统及其电流控制方法和控制装置

Country Status (2)

Country Link
CN (1) CN106655946B (zh)
WO (1) WO2018068395A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107294467A (zh) * 2017-07-21 2017-10-24 奥克斯空调股份有限公司 变频驱动控制装置
CN107359843A (zh) * 2017-07-20 2017-11-17 奥克斯空调股份有限公司 功率变换控制系统
CN112928962A (zh) * 2021-02-05 2021-06-08 哈尔滨工业大学(深圳) 无电解电容变频驱动系统控制方法、控制器及存储介质
CN113454904A (zh) * 2019-03-12 2021-09-28 阿莱戈微系统有限责任公司 带有功率反馈回路的电机控制器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103475209A (zh) * 2013-09-29 2013-12-25 武汉理工大学 一种无电解电容高功率因数校正器及校正方法
EP2765703A2 (en) * 2013-02-08 2014-08-13 Regal Beloit America, Inc. System and methods for controlling electric machines
CN104852652A (zh) * 2015-05-06 2015-08-19 北京天诚同创电气有限公司 同步风力发电机闭环矢量控制方法和系统
CN104852657A (zh) * 2015-05-14 2015-08-19 浙江大学 一种抑制共母线单边可控开绕组永磁电机系统电流过零点波动的控制方法
CN105162381A (zh) * 2015-08-24 2015-12-16 华中科技大学 基于pr调节的无电解电容变频驱动控制系统及控制方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5462906B2 (ja) * 2012-04-16 2014-04-02 山洋電気株式会社 モータ制御装置
CN104534631B (zh) * 2014-09-30 2017-05-17 海信科龙电器股份有限公司 一种变频空调控制方法
CN104315651B (zh) * 2014-09-30 2017-02-15 海信科龙电器股份有限公司 一种单相变频空调控制方法及控制器
CN104579090B (zh) * 2014-12-31 2018-05-01 郑州宇通客车股份有限公司 一种永磁同步电机功率补偿控制系统及方法
CN104934943B (zh) * 2015-06-17 2018-04-13 广东美的制冷设备有限公司 过压保护装置、过压保护方法及无电解电容电机驱动系统
CN105978433B (zh) * 2016-05-31 2018-12-18 广东美的制冷设备有限公司 电容小型化的电机驱动装置和变频空调器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2765703A2 (en) * 2013-02-08 2014-08-13 Regal Beloit America, Inc. System and methods for controlling electric machines
CN103475209A (zh) * 2013-09-29 2013-12-25 武汉理工大学 一种无电解电容高功率因数校正器及校正方法
CN104852652A (zh) * 2015-05-06 2015-08-19 北京天诚同创电气有限公司 同步风力发电机闭环矢量控制方法和系统
CN104852657A (zh) * 2015-05-14 2015-08-19 浙江大学 一种抑制共母线单边可控开绕组永磁电机系统电流过零点波动的控制方法
CN105162381A (zh) * 2015-08-24 2015-12-16 华中科技大学 基于pr调节的无电解电容变频驱动控制系统及控制方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107359843A (zh) * 2017-07-20 2017-11-17 奥克斯空调股份有限公司 功率变换控制系统
CN107359843B (zh) * 2017-07-20 2018-07-31 奥克斯空调股份有限公司 功率变换控制系统
CN107294467A (zh) * 2017-07-21 2017-10-24 奥克斯空调股份有限公司 变频驱动控制装置
CN107294467B (zh) * 2017-07-21 2018-07-31 奥克斯空调股份有限公司 变频驱动控制装置
CN113454904A (zh) * 2019-03-12 2021-09-28 阿莱戈微系统有限责任公司 带有功率反馈回路的电机控制器
US11817811B2 (en) 2019-03-12 2023-11-14 Allegro Microsystems, Llc Motor controller with power feedback loop
CN113454904B (zh) * 2019-03-12 2024-04-05 阿莱戈微系统有限责任公司 带有功率反馈回路的电机控制器
CN112928962A (zh) * 2021-02-05 2021-06-08 哈尔滨工业大学(深圳) 无电解电容变频驱动系统控制方法、控制器及存储介质

Also Published As

Publication number Publication date
WO2018068395A1 (zh) 2018-04-19
CN106655946B (zh) 2019-07-26

Similar Documents

Publication Publication Date Title
CN104685778B (zh) 电力变换装置的控制方法
CN105515354B (zh) 用于控制压缩机的方法,装置和系统
CN106655946A (zh) 无电解电容电机驱动系统及其电流控制方法和控制装置
CN102891614B (zh) 电网电压不平衡时pwm整流器的改进无差拍控制方法
CN104320032B (zh) 一种交‑交变频空调控制方法及控制器
CN107947663B (zh) 一种低频振动抑制方法及装置
JP6621356B2 (ja) 電力変換装置、モータ駆動装置及びそれを用いた冷凍機器
CN109546913B (zh) 一种电容小型化电机驱动装置
JP5968564B2 (ja) 電力変換装置
CN106982022A (zh) 一种无电解电容逆变器永磁同步电机的起动方法
CN107222138B (zh) 一种考虑磁阻转矩的转矩脉动最小容错控制方法
CN102891615A (zh) 不平衡电压下pwm整流器输出功率稳定的无差拍控制方法
WO2015096090A1 (zh) 压缩机力矩自动补偿方法、装置和压缩机及其控制方法
CN111800037A (zh) 一种无电解电容控制系统、控制方法、压缩机和制冷设备
CN106301127A (zh) 一种异步电机模型预测磁链控制方法及装置
CN112787495B (zh) 变频控制器及其控制方法、变频电器以及电子设备
CN104315651B (zh) 一种单相变频空调控制方法及控制器
WO2018068390A1 (zh) 无电解电容电机驱动系统及其弱磁控制方法和控制装置
JPH09215398A (ja) インバータの制御装置
CN107171616A (zh) 功率变换控制方法及装置
JP5591215B2 (ja) 電力変換装置
CN112787496B (zh) 变频控制器及其控制方法和变频电器
JP2015042010A (ja) モータ駆動装置、モータ駆動モジュール、圧縮機及びこれを備えた冷凍装置
CN109039191B (zh) 一种Quasi-Z源间接矩阵变换器优化运行的电机控制方法
CN114301361B (zh) 一种基于母线电流控制的无电解电容永磁同步电机驱动系统控制方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CB03 Change of inventor or designer information
CB03 Change of inventor or designer information

Inventor after: Xu Guojing

Inventor after: Liu Juke

Inventor after: Cheng Yongfu

Inventor after: Gao Baohua

Inventor after: Dong Jinsheng

Inventor before: Xu Guojing

Inventor before: Liu Juke

Inventor before: Cheng Yongfu