CN106654331B - 一种有机相氧化还原电解液及其在液流电池中的应用 - Google Patents

一种有机相氧化还原电解液及其在液流电池中的应用 Download PDF

Info

Publication number
CN106654331B
CN106654331B CN201510740767.2A CN201510740767A CN106654331B CN 106654331 B CN106654331 B CN 106654331B CN 201510740767 A CN201510740767 A CN 201510740767A CN 106654331 B CN106654331 B CN 106654331B
Authority
CN
China
Prior art keywords
electrolyte
active material
electrode active
organic phase
benzophenone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201510740767.2A
Other languages
English (en)
Other versions
CN106654331A (zh
Inventor
李永丹
邢学奇
赵宜成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University filed Critical Tianjin University
Priority to CN201510740767.2A priority Critical patent/CN106654331B/zh
Publication of CN106654331A publication Critical patent/CN106654331A/zh
Application granted granted Critical
Publication of CN106654331B publication Critical patent/CN106654331B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/188Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)
  • Secondary Cells (AREA)

Abstract

本发明公开一种有机相氧化还原电解液及其在液流电池中的应用,电解液由正极活性物质、负极活性物质、支持电解质和有机溶剂组成,支持电解质的摩尔浓度为0.01‑8.0mol/L;正极和负极活性物质的摩尔浓度为0.001‑5.0mol/L。与现有技术相比,本发明的有机液流电池相电解液的正极和负极电解液组分相同,有效避免了因串液引起的电解液失效问题;具有较高的开路电压,电池的能量密度高;活性物质稳定性好,循环寿命长。

Description

一种有机相氧化还原电解液及其在液流电池中的应用
技术领域
本发明属于储能氧化还原液流电池领域,特别涉及一种有机相氧化还原液流电池电解液。
背景技术
氧化还原液流电池是一种将溶有电活性物质的正负极电解液储存在外置的储液罐里的装置。由于其这个特性,液流电池技术具有成本低、规模大、可靠性高等优点,因而被用于大规模电能的储备系统。传统的液流电池使用水作为溶剂,限制了电池电压,导致系统的总能量密度低。近年来,很多研究者使用具有较宽电化学窗口的有机溶剂替代水开发出有机相的液流电池。
目前,有机相的液流电池的研究主要集中在以金属配合物为活性物质的研究。然而,大多数金属配合物活性物质的合成过程较为繁杂,成本较高,同时在有机溶剂中的溶解能力有限。一般地,有机物在有机溶剂里具有较高的溶解度,因此选用有机物作为活性物质的有机相液流电池受到了广泛关注。但是,由于有机物的副反应多,电池的库伦效率低、稳定性差;同时,当正极电解液和负极电解液使用两种不同活性物质发生串液时,导致电池的电解液失效。
发明内容
本发明的目的在于克服现有技术的不足,提供一种有机相电解液,可用于液流电池。这种有机相液流电池电解液具有电解液制备简单、开路电压高、能量效率高以及稳定性高等优点。
本发明的目的通过下述技术方案予以实现:
一种有机相氧化还原电解液,由正极活性物质、负极活性物质、支持电解质和有机溶剂组成,其中:
所述负极活性物质为二苯甲酮、2,2’-二甲基苯酮、3,3’-二甲基苯酮、4,4’-二甲基苯酮、5,5’-二甲基苯酮、6,6’-二甲基苯酮、2,2’-二甲氧基苯酮、3,3’-二甲氧基苯酮、4,4’-二甲氧基苯酮、5,5’-二甲氧基苯酮或者6,6’-二甲氧基苯酮;
所述正极活性物质为1,4-二甲氧基苯、2,5-二叔丁基-1,4-二甲氧基苯、1,4-二(2-甲氧基乙氧基)-2,5-二叔丁基苯、2,4,6-三溴苯甲醚、噻蒽、N-甲基吩噻嗪、N-乙基吩噻嗪或者吩噻嗪;
所述支持电解质为不参加电化学反应的四乙基铵六氟磷酸盐、四乙基铵四氟硼酸盐、四乙基铵高氯酸盐、四丁基铵六氟磷盐、四丁基铵四氟硼酸盐或者四丁基铵高氯酸盐;
所述有机溶剂包括碳酸乙烯酯、碳酸丙烯酯、乙腈、四氢呋喃、二甲基亚砜、二甲基甲酰胺、乙二醇二甲醚或者乙二醇二乙醚;
在上述技术方案中,支持电解质的摩尔浓度为0.01-8.0mol/L,优选0.5—2mol/L;正极活性物质的摩尔浓度可为0.001-5.0mol/L,优选0.1—3mol/L;负极活性物质的摩尔浓度可为0.001-5.0mol/L,优选0.1—3mol/L。
在上述技术方案中,支持电解质,正极活性物质和负极活性物质的摩尔比为(1—5):1:1,优选(1—3):1:1。
在上述技术方案中,支持电解质、正极活性物质和负极活性物质(即采用“或”进行限定的组分)包括只选择一种组分的方式,和选择多种的组分组合方式,在多种组分组合方式中,各个组分的摩尔比为等摩尔比,例如等摩尔比的四乙基铵六氟磷酸盐和四乙基铵四氟硼酸盐组合作为支持电解质使用、等摩尔比的5,5’-二甲基苯酮和5,5’-二甲氧基苯酮组合作为负极活性物质使用、等摩尔比的1,4-二甲氧基苯和2,4,6-三溴苯甲醚组合作为正极活性物质使用。
在上述技术方案中,有机溶剂根据使用的支持电解质,正负极活性物质进行选择使用,以能够溶解并形成均匀的有机相溶液为宜,可选择一种有机溶剂进行使用,或者选择多种有机溶剂进行等体积混合使用。
本发明有机相液流电池电解液的制备方法,即按照配比需要将正极活性物质,负极活性物质和支持电解质溶于有机溶剂并形成均匀的有机相溶液即可。
利用本发明的有机相氧化还原电解液组成的液流电池,即本发明的有机相氧化还原电解液在液流电池中的应用,液流电池的正负电极均选用石墨毡材料,离子隔膜为有机阴离子交换膜,本发明的有机相氧化还原电解液同时作为液流电池的正极电解液和负极电解液,进行使用。
与现有技术相比,本发明的有机液流电池相电解液的正极和负极电解液组分相同,有效避免了因串液引起的电解液失效问题;具有较高的开路电压,电池的能量密度高;活性物质稳定性好,循环寿命长。
附图说明
图1是本发明实施例1中使用二苯甲酮/噻蒽电解液的循环伏安曲线图。
图2是本发明实施例3中使用4,4’-二甲基苯酮/2,5-二叔丁基-1,4-二甲氧基苯电解液的循环伏安曲线图。
图3是本发明实施例4中使用4,4’-二甲氧基苯酮/2,5-二叔丁基-1,4-二甲氧基苯电解液电池的循环伏安曲线图。
图4是本发明实施例5中使用二苯甲酮/2,5-二叔丁基-1,4-二甲氧基苯电解液的充放电曲线图。
具体实施方式
下面结合具体实施例进一步说明本发明的技术方案。
实施例1
称取二苯甲酮、噻蒽和四乙基铵六氟磷酸盐溶于乙腈中配成25mL电解液。二苯甲酮,噻蒽和四乙基铵六氟磷酸盐在乙腈中的摩尔浓度分别是0.01mol/L,0.01mol/L和0.3mol/L。将上述制备的电解液通入氮气除氧后,用三电极体系测试,得到二苯甲酮/噻蒽电解液的循环伏安曲线,参比电极、对电极和工作电极分别是Ag/Ag+电极、石墨电极和玻碳电极。
实施例2
称取二苯甲酮、2,5-二叔丁基-1,4-二甲氧基苯和四乙基铵六氟磷酸盐溶于乙腈中配成30mL电解液。二苯甲酮,2,5-二叔丁基-1,4-二甲氧基苯和四乙基铵四氟硼酸盐在乙腈中的摩尔浓度分别是0.01mol/L,0.01mol/L和0.1mol/L。将上述电解液通入氮气除氧后,用三电极体系测试,得到二苯甲酮/2,5-二叔丁基-1,4-二甲氧基苯电解液的循环伏安曲线。参比电极、对电极和工作电极分别是Ag/Ag+电极、石墨电极和玻碳电极。
实施例3
称取4,4’-二甲基苯酮、2,5-二叔丁基-1,4-二甲氧基苯和四乙基铵四氟硼酸盐溶于乙腈中配成25mL电解液。4,4’-二甲基苯酮,2,5-二叔丁基-1,4-二甲氧基苯和四乙基铵四氟硼酸盐在乙腈中的摩尔浓度分别是0.03mol/L,0.03mol/L和0.5mol/L。将上述电解液通入氮气除氧后,用三电极体系测试,得到4,4’-二甲基苯酮/2,5-二叔丁基-1,4-二甲氧基苯电解液的循环伏安曲线。参比电极、对电极和工作电极分别是Ag/Ag+电极、石墨电极和玻碳电极。
实施例4
称取4,4’-二甲氧基苯酮、2,5-二叔丁基-1,4-二甲氧基苯和四丁基铵四氟硼酸盐溶于乙腈中配成50mL电解液。4,4’-二甲氧基苯酮,2,5-二叔丁基-1,4-二甲氧基苯和四丁基铵四氟硼酸盐在乙腈中的摩尔浓度分别是0.03mol/L,0.03mol/L和0.3mol/L。将上述电解液通入氮气除氧后,用三电极体系测试,得到4,4’-二甲氧基苯酮/2,5-二叔丁基-1,4-二甲氧基苯电解液的循环伏安曲线,参比电极、对电极和工作电极分别是Ag/Ag+电极、石墨电极和玻碳电极。
实施例5
按实例2方法配置100mL二苯甲酮/2,5-二叔丁基-1,4-二甲氧基苯电解液。支持电解质四乙基铵六氟磷酸盐,正极和负极活性物质在乙腈中的摩尔浓度分别是0.5mol/L,0.005mol/L和0.005mol/L。将配置的电解液进行充放电测试:分别在正极储液罐和负极储液罐中加入上述50mL电解液,用液流电池系统进行充放电测试并记录数据。液流电池的正负电极均为2cm×2cm×0.5cm的石墨毡,离子交换膜为有机阴离子交换膜(市购自天津市蓝水晶净化制冷设备技术有限公司),充放电电流密度为0.5mA/cm2
依照上述发明内容的有机相电解液的配方,进行组分和含量的调整,均能够进行电解液的配置。按照上述实施例的测试方式进行性质测试,基本展现出形状一致的循环伏安曲线图和充放电图,用其组装的有机相液流电池一方面可以拥有较高的开路电压,提高电池的能量密度,另一方面避免了因正负极电解液串液引起的电解液失效,经测试的平均充放电电流密度达到0.5—0.8mA/cm2以上。
以上对本发明做了示例性的描述,应该说明的是,在不脱离本发明的核心的情况下,任何简单的变形、修改或者其他本领域技术人员能够不花费创造性劳动的等同替换均落入本发明的保护范围。

Claims (9)

1.一种有机相氧化还原电解液,其特征在于,由正极活性物质、负极活性物质、支持电解质和有机溶剂组成,其中:
所述负极活性物质为二苯甲酮、2,2’-二甲基苯酮、3,3’-二甲基苯酮、4,4’-二甲基苯酮、5,5’-二甲基苯酮、6,6’-二甲基苯酮、2,2’-二甲氧基苯酮、3,3’-二甲氧基苯酮、4,4’-二甲氧基苯酮、5,5’-二甲氧基苯酮或者6,6’-二甲氧基苯酮;
所述正极活性物质为1,4-二甲氧基苯、2,5-二叔丁基-1,4-二甲氧基苯、1,4-二(2-甲氧基乙氧基)-2,5-二叔丁基苯、2,4,6-三溴苯甲醚、噻蒽、N-甲基吩噻嗪、N-乙基吩噻嗪或者吩噻嗪;
所述支持电解质为不参加电化学反应的四乙基铵六氟磷酸盐、四乙基铵四氟硼酸盐、四乙基铵高氯酸盐、四丁基铵六氟磷盐、四丁基铵四氟硼酸盐或者四丁基铵高氯酸盐;
所述有机溶剂包括碳酸乙烯酯、碳酸丙烯酯、乙腈、四氢呋喃、二甲基亚砜、二甲基甲酰胺、乙二醇二甲醚或者乙二醇二乙醚;
支持电解质的摩尔浓度为0.01-8.0mol/L;正极活性物质的摩尔浓度为0.001-5.0mol/L;负极活性物质的摩尔浓度为0.001-5.0mol/L;支持电解质,正极活性物质和负极活性物质的摩尔比为(1—5):1:1。
2.根据权利要求1所述的一种有机相氧化还原电解液,其特征在于,支持电解质的摩尔浓度为0.5—2mol/L;正极活性物质的摩尔浓度为0.1—3mol/L;负极活性物质的摩尔浓度为0.1—3mol/L。
3.根据权利要求1所述的一种有机相氧化还原电解液,其特征在于,支持电解质,正极活性物质和负极活性物质的摩尔比为(1—3):1:1。
4.根据权利要求1所述的一种有机相氧化还原电解液,其特征在于,支持电解质、正极活性物质和负极活性物质包括只选择一种组分的方式,和选择多种的组分组合方式,在多种组分组合方式中,各个组分的摩尔比为等摩尔比。
5.根据权利要求4所述的一种有机相氧化还原电解液,其特征在于,选择等摩尔比的四乙基铵六氟磷酸盐和四乙基铵四氟硼酸盐组合作为支持电解质使用、等摩尔比的5,5’-二甲基苯酮和5,5’-二甲氧基苯酮组合作为负极活性物质使用、等摩尔比的1,4-二甲氧基苯和2,4,6-三溴苯甲醚组合作为正极活性物质使用。
6.根据权利要求1所述的一种有机相氧化还原电解液,其特征在于,有机溶剂根据使用的支持电解质,正负极活性物质进行选择使用,以能够溶解并形成均匀的有机相溶液为宜,可选择一种有机溶剂进行使用,或者选择多种有机溶剂进行等体积混合使用。
7.有机相氧化还原电解液的制备方法,其特征在于,按照配比需要将正极活性物质,负极活性物质和支持电解质溶于有机溶剂并形成均匀的有机相溶液即可。
8.如权利要求1所述的有机相氧化还原电解液在液流电池中的应用,其特征在于,有机相氧化还原电解液同时作为液流电池的正极电解液和负极电解液,进行使用。
9.根据权利要求8所述的应用,其特征在于,液流电池的正负电极均选用石墨毡材料,离子隔膜为有机阴离子交换膜。
CN201510740767.2A 2015-11-04 2015-11-04 一种有机相氧化还原电解液及其在液流电池中的应用 Expired - Fee Related CN106654331B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510740767.2A CN106654331B (zh) 2015-11-04 2015-11-04 一种有机相氧化还原电解液及其在液流电池中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510740767.2A CN106654331B (zh) 2015-11-04 2015-11-04 一种有机相氧化还原电解液及其在液流电池中的应用

Publications (2)

Publication Number Publication Date
CN106654331A CN106654331A (zh) 2017-05-10
CN106654331B true CN106654331B (zh) 2020-05-08

Family

ID=58851260

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510740767.2A Expired - Fee Related CN106654331B (zh) 2015-11-04 2015-11-04 一种有机相氧化还原电解液及其在液流电池中的应用

Country Status (1)

Country Link
CN (1) CN106654331B (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019003933A (ja) * 2017-06-16 2019-01-10 パナソニックIpマネジメント株式会社 フロー電池
JP6985763B2 (ja) * 2017-07-20 2021-12-22 ボード オブ トラスティーズ オブ ミシガン ステイト ユニバーシティBoard Of Trustees Of Michigan State University レドックスフロー電池のための活物質
JP6939636B2 (ja) * 2018-02-22 2021-09-22 トヨタ自動車株式会社 電解液およびリチウムイオン電池
PT3899996T (pt) * 2018-12-20 2024-02-12 Victoria Link Ltd Composições de eletrólito
CN111665373A (zh) * 2020-06-29 2020-09-15 上海大学 一种探测光电材料微区光电性能的方法
CN112531191B (zh) * 2020-12-04 2021-11-02 北京航空航天大学 一种微乳液液流电池电解液及其制备方法
CN112467193B (zh) * 2021-01-28 2021-10-29 上海瑞浦青创新能源有限公司 一种安全型锂离子电池及其制备方法
CN114976169A (zh) * 2021-02-25 2022-08-30 国家能源投资集团有限责任公司 电解液及其应用和液流电池和电池堆
CN115347207B (zh) * 2022-10-19 2023-04-25 深圳大学 一种液流电池电解液及其制备方法和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1965427A (zh) * 2004-04-01 2007-05-16 3M创新有限公司 用于可再充电锂离子电池的氧化还原对
CN101000970A (zh) * 2006-01-11 2007-07-18 比亚迪股份有限公司 电解液和含有该电解液的锂离子电池及它们的制备方法
CN103000924A (zh) * 2011-09-16 2013-03-27 清华大学 一种有机相双液流电池
CN103682407A (zh) * 2012-08-30 2014-03-26 中国科学院大连化学物理研究所 一种锌铁单液流电池
CN104852064A (zh) * 2014-02-13 2015-08-19 天津大学 一种有机-卤素电解质及其在液流电池中应用
CN106471663A (zh) * 2014-06-27 2017-03-01 巴登-符腾堡州太阳能和氢能公益基金研究中心 利用氧化还原穿梭添加剂的储能器的可控式放电

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1965427A (zh) * 2004-04-01 2007-05-16 3M创新有限公司 用于可再充电锂离子电池的氧化还原对
CN101000970A (zh) * 2006-01-11 2007-07-18 比亚迪股份有限公司 电解液和含有该电解液的锂离子电池及它们的制备方法
CN103000924A (zh) * 2011-09-16 2013-03-27 清华大学 一种有机相双液流电池
CN103682407A (zh) * 2012-08-30 2014-03-26 中国科学院大连化学物理研究所 一种锌铁单液流电池
CN104852064A (zh) * 2014-02-13 2015-08-19 天津大学 一种有机-卤素电解质及其在液流电池中应用
CN106471663A (zh) * 2014-06-27 2017-03-01 巴登-符腾堡州太阳能和氢能公益基金研究中心 利用氧化还原穿梭添加剂的储能器的可控式放电

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
高性能液流电池电解液研究;梁新星;《中国优秀硕士学位论文全文数据库-工程科技II辑》;20140615;摘要 *

Also Published As

Publication number Publication date
CN106654331A (zh) 2017-05-10

Similar Documents

Publication Publication Date Title
CN106654331B (zh) 一种有机相氧化还原电解液及其在液流电池中的应用
Zhong et al. Organic electroactive molecule-based electrolytes for redox flow batteries: status and challenges of molecular design
Charlton et al. A bipolar verdazyl radical for a symmetric all-organic redox flow-type battery
CN106654332B (zh) 一种有机相电解液及其在液流电池负极中的应用
Chen et al. Molybdenum polyoxometalates as active species for energy storage in non-aqueous media
KR101686127B1 (ko) 전 유기계 활물질을 포함하는 레독스 흐름전지
CN112531162B (zh) 基于氮杂共轭多孔聚合物的水系质子电池电极及其制备方法
Xu et al. A high-rate nonaqueous organic redox flow battery
WO2022222555A1 (zh) 一种基于氧化还原靶向反应的稳定且高容量的中性水系液流锂电池
Xing et al. A low potential solvent-miscible 3-methylbenzophenone anolyte material for high voltage and energy density all-organic flow battery
Wang et al. A membrane-free, aqueous/nonaqueous hybrid redox flow battery
CN112490477B (zh) 基于含氧化还原活性侧基单元的共轭微孔聚合物负极的水系全有机混合液流电池
Yamazaki et al. Hybrid capacitors utilizing halogen-based redox reactions at interface between carbon positive electrode and aqueous electrolytes
Rodriguez et al. Fluorenone based anolyte for an aqueous organic redox-flow battery
CN114204018A (zh) 一种水系双离子混合电解液及基于其的水系离子电池
Tegegne et al. N-methylphenothiazine as stable and low-cost catholyte for nonaqueous organic redox flow battery
CN110556560B (zh) 一种儿茶酚类正极电解液及其在液流电池中的应用
Liu et al. An integrated solar redox flow battery using a single Si photoanode and near-neutral electrolytes
CN104300167B (zh) 一种有机相液流电池
CN113066992B (zh) 一种基于双金属mof正极和有机物负极的碱性水系单液流电池
CN115051006A (zh) 一种中性水系全醌有机液流电池电对及其制备方法和应用
TWI825831B (zh) 氧化還原液流電池電解液、其製備方法以及氧化還原液流電池
TWI842300B (zh) 氧化還原液流電池電解液、其製備方法以及氧化還原液流電池
Liu et al. The Impact of Formate-Based Electrolytes on The Electrochemical Performance of Asymmetric Supercapacitors Containing Activated Carbon and MnO2 as Electrode Materials
US11881605B2 (en) Low-temperature aqueous redox flow battery

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200508

Termination date: 20211104