CN106653850A - 基于石墨烯/碳纳米管复合吸收层的人工神经突触晶体管 - Google Patents
基于石墨烯/碳纳米管复合吸收层的人工神经突触晶体管 Download PDFInfo
- Publication number
- CN106653850A CN106653850A CN201610848037.9A CN201610848037A CN106653850A CN 106653850 A CN106653850 A CN 106653850A CN 201610848037 A CN201610848037 A CN 201610848037A CN 106653850 A CN106653850 A CN 106653850A
- Authority
- CN
- China
- Prior art keywords
- layer
- graphene
- transistor
- carbon nanotube
- source electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 111
- 229910021389 graphene Inorganic materials 0.000 title claims abstract description 62
- 239000002041 carbon nanotube Substances 0.000 title claims abstract description 44
- 229910021393 carbon nanotube Inorganic materials 0.000 title claims abstract description 43
- 239000002131 composite material Substances 0.000 title claims abstract description 28
- 210000000225 synapse Anatomy 0.000 title claims abstract description 27
- 210000005036 nerve Anatomy 0.000 title abstract description 7
- 210000002569 neuron Anatomy 0.000 claims abstract description 23
- 230000003287 optical effect Effects 0.000 claims abstract description 19
- 239000000758 substrate Substances 0.000 claims abstract description 15
- 238000003860 storage Methods 0.000 claims abstract description 10
- 239000010410 layer Substances 0.000 claims description 71
- 238000010521 absorption reaction Methods 0.000 claims description 23
- 239000002184 metal Substances 0.000 claims description 14
- 229910052751 metal Inorganic materials 0.000 claims description 14
- 239000000463 material Substances 0.000 claims description 9
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 4
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims description 4
- 229910052799 carbon Inorganic materials 0.000 claims description 4
- 239000011651 chromium Substances 0.000 claims description 4
- 238000000605 extraction Methods 0.000 claims description 4
- 239000010936 titanium Substances 0.000 claims description 4
- 239000002356 single layer Substances 0.000 claims description 3
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 2
- 150000001336 alkenes Chemical class 0.000 claims description 2
- 229910052804 chromium Inorganic materials 0.000 claims description 2
- 239000002079 double walled nanotube Substances 0.000 claims description 2
- 239000002048 multi walled nanotube Substances 0.000 claims description 2
- 229910052759 nickel Inorganic materials 0.000 claims description 2
- 229910052763 palladium Inorganic materials 0.000 claims description 2
- 239000004065 semiconductor Substances 0.000 claims description 2
- 239000004575 stone Substances 0.000 claims description 2
- 229910052719 titanium Inorganic materials 0.000 claims description 2
- 229910021404 metallic carbon Inorganic materials 0.000 claims 1
- 239000002071 nanotube Substances 0.000 claims 1
- 230000003044 adaptive effect Effects 0.000 abstract 1
- 230000010354 integration Effects 0.000 abstract 1
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 abstract 1
- 238000005259 measurement Methods 0.000 abstract 1
- 238000000034 method Methods 0.000 description 13
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 4
- 238000013461 design Methods 0.000 description 4
- 238000001259 photo etching Methods 0.000 description 4
- 230000005669 field effect Effects 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 238000003909 pattern recognition Methods 0.000 description 3
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 3
- 239000004926 polymethyl methacrylate Substances 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000010365 information processing Effects 0.000 description 2
- 230000015654 memory Effects 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 230000008447 perception Effects 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 230000004043 responsiveness Effects 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 230000003956 synaptic plasticity Effects 0.000 description 2
- 108010022579 ATP dependent 26S protease Proteins 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 238000013473 artificial intelligence Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000011889 copper foil Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 230000008034 disappearance Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000005566 electron beam evaporation Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 230000007787 long-term memory Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 230000006403 short-term memory Effects 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- -1 wherein Chemical compound 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/02—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
- H01L27/04—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
- H01L27/08—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
- H01L27/085—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
- H01L27/088—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/10—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
- H01L29/1025—Channel region of field-effect devices
- H01L29/1029—Channel region of field-effect devices of field-effect transistors
- H01L29/1033—Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/12—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/16—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/12—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/16—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
- H01L29/1606—Graphene
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Ceramic Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Nanotechnology (AREA)
- Composite Materials (AREA)
- Materials Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Carbon And Carbon Compounds (AREA)
- Thin Film Transistor (AREA)
Abstract
本发明公开了一种基于石墨烯/碳纳米管复合吸收层的人工突触晶体管,该晶体管包括自下而上依次设置的衬底、栅极介质层、石墨烯/碳纳米管复合吸收层;所述石墨烯/碳纳米管复合吸收层包括至少一层石墨烯层和至少一层碳纳米管层,并且,至少一层石墨烯层与所述栅极介质层接触,所述石墨烯层的两端分别设有源极、漏极,且所述碳纳米管层不与所述源极、漏极接触;将所述的晶体管作为光学神经元系统的基本单元,将多个晶体管进行阵列集成,通过引线与外部测量设备相互连接形成智能光学神经元系统。利用该神经系统分布式存储、并行运算和自适应学习等优势,能够快速有效地进行图像识别。本发明还提供了通过该系统实现信息存储和图像识别的具体方案。
Description
技术领域
本发明有关于一种基于石墨烯/碳纳米管复合吸收层的人工神经突触晶体管,属于人工智能领域。
背景技术
神经元芯片是模拟生物大脑结构和功能进行运算的构架,相比传统冯·诺依曼计算机,具有经验学习、强容错性和自适应性等能力,在模式识别、感知和在复杂环境中作决策等方面展现出独有的优势,在探寻新的信息表示、存储、并行运算和模式识别等领域具有极高的研究应用价值。
神经突触(Synapses)是神经元间进行信息传递的唯一结点,其可塑性指神经元之间的连接效率,根据其记忆时间的长短可分为短时可塑性(Short-term plasticity,STP)和长时可塑性(Long-term plasticity,LTP),在心理学上分别对应短时记忆和长时记忆,这正是神经元系统进行运算、学习和记忆的基础。
目前,关于人工神经突触和神经网络系统的构建和模拟,大多在晶体管(transistors)或忆阻器(memorisistors)结构中实现。但对于电激励模拟形式的晶体管或忆阻器,其输入和输出电信号间的耦合系数是固定的,不利于实现复杂的运算功能。为了解决这类问题,有研究组采用性能可调的材料进行器件结构设计,如:利用扭转双层石墨烯构建场效应晶体管(Tian, H. et al. Graphene dynamic synapse with modulatableplasticity. Nano Lett. 15, 8013-8019 (2015).),在同一个器件中实现了神经元的兴奋和抑制两种功能,并且通过调节栅压控制了突触可塑性。但真正的神经元系统,是集数据采集和信息处理于一体的,目前人工突触中数据感知模块的缺失将导致大量沉冗电路和非必要功耗产生,因此也限制了人工神经元系统的构建。
发明内容
为了解决以上问题,本发明的目的在于提供一种基于石墨烯/碳纳米管复合吸收层的人工神经突触晶体管。本发明还具体的提供了关于石墨烯/碳纳米管复合吸收层的人工神经突触晶体管在光信息存储或图像识别上的应用。
为达到上述目的,本发明首先提供了一种基于石墨烯碳纳米管复合吸收层的人工突触晶体管,其中,该晶体管包括衬底、栅极介质层、石墨烯/碳纳米管复合吸收层、源极和漏极。
根据本发明的具体实施方案,在上述人工突触晶体管中,衬底的材料可以是本领域中制备衬底所常用的材料,优选地,所述衬底的材料为半导体材料。衬底可选用但不限于硅片、蓝宝石等硬质或柔性衬底,例如采用高掺杂p型Si衬底,用于支撑石墨烯/碳纳米管复合吸收层光探测晶体管结构。
根据本发明的具体实施方案,在上述人工突触晶体管中,所述石墨烯/碳纳米管复合吸收层中的碳纳米管包括单壁碳纳米管、双壁碳纳米管、多壁碳纳米管、金属性碳纳米管、半导体性碳纳米管中的一种或几种的组合,其中,碳纳米管层厚度为1-10nm。
根据本发明的具体实施方案,在上述人工突触晶体管中,所述石墨烯/碳纳米管复合吸收层中的石墨烯为单层石墨烯、双层石墨烯或少层石墨烯;优选地,所述少层石墨烯的层数为单层或小于(含)10层。石墨烯层所采用的石墨烯可以是掺杂的或未掺杂的,可以通过包括机械剥离、化学气相沉积等工艺来制备。
根据本发明的具体实施方案,在上述人工突触晶体管中,所述源极与漏极分别包括两层金属,其下层金属与所述石墨烯层接触;优选地,所述源极与漏极的下层金属不同,可以分别选用钛、钯、铬、和镍中的两种组合;更优选地,所述源极和漏极的总厚度为20-50nm,单层金属层的厚度至少为3nm。
根据本发明的具体实施方案,具体制备方法可采用常规方式:栅极介质层可通过热氧化法形成在衬底表面;碳纳米管层可以制成悬浊液并通过旋涂技术沉积在栅极介质层表面;石墨烯可以是常规方法制备并通过PMMA辅助的方法转移到碳纳米管层的表面;源极和漏极可以通过光刻法、lifi-off工艺、电子蒸发法形成于石墨烯的表面;在石墨烯的表面可以通过光刻制备出石墨烯沟道,并采用氧等离子体技术除去边缘石墨烯。当具有多层石墨烯、碳纳米管时,重复进行相关的制备步骤即可。
采用激光作为激励源,碳纳米管层为主要光吸收层,石墨烯层为辅助光吸收层并作为光生载流子的输运沟道。
碳纳米管和石墨烯是碳材料的同素异形体,它们可通过π-π键合的方式形成界面,将有助于载流子的输运。碳纳米管和石墨烯响应波长范围覆盖红外波段,能很好地分离光生电子-空穴对。碳纳米管和石墨烯都有优良的电学性质,载流子迁移率较高,器件的响应速度快。而且,由于碳纳米管和石墨烯的大规模制备技术趋于成熟,本发明的器件可进行规模化制备,成本也将更低。
根据本发明的具体实施方案,可通过控制栅极电压精确调节石墨烯沟道中载流子的浓度,进而调节器件对光的响应度。亦可采用金属叉指(interdigitated fingers)电极,增强有效光探测面积增加响应度。
本发明还提供了一种智能光学神经元系统,将上述人工突触晶体管构建成阵列,将所述阵列作为所述智能光学神经元系统的子单元。
在上述智能光学神经元系统,优选地,所述衬底下表面、所述源极和漏极的上表面分别设置有引出电极,所述引出电极通过电流测量器相互连接。
本发明还提供了上述基于石墨烯/碳纳米管复合吸收层的人工突触晶体管在光信息存储设备的应用。
本发明还提供了上述基于石墨烯/碳纳米管复合吸收层的人工突触晶体管在图像识别中的应用。
与现有技术相比,本发明的优点至少在于:将数据采集和信息处理有效结合,能够有效降低功耗;利用石墨烯线性能带色散关系,通过控制栅压获得可调突触塑性,达到响应可调。
附图说明
图1为实施例1提供的基于石墨烯/碳纳米管复合吸收层的人工突触晶体管的纵向剖面示意图。
图2为实施例1提供的基于石墨烯/碳纳米管复合吸收层的人工突触晶体管的FET(FET, Field Effect Transistor)示意图。
图3为基于石墨烯/碳纳米管复合吸收层的人工突触晶体管在光照下的转移曲线。
图4为实施例2提供的基于石墨烯/碳纳米管复合吸收层的智能光学神经元系统的光存储设备示意图。
图5为实施例3提供的基于石墨烯/碳纳米管复合吸收层的智能光学神经元系统的模式识别流程示意图。
具体实施方式
下面结合附图对本发明作进一步详细描述。
实施例1:本实施例提供了一种基于石墨烯/碳纳米管复合吸收层的人工突触晶体管的设计方案。结合图1所示,具体步骤如下:
A、在衬底101(p型重掺杂的硅片)上面采用热氧化方法制备300nm厚二氧化硅层作为栅极介质层102,采用丙酮、异丙醇、去离子水分别超声清洗10分钟;
B、碳纳米管悬浊液旋涂在介质层上,室温晾干形成碳纳米管层103;
C、在碳纳米管层上采用PMMA辅助的方法,转移在铜箔上CVD法生长的单层石墨烯(104),在丙酮中室温浸泡至少12小时除去PMMA层,形成复合吸收层;
D、采用光刻方法,lift-off工艺,电子束蒸发制备源极的第一导电金属层105和第二导电金属层106(Cr/Au=10nm/40nm或Ti/Au=10nm/40nm或Pt/Au=10nm/40nm)和漏极的第一导电金属层107和第二导电金属层108(Cr/Au=10nm/40nm或Ti/Au=10nm/40nm或Pt/Au=10nm/40nm);
E、第二次光刻制备出石墨烯沟道,并采用氧等离子体技术除去边缘石墨烯;
在上述晶体管的源极、漏极和栅极引线,得到人工突触晶体管(FET, Field EffectTransistor),其结构如图2所示。
实施例二:本实施例提供了一种基于石墨烯/碳纳米管复合吸收层的智能光学神经元系统的光信息存储设备的设计方案。如图4所示,上述基于石墨烯/碳纳米管复合吸收层的人工突触晶体管203栅极通过保护电阻204连接位线201,漏极通过保护电阻204连接字线202,沟道电阻值可以通过测量仪表设备205结合信号处理电路读出。该光存储设备包括阵列分布的多个人工突触晶体管203及相关部件,相应位线201和字线202也可以适宜布置多个,通过信号处理电路读出阵列内所有晶体管中电阻值,进行信息的存储。
实施例三:本实施例提供了一种基于石墨烯/碳纳米管复合吸收层的智能光学神经元系统的图像识别设计方案。如图5,场景图像通过智能光学神经元系统进行采集、处理和特征参数存储组成图像数据库,再次进行图像采集处理后进行特征参数比对,进行图像识别。
Claims (10)
1.一种基于石墨烯碳纳米管复合吸收层的人工突触晶体管,其特征在于,该晶体管包括自下而上依次设置的衬底、栅极介质层、石墨烯/碳纳米管复合吸收层;
所述石墨烯/ 碳纳米管复合吸收层包括至少一层石墨烯层和至少一层碳纳米管层,
并且,至少一层石墨烯层与所述栅极介质层接触,所述石墨烯层的两端分别设有源极、漏极,且所述碳纳米管层不与所述源极、漏极接触。
2.如权利要求1所述的晶体管,其特征在于,所述衬底的材料为半导体材料。
3.如权利要求1所述的晶体管,其特征在于,所述石墨烯/碳纳米管复合吸收层中的碳纳米管包括单壁碳纳米管、双壁碳纳米管、多壁碳纳米管、金属性碳纳米管、半导体性碳纳米管中的一种或几种的组合,其中,碳纳米管层厚度为1-10nm。
4.如权利要求1所述的晶体管,其特征在于,所述石墨烯/碳纳米管复合吸收层中的石墨烯为单层石墨烯、双层石墨烯或少层石墨烯。
5.如权利要求1所述的晶体管,其特征在于,所述源极与漏极均包括两层材质不同的导电金属层,其中一层导电金属层与石墨烯层接触,所述的与石墨烯层相接触的源极与漏极的导电金属层其材质不同,所述源极和漏极的总厚度为20-50nm,一层导电金属层的厚度至少为3nm。
6.如权利要求5所述的晶体管,其特征在于,导电金属层的材质为钛、钯、铬、和镍中的任意一种。
7.一种智能光学神经元系统,其特征在于,将权利要求1-5任一所述的晶体管构建成阵列,将所述阵列作为所述智能光学神经元系统的子单元。
8.如权利要求7所述的智能光学神经元系统,其特征在于,衬底下表面、源极和漏极的上表面分别设置有引出电极,所述引出电极通过电流测量器相互连接。
9.如权利要求1-5任一所述的晶体管在光信息存储设备中的应用。
10.如权利要求1-5任一所述的晶体管在在图像识别中的应用。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610848037.9A CN106653850A (zh) | 2016-09-23 | 2016-09-23 | 基于石墨烯/碳纳米管复合吸收层的人工神经突触晶体管 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610848037.9A CN106653850A (zh) | 2016-09-23 | 2016-09-23 | 基于石墨烯/碳纳米管复合吸收层的人工神经突触晶体管 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN106653850A true CN106653850A (zh) | 2017-05-10 |
Family
ID=58853442
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610848037.9A Pending CN106653850A (zh) | 2016-09-23 | 2016-09-23 | 基于石墨烯/碳纳米管复合吸收层的人工神经突触晶体管 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106653850A (zh) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108336145A (zh) * | 2018-01-29 | 2018-07-27 | 中国科学院微电子研究所 | 人工神经元结构及其制备方法、信号和时间提取方法 |
CN108649095A (zh) * | 2018-04-12 | 2018-10-12 | 深圳大学 | 基于纳晶结构碳膜的场效应管结构光电器件及其制备方法 |
CN108933178A (zh) * | 2018-07-06 | 2018-12-04 | 福州大学 | 一种电子突触器件及制作方法 |
CN109037388A (zh) * | 2018-07-11 | 2018-12-18 | 深圳大学 | 一种光控神经突触仿生电子器件及其制备方法 |
WO2019200790A1 (zh) * | 2018-04-17 | 2019-10-24 | 张晗 | 基于金属阳离子修饰黑磷的突触器件及其制备方法 |
CN110690318A (zh) * | 2019-08-26 | 2020-01-14 | 深圳大学 | 一种基于双极型半导体的光控人工突触及其制备方法 |
CN110736575A (zh) * | 2019-10-23 | 2020-01-31 | 中国科学院半导体研究所 | 一种人造突触传感器及其制备方法 |
CN111192938A (zh) * | 2020-01-14 | 2020-05-22 | 天津理工大学 | 一种光电突触器件的制备及调制方法 |
CN111370526A (zh) * | 2020-03-17 | 2020-07-03 | 南京大学 | 一种视网膜形态光电传感阵列及其图片卷积处理方法 |
CN111628038A (zh) * | 2019-02-27 | 2020-09-04 | 中国科学院苏州纳米技术与纳米仿生研究所 | 神经元系统、感光类神经元器件及其制作方法和应用 |
CN112201750A (zh) * | 2020-10-09 | 2021-01-08 | 南开大学 | 一种用于模拟生物突触神经递质多路复用的双兴奋性人工突触器件的制备方法 |
CN113451423A (zh) * | 2021-07-27 | 2021-09-28 | 湖南大学 | 一种基于等离激元效应的异质结光电突触器件 |
US11574177B2 (en) | 2019-09-13 | 2023-02-07 | University Of Central Florida Research Foundation, Inc. | Photonic synapse based on graphene-perovskite quantum dot for neuromorphic computing |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102354668A (zh) * | 2011-10-12 | 2012-02-15 | 北京大学 | 一种碳基纳米材料晶体管的制备方法 |
CN104766902A (zh) * | 2014-06-16 | 2015-07-08 | 南京大学 | 基于石墨烯碳纳米管复合吸收层的红外光探测晶体管 |
-
2016
- 2016-09-23 CN CN201610848037.9A patent/CN106653850A/zh active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102354668A (zh) * | 2011-10-12 | 2012-02-15 | 北京大学 | 一种碳基纳米材料晶体管的制备方法 |
CN104766902A (zh) * | 2014-06-16 | 2015-07-08 | 南京大学 | 基于石墨烯碳纳米管复合吸收层的红外光探测晶体管 |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108336145A (zh) * | 2018-01-29 | 2018-07-27 | 中国科学院微电子研究所 | 人工神经元结构及其制备方法、信号和时间提取方法 |
CN108336145B (zh) * | 2018-01-29 | 2021-02-09 | 中国科学院微电子研究所 | 人工神经元结构及其制备方法、信号和时间提取方法 |
CN108649095A (zh) * | 2018-04-12 | 2018-10-12 | 深圳大学 | 基于纳晶结构碳膜的场效应管结构光电器件及其制备方法 |
WO2019200790A1 (zh) * | 2018-04-17 | 2019-10-24 | 张晗 | 基于金属阳离子修饰黑磷的突触器件及其制备方法 |
CN108933178B (zh) * | 2018-07-06 | 2020-11-03 | 福州大学 | 一种电子突触器件及制作方法 |
CN108933178A (zh) * | 2018-07-06 | 2018-12-04 | 福州大学 | 一种电子突触器件及制作方法 |
CN109037388A (zh) * | 2018-07-11 | 2018-12-18 | 深圳大学 | 一种光控神经突触仿生电子器件及其制备方法 |
CN109037388B (zh) * | 2018-07-11 | 2020-12-15 | 深圳大学 | 一种光控神经突触仿生电子器件及其制备方法 |
CN111628038B (zh) * | 2019-02-27 | 2022-07-05 | 中国科学院苏州纳米技术与纳米仿生研究所 | 神经元系统、感光类神经元器件及其制作方法和应用 |
CN111628038A (zh) * | 2019-02-27 | 2020-09-04 | 中国科学院苏州纳米技术与纳米仿生研究所 | 神经元系统、感光类神经元器件及其制作方法和应用 |
CN110690318A (zh) * | 2019-08-26 | 2020-01-14 | 深圳大学 | 一种基于双极型半导体的光控人工突触及其制备方法 |
CN110690318B (zh) * | 2019-08-26 | 2021-03-16 | 深圳大学 | 一种基于双极型半导体的光控人工突触及其制备方法 |
US11574177B2 (en) | 2019-09-13 | 2023-02-07 | University Of Central Florida Research Foundation, Inc. | Photonic synapse based on graphene-perovskite quantum dot for neuromorphic computing |
CN110736575A (zh) * | 2019-10-23 | 2020-01-31 | 中国科学院半导体研究所 | 一种人造突触传感器及其制备方法 |
CN111192938A (zh) * | 2020-01-14 | 2020-05-22 | 天津理工大学 | 一种光电突触器件的制备及调制方法 |
CN111192938B (zh) * | 2020-01-14 | 2021-11-30 | 天津理工大学 | 一种光电突触器件的制备及调制方法 |
CN111370526A (zh) * | 2020-03-17 | 2020-07-03 | 南京大学 | 一种视网膜形态光电传感阵列及其图片卷积处理方法 |
WO2021184407A1 (zh) * | 2020-03-17 | 2021-09-23 | 南京大学 | 一种视网膜形态光电传感阵列及其图片卷积处理方法 |
CN111370526B (zh) * | 2020-03-17 | 2023-12-26 | 南京大学 | 一种视网膜形态光电传感阵列及其图片卷积处理方法 |
CN112201750A (zh) * | 2020-10-09 | 2021-01-08 | 南开大学 | 一种用于模拟生物突触神经递质多路复用的双兴奋性人工突触器件的制备方法 |
CN112201750B (zh) * | 2020-10-09 | 2023-01-24 | 南开大学 | 一种用于模拟生物突触神经递质多路复用的双兴奋性人工突触器件的制备方法 |
CN113451423A (zh) * | 2021-07-27 | 2021-09-28 | 湖南大学 | 一种基于等离激元效应的异质结光电突触器件 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106653850A (zh) | 基于石墨烯/碳纳米管复合吸收层的人工神经突触晶体管 | |
Sun et al. | Synaptic devices based neuromorphic computing applications in artificial intelligence | |
Shim et al. | An elastic and reconfigurable synaptic transistor based on a stretchable bilayer semiconductor | |
Fu et al. | Flexible neuromorphic architectures based on self-supported multiterminal organic transistors | |
Chen et al. | Artificial synapses based on nanomaterials | |
Han et al. | Recent progress in three‐terminal artificial synapses: from device to system | |
Chen et al. | Graphene–ferroelectric transistors as complementary synapses for supervised learning in spiking neural network | |
CN109148683B (zh) | 一种基于黑磷和黑磷氧化物的范德华异质结忆阻器 | |
Lin et al. | Photoreduced nanocomposites of graphene oxide/N-doped carbon dots toward all-carbon memristive synapses | |
Wu et al. | Wearable in-sensor reservoir computing using optoelectronic polymers with through-space charge-transport characteristics for multi-task learning | |
Zhang et al. | Synthesis of wafer-scale graphdiyne/graphene heterostructure for scalable neuromorphic computing and artificial visual systems | |
He et al. | Artificial neuron devices | |
Du et al. | Dual‐gated MoS2 transistors for synaptic and programmable logic functions | |
Wang et al. | Stretchable transistor‐structured artificial synapses for neuromorphic electronics | |
CN104613861A (zh) | 一种柔性有源应变或压力传感器结构及制备方法 | |
CN109460819B (zh) | 一种用于模拟生物体光突触的方法及器件 | |
WO2021184407A1 (zh) | 一种视网膜形态光电传感阵列及其图片卷积处理方法 | |
CN113497063A (zh) | 一种基于二维铁电半导体的异源突触电子器件及其制备方法 | |
Leng et al. | Recent progress in multiterminal memristors for neuromorphic applications | |
Oh et al. | Photoelectroactive artificial synapse and its application to biosignal pattern recognition | |
Hosseini et al. | An organic synaptic circuit: toward flexible and biocompatible organic neuromorphic processing | |
Xu et al. | Optimized near-zero quantization method for flexible memristor based neural network | |
Merces et al. | Advanced Neuromorphic Applications Enabled by Synaptic Ion‐Gating Vertical Transistors | |
Dong et al. | Artificial Optoelectronic Synapse Based on Violet Phosphorus Microfiber Arrays | |
Karahaliloglu et al. | A quantum dot image processor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20170510 |
|
RJ01 | Rejection of invention patent application after publication |