CN110690318B - 一种基于双极型半导体的光控人工突触及其制备方法 - Google Patents

一种基于双极型半导体的光控人工突触及其制备方法 Download PDF

Info

Publication number
CN110690318B
CN110690318B CN201910791348.XA CN201910791348A CN110690318B CN 110690318 B CN110690318 B CN 110690318B CN 201910791348 A CN201910791348 A CN 201910791348A CN 110690318 B CN110690318 B CN 110690318B
Authority
CN
China
Prior art keywords
semiconductor
bipolar
photochromic compound
artificial synapse
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910791348.XA
Other languages
English (en)
Other versions
CN110690318A (zh
Inventor
周晔
任意
韩素婷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen University
Original Assignee
Shenzhen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen University filed Critical Shenzhen University
Priority to CN201910791348.XA priority Critical patent/CN110690318B/zh
Publication of CN110690318A publication Critical patent/CN110690318A/zh
Application granted granted Critical
Publication of CN110690318B publication Critical patent/CN110690318B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/11Devices sensitive to infrared, visible or ultraviolet radiation characterised by two potential barriers, e.g. bipolar phototransistors
    • H01L31/1105Devices sensitive to infrared, visible or ultraviolet radiation characterised by two potential barriers, e.g. bipolar phototransistors the device being a bipolar phototransistor
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K9/00Tenebrescent materials, i.e. materials for which the range of wavelengths for energy absorption is changed as a result of excitation by some form of energy
    • C09K9/02Organic tenebrescent materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1092Heterocyclic compounds characterised by ligands containing sulfur as the only heteroatom
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L2031/0344Organic materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Thin Film Transistor (AREA)

Abstract

本发明公开了一种基于双极型半导体的光控人工突触及其制备方法,所述基于双极型半导体的光控人工突触包括:半导体层;所述半导体层包括:光致变色化合物和双极型聚合物;其中,所述双极型聚合物的HOMO能级位于开环的光致变色化合物的HOMO能级和闭环的光致变色化合物的HOMO能级之间。通过施加不同波段的光实现了半导体沟道的重构,进而可以实现在相同电压极性下和相同光照波段下沟道导电性的增强或抑制,本发明采用光来重构人工突触,降低了电子突触的能耗,提高了稳定性和重复性,另外,电学端口的缩减有利于操作复杂程度的降低,较好的柔性性能也能实现器件的高机械性。

Description

一种基于双极型半导体的光控人工突触及其制备方法
技术领域
本发明涉及人工突触领域,尤其涉及的是一种基于双极型半导体的光控人工突触及其制备方法。
背景技术
在人脑的神经系统中,诸如学习和感知的许多智能功能都与外部环境刺激密切相关。这些刺激由受体检测,然后作为电化学信号传递给突触进一步加工。通过这种信息处理,我们产生对这些环境变化的特定感知并作出相应的应激反应。在神经元中,突触前膜能释放多种不同的兴奋性和抑制性神经递质来分别引起兴奋性和抑制性突触后膜电位,进而实现信号处理和传递。但是,一些突触的突触应答并不是固定的,它可以通过来自中枢神经系统的调节信号在不同的突触反应之间进行重构。一些研究报道神经系统中的一些神经调节剂在这种重构中起着重要作用。例如,中枢神经系统中的内啡肽和相关的阿片受体可以作为调节疼痛通路中神经活动的神经调节剂,对相同的有害刺激(例如极端温度,机械压力)产生显著不同的主观感受,这种内源性调节被认为是调节生物系统中疼痛感知的基础。由于神经系统中这种可调节的触觉感知,我们可以准确地感知并且适当地应答外部的环境变化。因此,为了实现这种感知可调节的人工智能系统,构建具有可重构的突触响应的人工突触至关重要。
具有复杂突触功能的人工突触的硬件实现仍然具有相当大的挑战性。现有技术中,基于互补金属氧化物半导体(Complementary Metal-Oxide Semiconductor(CMOS))技术的神经形态电路需要多个晶体管来模拟一个突触,从而极大地增加了系统复杂性并带来了可扩展性的问题。因此,一些研究团队致力于构建基于忆阻器或晶体管的人工突触装置。尽管单个器件可以模拟某些特定的突触功能,但这些人工突触都不能动态重构突触的应答。近些年来,二维材料由于其特殊的材料特性(例如原子可扩展性)可以作为传统半导体的替代品而引起了很多关注。一些研究团队已经制作了一些基于二维材料的人工突触来模拟一些特定的突触反应,并且其中一些器件也能够动态重构突触的应答。然而,这些器件中的重构都是通过附加额外的控制端口实现,例如额外的调制沟道的栅极,可调节的偏置端口,电/离子/光活性栅极的协同作用等等,这些都增加了器件制造的复杂性和操作的不便以及引起了较高的能耗,并且多个端口的相互影响不可避免地会影响器件的稳定性与重复性。
因此,现有技术还有待于改进和发展。
发明内容
本发明要解决的技术问题在于,针对现有技术的上述缺陷,提供一种基于双极型半导体的光控人工突触及其制备方法,旨在解决现有技术中人工突触稳定性与重复性较低的问题。
本发明解决技术问题所采用的技术方案如下:
一种基于双极型半导体的光控人工突触,包括:半导体层;其中,所述半导体层包括:光致变色化合物和双极型聚合物;其中,所述双极型聚合物的HOMO能级位于开环的光致变色化合物的HOMO能级和闭环的光致变色化合物的HOMO能级之间。
所述的基于双极型半导体的光控人工突触,其中,所述双极型聚合物的HOMO能级与开环的光致变色化合物的HOMO能级的差值小于所述双极型聚合物的HOMO能级与闭环的光致变色化合物的HOMO能级的差值。
所述的基于双极型半导体的光控人工突触,其中,所述光致变色化合物和所述双极型聚合物的质量比为1:1-10。
所述的基于双极型半导体的光控人工突触,其中,所述光致变色化合物为螺吡喃、螺噁嗪、螺唔嗓、六苯基双咪哇、水杨醛缩苯胺类化合物、周蔡靛兰类染料、偶氮化合物、稠环芳香化合物、哗嗓类、俘精酸配类、二芳基乙烯类中的一种或多种。
所述的基于双极型半导体的光控人工突触,其中,所述二芳基乙烯类包括
Figure BDA0002179647020000031
所述双极型聚合物为PBIBDF-BT、CNTVT:SVS、PBCDC、PDPP-4FTVT、PDPPTPT中的一种或多种。
所述的基于双极型半导体的光控人工突触,其中,其还包括:依次设置在所述半导体层下方的介电层、栅极以及衬底,设置在所述半导体层上方的源极和漏极。
所述的基于双极型半导体的光控人工突触,其中,所述介电层为氧化铝介电层,所述氧化铝介电层上设置有十八烷基三氯硅烷化学吸附自组装单分子层。
所述的基于双极型半导体的光控人工突触,其中,所述栅极为银栅极,所述源极为金源极,所述漏极为金漏极,所述衬底为PET衬底。
一种如上述任意一项所述基于双极型半导体的光控人工突触的制备方法,其特征在于,包括以下步骤:
将光致变色化合物和双极型聚合物混合后沉积形成半导体层。
所述的基于双极型半导体的光控人工突触的制备方法,其中,所述将光致变色化合物和双极型聚合物混合后沉积形成半导体层,具体包括:
采用溶剂将光致变色化合物和双极型聚合物分别溶解后混合得到混合液;
将混合液旋涂在介电层上后退火处理得到半导体层。
有益效果:通过施加不同波段的光实现了半导体沟道的重构,进而可以实现在相同电压极性下和相同光照波段下沟道导电性的增强或抑制,本发明采用光来重构人工突触,降低了电子突触的能耗,提高了稳定性和重复性,另外,电学端口的缩减有利于操作复杂程度的降低,较好的柔性性能也能实现器件的高机械性。
附图说明
图1是本发明中基于双极型半导体的光控人工突触的原理图。
图2是本发明中基于双极型半导体的光控人工突触的结构示意图。
图3A是本发明中基于双极型半导体的突触晶体管的第一电学特性曲线图。
图3B是本发明中基于双极型半导体的突触晶体管的第二电学特性曲线图。
图4A是本发明中基于双极型半导体的突触晶体管的第三电学特性曲线图。
图4B是本发明中基于双极型半导体的突触晶体管的第四电学特性曲线图。
具体实施方式
为使本发明的目的、技术方案及优点更加清楚、明确,以下参照附图并举实施例对本发明进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
请同时参阅图1-图4,本发明提供了一种基于双极型半导体的光控人工突触的一些实施例。图3包括图3A和图3B,图4包括图4A和图4B。
如图2所示,本发明的一种基于双极型半导体的光控人工突触包括:半导体层;所述半导体层包括:光致变色化合物和双极型聚合物;其中,所述双极型聚合物的HOMO能级位于开环的光致变色化合物的HOMO能级和闭环的光致变色化合物的HOMO能级之间。
值得说明的是,本发明中人工突触以晶体管的形式呈现,突触晶体管包括:依次设置的衬底、栅极、介电层、半导体层,设置在半导体层上的源极和漏极。介电层为氧化铝介电层,氧化铝介电层上设置有十八烷基三氯硅烷(OTS,octadecyltrichlorosilane)化学吸附自组装单分子层。所述栅极为银栅极,所述源极为金源极,所述漏极为金漏极,所述衬底为PET衬底。金源/漏电极(沟道长度/宽度=30微米/1000微米)将通过掩模版沉积在半导体薄膜上。
本发明中的半导体层包括两种物质,光致变色化合物和双极型聚合物,这里光致变色化合物是指在紫外光的照射下,会发生构型转变,出现开环或闭环两种状态,光致变色化合物处于两种不同状态时,LUMO(Highest Occupied Molecular Orbital,最低未占分子轨道)能级和HOMO(Highest Occupied Molecular Orbital,最高占据分子轨道)能级是不同的,分别用EH开和EH闭表示开环的光致变色化合物的HOMO能级和闭环的光致变色化合物的HOMO能级,而本发明采用HOMO能级位于EH开和EH闭之间的双极型聚合物,用EH聚表示双极型聚合物的HOMO能级。
如图1所示,EHOMO表示HOMO能级,单位为eV。EH闭>EH开,当HOMO位于EH开和EH闭之间时,开环状态是常规状态,常规状态下,EH开<EH聚,无法捕获双极型聚合物的空穴,半导体沟道呈现p型。当突触晶体管(或者说光致变色化合物)受到紫外光照射时,光致变色化合物从开环状态变成闭环状态,HOMO能级升高变成EH闭,形成空穴的深能级捕获势阱,导致半导体沟道呈现n型。通过对突触晶体管施加可见光(绿光),光致变色化合物从闭环状态回到最初的开环状态,HOMO能级降低,光致变色化合物将捕获的空穴释放出来,半导体沟道呈现p型。通过施加不同波段的光实现了半导体沟道的重构,进而可以实现在相同电压极性下和相同光照波段下沟道导电性的增强或抑制,本发明采用光来重构人工突触,降低了电子突触的能耗,提高了稳定性和重复性,另外,电学端口的缩减有利于操作复杂程度的降低,较好的柔性性能也能实现器件的高机械性。
具体地,如图3A所示,栅极加正压(VGS为栅极电压),在初始态时,器件处于n型沟道;在受到紫外光照射时,光致变色化合物从开环状态变成闭环状态,HOMO能级升高,沟道中的空穴被光致变色化合物捕获,导致n态电流增加,p态电流减小。
然后,如图3B所示,栅极仍然加正压,在初始态时,器件处于n型沟道,在受到绿光照射时,光致变色化合物从闭环状态变成开环状态,HOMO能级降低,光致变色化合物捕获的空穴重新释放回沟道,导致n态电流减小,p态电流增加。
如图4A所示,栅极加负压,在初始态时,器件处于p型沟道;在受到紫外光照射时,光致变色化合物从开环状态变成闭环状态,HOMO能级升高,沟道中的空穴被光致变色化合物捕获,导致n态电流增加,p态电流减小。
然后,如图4B所示,栅极加仍然负压,在初始态时,器件处于p型沟道,在受到绿光照射时,光致变色化合物从闭环状态变成开环状态,HOMO能级降低,光致变色化合物捕获的空穴重新释放回沟道,导致n态电流减小,p态电流增加。
由于加光时间不长,捕获空穴的量不足,呈现出的是线整体迁移,当然在其它的实施例中,延长加光时间,可以得到沟道偏转,即p型沟道转变为n型沟道,或者n型沟道转变为p型沟道。
本发明的半导体层采用如下步骤制备:
步骤S100、将光致变色化合物和双极型聚合物混合后沉积形成半导体层。
本发明采用混合的方式将光致变色化合物和双极型聚合物复合形成半导体层,具体的可以采用沉积、旋涂、喷墨等方式形成半导体层,下面以旋涂为例进行说明。
具体地,步骤S100包括:
步骤S110、采用溶剂将光致变色化合物和双极型聚合物分别溶解后混合得到混合液。
溶剂根据光致变色化合物和双极型聚合物来选择,例如氯苯。两种物质可以选用相同的溶剂,也可以选用不同的溶剂。
步骤S120、将混合液旋涂在介电层上后退火处理得到半导体层。
这里的半导体层是设置在介电层上,因此混合液旋涂在介电层上,当采用其他形式的器件时,半导体层可以旋涂在其他功能层上。退火处理的温度为100-140℃,退火时间为10-30分钟。这里采用简单的溶液法制备半导体层,简化了制备过程,缩减了制备成本。
在本发明的一个较佳实施例中,如图1所示,所述双极型聚合物的HOMO能级与开环的光致变色化合物的HOMO能级的差值小于所述双极型聚合物的HOMO能级与闭环的光致变色化合物的HOMO能级的差值。
也就是说,EH聚更加靠近EH开,而离EH闭更远,让闭环的光致变色化合物有对双极型聚合物中空穴的深能级捕获势阱,从而更容易捕获空穴,提高了光控的增强、抑制效果。
在本发明的一个较佳实施例中,所述光致变色化合物和所述双极型聚合物的质量比为1:1-10。
具体地,根据光致变色化合物和所述双极型聚合物的种类设置光致变色化合物和所述双极型聚合物的质量比,半导体层在不同质量比下的稳定性,光控性能不同。本发明中选用DAE分子作为光致变色化合物,PBIBDF-BT作为双极型聚合物,DAE的结构式为
Figure BDA0002179647020000071
PBIBDF-BT的结构式为
Figure BDA0002179647020000081
如图1所示,DAE的HOMO能级为EH开=-5.59eV,EH闭=-4.79eV,PBIBDF-BT的HOMO能级为EH聚=-5.55eV,PBIBDF-BT的HOMO能级EH聚位于DAE的HOMO能级EH开、EH闭之间,且靠近DAE的EH开。PBIBDF-BT和DAE的质量比在1:3时形成的半导体层稳定性高,响应快。
在本发明的一个较佳实施例中,所述光致变色化合物为螺吡喃、螺噁嗪、螺唔嗓、六苯基双咪哇、水杨醛缩苯胺类化合物、周蔡靛兰类染料、偶氮化合物、稠环芳香化合物、哗嗓类、俘精酸配类、二芳基乙烯类中的一种或多种。
具体地,所述二芳基乙烯类包括DAE,当然还可以是其它二芳基乙烯类化合物。双极型聚合物为PBIBDF-BT、CNTVT:SVS、PBCDC、PDPP-4FTVT、PDPPTPT中的一种或多种。
CNTVT:SVS的结构式为
Figure BDA0002179647020000082
PBCDC的结构式为
Figure BDA0002179647020000083
PDPP-4FTVT的结构式为
Figure BDA0002179647020000091
PDPPTPT的结构式为
Figure BDA0002179647020000092
本发明的突触晶体管具有如下效果:
(1)相对于以前的可重构的纯电突触,本发明引入光来重构半导体沟道,并且实现了同一种电压极性下(电学模式)与同一种光照波段下(光学模式)下的导电沟道的增强与抑制,简化了器件制备过程,大大降低了器件功耗。
(2)纳秒级的光脉冲的持续刺激能维持器件导电性的持续变化,实现了器件的多级变化以及电导的线性调制。
(3)突触晶体管采用简单的溶液法制备并且易于印刷,大大地减小了光刻图案化以及基于真空制备方法的能耗,同时器件较好的柔性性能也能实现器件的高机械性。
本发明还提供了一种如上述任意一实施例所述基于双极型半导体的光控人工突触的制备方法的较佳实施例:
本发明实施例所述一种基于双极型半导体的光控人工突触的制备方法,包括以下步骤:
步骤S100、将光致变色化合物和双极型聚合物混合后沉积形成半导体层。
具体地,所述步骤S100具体包括:
步骤S110、采用溶剂将光致变色化合物和双极型聚合物分别溶解后混合得到混合液,具体如上所述。
步骤S120、将混合液旋涂在介电层上后退火处理得到半导体层,具体如上所述。
综上所述,本发明所提供的一种基于双极型半导体的光控人工突触及其制备方法,所述基于双极型半导体的光控人工突触包括:半导体层;所述半导体层包括:光致变色化合物和双极型聚合物;其中,所述双极型聚合物的HOMO能级位于开环的光致变色化合物的HOMO能级和闭环的光致变色化合物的HOMO能级之间。通过施加不同波段的光实现了半导体沟道的重构,进而可以实现在相同电压极性下和相同光照波段下沟道导电性的增强或抑制,本发明采用光来重构人工突触,降低了电子突触的能耗,提高了稳定性和重复性,另外,电学端口的缩减有利于操作复杂程度的降低,较好的柔性性能也能实现器件的高机械性。
应当理解的是,本发明的应用不限于上述的举例,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,所有这些改进和变换都应属于本发明所附权利要求的保护范围。

Claims (9)

1.一种基于双极型半导体的光控人工突触,包括:半导体层;其特征在于,所述半导体层包括:光致变色化合物和双极型聚合物;其中,所述双极型聚合物的HOMO能级位于开环的光致变色化合物的HOMO能级和闭环的光致变色化合物的HOMO能级之间;所述基于双极型半导体的光控人工突触还包括:依次设置在所述半导体层下方的介电层、栅极以及衬底,设置在所述半导体层上方的源极和漏极。
2.根据权利要求1所述的基于双极型半导体的光控人工突触,其特征在于,所述双极型聚合物的HOMO能级与开环的光致变色化合物的HOMO能级的差值小于所述双极型聚合物的HOMO能级与闭环的光致变色化合物的HOMO能级的差值。
3.根据权利要求1所述的基于双极型半导体的光控人工突触,其特征在于,所述光致变色化合物和所述双极型聚合物的质量比为1:1-10。
4.根据权利要求1所述的基于双极型半导体的光控人工突触,其特征在于,所述光致变色化合物为螺吡喃、螺噁嗪、螺唔嗓、六苯基双咪哇、水杨醛缩苯胺类化合物、周蔡靛兰类染料、偶氮化合物、稠环芳香化合物、哗嗓类、俘精酸配类、二芳基乙烯类中的一种或多种。
5.根据权利要求4所述的基于双极型半导体的光控人工突触,其特征在于,所述二芳基乙烯类包括
Figure FDA0002773978600000011
所述双极型聚合物为PBIBDF-BT、CNTVT:SVS、PBCDC、PDPP-4FTVT、PDPPTPT中的一种或多种。
6.根据权利要求1所述的基于双极型半导体的光控人工突触,其特征在于,所述介电层为氧化铝介电层,所述氧化铝介电层上设置有十八烷基三氯硅烷化学吸附自组装单分子层。
7.根据权利要求1所述的基于双极型半导体的光控人工突触,其特征在于,所述栅极为银栅极,所述源极为金源极,所述漏极为金漏极,所述衬底为PET衬底。
8.一种如权利要求1-5任意一项所述基于双极型半导体的光控人工突触的制备方法,其特征在于,包括以下步骤:
将光致变色化合物和双极型聚合物混合后沉积形成半导体层。
9.根据权利要求8所述的基于双极型半导体的光控人工突触的制备方法,其特征在于,所述将光致变色化合物和双极型聚合物混合后沉积形成半导体层,具体包括:
采用溶剂将光致变色化合物和双极型聚合物分别溶解后混合得到混合液;
将混合液旋涂在介电层上后退火处理得到半导体层。
CN201910791348.XA 2019-08-26 2019-08-26 一种基于双极型半导体的光控人工突触及其制备方法 Active CN110690318B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910791348.XA CN110690318B (zh) 2019-08-26 2019-08-26 一种基于双极型半导体的光控人工突触及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910791348.XA CN110690318B (zh) 2019-08-26 2019-08-26 一种基于双极型半导体的光控人工突触及其制备方法

Publications (2)

Publication Number Publication Date
CN110690318A CN110690318A (zh) 2020-01-14
CN110690318B true CN110690318B (zh) 2021-03-16

Family

ID=69108609

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910791348.XA Active CN110690318B (zh) 2019-08-26 2019-08-26 一种基于双极型半导体的光控人工突触及其制备方法

Country Status (1)

Country Link
CN (1) CN110690318B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111180582B (zh) * 2020-02-12 2021-12-21 福州大学 一种基于驻极体的突触晶体管及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102596950A (zh) * 2009-10-29 2012-07-18 E.I.内穆尔杜邦公司 用于电子应用的氘代化合物
WO2013040233A1 (en) * 2011-09-13 2013-03-21 New York University Controlling regulatory t cell function
CN106653850A (zh) * 2016-09-23 2017-05-10 南京大学 基于石墨烯/碳纳米管复合吸收层的人工神经突触晶体管
CN107118757A (zh) * 2017-04-24 2017-09-01 上海电力学院 一种基于呋喃的二芳基乙烯有机光致变色材料及其制备方法和应用
CN109037388A (zh) * 2018-07-11 2018-12-18 深圳大学 一种光控神经突触仿生电子器件及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102596950A (zh) * 2009-10-29 2012-07-18 E.I.内穆尔杜邦公司 用于电子应用的氘代化合物
WO2013040233A1 (en) * 2011-09-13 2013-03-21 New York University Controlling regulatory t cell function
CN106653850A (zh) * 2016-09-23 2017-05-10 南京大学 基于石墨烯/碳纳米管复合吸收层的人工神经突触晶体管
CN107118757A (zh) * 2017-04-24 2017-09-01 上海电力学院 一种基于呋喃的二芳基乙烯有机光致变色材料及其制备方法和应用
CN109037388A (zh) * 2018-07-11 2018-12-18 深圳大学 一种光控神经突触仿生电子器件及其制备方法

Also Published As

Publication number Publication date
CN110690318A (zh) 2020-01-14

Similar Documents

Publication Publication Date Title
Han et al. Recent progress in three‐terminal artificial synapses: from device to system
Shi et al. A fully solution‐printed photosynaptic transistor array with ultralow energy consumption for artificial‐vision neural networks
Dai et al. Recent advances in transistor‐based artificial synapses
Luo et al. Artificial optoelectronic synapses based on ferroelectric field-effect enabled 2D transition metal dichalcogenide memristive transistors
Sun et al. Synaptic devices based neuromorphic computing applications in artificial intelligence
Deng et al. Organic molecular crystal-based photosynaptic devices for an artificial visual-perception system
Li et al. Flexible artificial optoelectronic synapse based on lead‐free metal halide nanocrystals for neuromorphic computing and color recognition
Ling et al. Dynamically reconfigurable short‐term synapse with millivolt stimulus resolution based on organic electrochemical transistors
Zhang et al. Tailoring neuroplasticity in flexible perovskite QDs-based optoelectronic synaptic transistors by dual modes modulation
Lee et al. Retina‐inspired structurally tunable synaptic perovskite nanocones
Lee et al. Realization of an artificial visual nervous system using an integrated optoelectronic device array
Yu et al. Solution-processable anion-doped conjugated polymer for nonvolatile organic transistor memory with synaptic behaviors
Alquraishi et al. Hybrid optoelectronic synaptic functionality realized with ion gel-modulated In2O3 phototransistors
CN109037388B (zh) 一种光控神经突触仿生电子器件及其制备方法
Wang et al. Advanced optoelectronic devices for neuromorphic analog based on low‐dimensional semiconductors
Zeng et al. Neuromorphic devices for bionic sensing and perception
Jiang et al. Light-stimulated artificial synapse with memory and learning functions by utilizing an aqueous solution-processed In2O3/AlLiO thin-film transistor
Ni et al. Flexible optoelectronic neural transistors with broadband spectrum sensing and instant electrical processing for multimodal neuromorphic computing
Bu et al. Ferroelectrics‐electret synergetic organic artificial synapses with single‐polarity driven dynamic reconfigurable modulation
CN110690318B (zh) 一种基于双极型半导体的光控人工突触及其制备方法
Luo et al. Low-power flexible organic memristor based on PEDOT: PSS/pentacene heterojunction for artificial synapse
Wei et al. Flexible Electro‐Optical Perovskite/Electrolyte Synaptic Transistor to Emulate Photoelectric‐Synergistic Neural Learning Rules and Reflex‐Arc Behavior
Li et al. High-density reconfigurable synaptic transistors targeting a minimalist neural network
Yang et al. Polymer synaptic transistors from memory to neuromorphic computing
Yan et al. Optoelectronic synaptic memtransistor based on 2D SnSe/MoS2 van der Waals heterostructure under UV–ozone treatment

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant